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ABSTRACT : The dynamic shear response Z of the vortex lattice
in superconducting granular Al films shows interesting features
near TM, the Kosterlitz-Thouless temperature for dislocation-
mediated melting. The T-dependence of Z is interpreted in terms
of the coupled motion of displacement field and dislocations in
an elastic continuum. Pinning of the vortices by inhomogeneities
seems to play an important role.

I. INTRODUCTION

It has been proposed [1,2] that a lattice of quantized vortices
in thin superconducting films can be considered as a two-
dimensional (2D) crystal undergoing a transition from a solidlike

to a fluid-like phase at a melting temperature TM determined
by the Kosterlitz-Thouless [3] criterion for the existence of
topological order in two dimensions. According to this theory,
the mechanism driving the melting transition is believed to be

the unbinding of bound pairs of dislocations, which, together
with phonons, represent the thermal excitations of a 2D crystal.
For an incompressible 2D crystal, as it is the case for a lattice
of superconducting vortices, the melting temperature TM is given
by the following implicit relation [3] :
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4lrKBTM VTM)a2 ' (1)

where a is the lattice parameter and pr(Tm) the effective shear
modulus of the crystal at the phase transition as TM is approached

from the solid phase. In the static case (to =0) yR jumps

discontinuously to zero at TM and vanishes in the liquid phase.

Expressing yR in terms of superconducting parameters, Fisher [2]
has shown that for a lattice of vortices Eq. (1) can be written
in the form :

M _ _ 3.8 nO ,9.
?c Al *u ' '

an expression showing that the melting transition should occur
always below T the BCS superconducting transition temperature.
In Eq. (2) RnQ is the normal-state sheet resistance of the
superconducting film, Ru the universal resistance li/e2 and Al is
a constant, which lies between 0.4 and 0.75, accounting for the
renormalization of the shear modulus.

Recently, Fiory and Hebard [4] provided clear evidence
for melting phenomena occurring in a 2D lattice of superconducting

vortices. However, since vortex pinning was not explicitly
included in their analysis, they were unable to ascertain whether

the observed transition was driven by the unbinding of
dislocation dipoles as predicted by detailed theories [5,6] of
2D melting.

In this paper, we report a study of the ac complex
impedance of superconducting Al-films mounted in the so-called
Corbino-disk geometry [7]. In this particular configuration
the oscillating driving Lorentz force acting on the vortices,
which results from an ac current flowing radially in the
superconducting disk, couples only to shear deformations of the vortex
medium. As a consequence, it was originally thought that this
experiment was ideally suited to provide important insight into
the unique dynamical aspects of dislocation-mediated melting.
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The experimental results described in Section II are indeed
consistent with the hypothesis of vortex-lattice melting. A

detailed analysis of the data, however, shows that vortex pinning,

as in Fiory-Hebard's experiments, plays an essential role
in determining the dynamic response of the vortex medium in both
the solid and fluid phase. In Section III, therefore, we develop

a model which explicitly incorporates pinning phenomena in
the dynamics of an elastic vortex continuum with dislocations.
The model qualitatively explains the essential features of our
data and brings new insight into the role of pinning in melting
phenomena of a lattice of superconducting vortices.

II. EXPERIMENTAL RESULTS

To realize the desired radial current-density distribution
characterizing the Corbino-disk geometry, granular Al-films of
circular shape were mounted in a coaxial current-feeding
configuration. Electrical contacts were obtained by pressing against
the film surface the indium tip of the central electrode and an

indium O-ring which acts as outer circular electrode. In order
to allow free access of magnetic flux to the film region, the
external superconducting In-electrode was interrupted over a

very short portion of its circular path. The diameter, 2R^, of
the central contact is of the order of 1 mm, whereas the
corresponding dimension, 2R0, of the external electrode is 18 mm. The

ac complex impedance Z of the superconducting film was inferred
from V -ZI, where I is the constant rms value of the driving ac

current and V the rms value of the ac potential difference
between the central and the outer electrode measured with a

conventional phase-sensitive detector. I never exceeded ~ 1 iiA,
a value resulting in a maximum current density of the order of
~ 1 A/cm2 in the immediate vicinity of the central electrode.
Typically, at these current levels the sensitivity of the detector

allowed to measure impedances of the order of a few mfi. The
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frequency range covered by the experiments reported in this
paper extends from 100 Hz up to 100 kHz. At low frequencies
(less than - 5 kHz) the correct phase setting was obtained by

adjusting the phase shift of the detector to null the signal
from the film well above its transition temperature (at T

4.2 K). This corresponds to the 90° phase setting used to
measure the quadrature or imaginary part of Z (Im[Z]). At high
frequencies, where spurious inductive pick-up from the measuring
circuit was not negligible, a more elaborated procedure was

used.

According to Hebard and Fiory [8], the complex
impedance Z of a 2D superconductor can be written in the form :

Z iu)LK + Zv (3)

an expression stating that Z is the series connection of the
inductive contribution, ioLK, due to the superfluid background,
and of the impedance Zv arising from superconducting vortices.
Estimates of the kinetic inductance LR (1/2) y Ailn(R /R^)
where A is the effective penetration depth in thin superconducting

films, using typical parameters for our Al-films show that
-iiLK, in the temperature region of interest, is always well
below the sensitivity of our detector. Thus, except very near
Tc, where u.LK, being inversely proportional to the superfluid
density which diverges as [1 - (T/T ] makes the dominant
contribution to Z, what we actuelly measure in our experiments
is the complex vortex impedance Z

In Figs. 1 and 2 we show experimental results, at
B 5 Gauss, for an Ai-film (AU) having Rna 70 fl. Other
parameters of All are Tc 2.04 K and d ~ 100 A. We observe a

rapid increase in dissipation (Fig. 1) which sets in at a

temperature lying within the "melting range" predicted by Eq.
(2) (1.71 < TM < 1.86 K). Since our method is not sufficiently
sensitive to detect the presumably very small dissipative component

Re[Z] in what is believed to be a pinned solid vortex
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phase, we are not able to ascertain whether Re[Z] exhibits, near

Tjyj, the break in slope observed by Fiory and Hebard [4] using a

different technique. Closer inspection of Fig. 1 shows an

additional feature of the data, namely a slight change in slope
around 1.9 K which for the results at 990 Hz is associated with
the appearance of the small peak shown in the insert. Above

1.9 K Re[Z] is essentially independent of u in the explored
frequency range and exhibit a thermally activated behaviour.
The inductive component Im[Z] of All (Fig. 2) shows a definite
break in slope at about 1.8 K. Below this temperature, Im[Z] is
certainly larger than Re[Z], an indication that pinning effects
play a major role in determining the dynamic response of what is
presumably the solid-like vortex phase. Above 1.8 K, however,
there is a crossover to a régime where Im[Z] is less than Re[Z],
a feature consistent with the motion of uncorrelated vortices
interacting as individual "particles" with the structural
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inhomogeneities responsible for vortex pinning (see Section III
c). Im[Z] also shows a little peak structure at about 1.9 K in
the data taken at 990 Hz and a weak change in slope at the other
frequencies. Above 1.9 K there is again evidence for thermally
activated vortex motion and Im[Z] is proportional to oj at low

frequencies. On the high temperature side the data of Fig. 2

culminate in a well defined peak at 2.03 K which is related to
the smoothed divergence of LK at the superconducting - normal

state transition.
Peak structures and changes in slope above TM are very

pronounced in the data for A12 (Fig. 3, 4 and 5), a granular Al-
film having the same R _ as

B 30 Gauss

R„= 70 Sl

10 -

A 1 kHz

B 10 kHz

[ 100 kHz

T K

All, Tr 2.27 K, d » 200 Â

and for which T,„ lies in theM

1.90 - 2.07 K range. As shown

by Fig. 4 and 5, the position
and strength of the peaks are

practically independent of
frequency. Their intensity,
however, depends, even at the
lowest excitation levels used

in our experiments, on the
amplitude of the driving ac

current. Moreover, the
dissipation associated with the
peak in Re[Z] is much larger
than what one calculates for
free vortex motion from the
Bardeen-Stephen theory [9].

Both features provide a clear indication for a non-linear dynamic

response of the vortex medium, presumably due to the
presence of strong vortex pinning in A12. This conjecture is
consistent with the observation of a remarkable difference in
the shape of the current-voltage characteristics of All and A12.

Fig- 3 Temperature dependence

of the real part of the
ac complex impedance of A12.
The amplitude of the driving
ac current is 1 \sA
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Well above TM, the I-V-curves of both films show a thermally
activated behaviour with vanishing critical current at low

currents and a linear flux-flow régime at high currents. Below

TM both films have a finite critical current but, while All
enters the flux-flow régime with a gradual transition, A12 shows,

at I I a sudden voltage jump after which the film is in the
flux-flow state. This feature is interpreted as a manifestation
of the existence of very strong pinning centers whose effect is
superposed to the usual weak vortex pinning due to the granular
nature of the Al-films. Inspection of the structure of our
films has, in fact, revealed the presence of holes, presumably

resulting from imperfect nucleation,and whose concentration is
particularly high for A12. Holes are known to act as very
efficient pinning centers [10]. It is clear, therefore, that a

careful analysis of the experimental results reported in this
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Section must also take into account phenomena associated with
strong vortex pinning.

III. THEORETICAL CONSIDERATIONS

A. 2p_Vortex Lattice Without Pinning

In the following discussion the lattice of quantized superconducting

vortices is considered as a 2D elastic continuum where

thermally excited dislocations form a system of "vector charges"
with properties similar to those of a 2D Coulomb gas [3,11].
Since it is energetically more favourable to create pairs of
dislocations (b, -b) with opposite Burgers vectors, the total
Burgers vector charge of the dislocations vanishes. As a

consequence, there is no macroscopic bending in the 2D crystal, a

condition equivalent to that of overall electroneutrality in the
2D Coulomb gas analogue.

The equation of motion for the total displacement
field u of the vortex medium can be written in the form [12] :

3ui 3aik
" It - 1^ + Fi ' (4)

where the three terms represent, successively, the viscous damping

force, the elastic restoring force in presence of dislocations

and the external driving force acting (per unit surface)
on the 2D vortex medium. The viscosity coefficient n is given
by n B2/R^_ where Rj_ is the flux-flow sheet resistance.
Since there is no macroscopic bending in the 2D vortex crystal,
the stress tensor tJik, which is related by Hooke's law to the
elastic part of the total strain tensor, can be expressed as :

'3um Ì
0-ii- Cj i,,. _ - P0m (5)ik ^ik-tainlax lm\

where P is the plastic part of the total strain tensor, the
so-called dislocation polarization tensor, describing the strain
field due to the dislocations. For an isotropic continuum the
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tensor of the elastic moduli CikJ, is given by :

C, „ XÔ..6. + u(6.„6, + 6. ô,„) (6)ikim ìk im li km im kJ.

where X and y are Lamé's coefficients. In particular, u is the
shear modulus of the vortex continuum without dislocations.

In order to discuss effects arising from the presence
of thermally excited dislocations, it is convenient to rely
again on the 2D Coulomb gas analogue. With this in mind it is
quite natural to describe the response of the dislocations to
the stress a., by means of a susceptibility X., (tn) defined by

the relation :

P.. (to) X.. „ Ma (a,) (7)lk ikJ,m im

where the sign "~" denotes the Fourier transform of the
corresponding physical quantity. In writing Eq. (7) we have implicitly

assumed that the stress field varies slowly over distances
of the order of the diffusion length traveled by a dislocation
during one cycle [6]. Accordingly, the stress field generated
in the vortex medium in response to the external driving force
is effectively perceived as a uniform stress by the dislocations.
Thus, one can approximate X., „ (q;u) by its value, X.. „ (to),r lkJlm ikS.m
at q 0

Considering the vortex lattice as an incompressible
continuum, from Eqs. (4), (5), (6) and (7), we obtain :

- iriuu y (to) Au + F (8)

This is the conventional equation of motion for a dissipative
elastic medium driven by an oscillating external force. In our
approach effects arising from the thermally generated dislocations

are incorporated in an effective (or renormalized) shear
modulus

yR(to) -f-r- (9)K E (to)
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where e (to) 1 +2yX(to) is a dielectric constant accounting for
screening of the stress field by the dislocations. e (to) has

been calculated by Ambegoakar et al. [11] in connection with the
dynamical response of the 2D Coulomb gas and more recently by

Zippelius et al. [6] in a detailed dynamical theory of
dislocation-mediated 2D melting. It can be written in the form :

£(to) eh(to) + i2u - (10)o to

showing that e (to) is the sum of two contributions. The first
one, Ej-jCto), which is complex, is due to the motion of bound

pairs of dislocations (dislocation dipoles) in response to the

oscillating stress field. The second one is associated with
free dislocation charges. It vanishes below TM but makes the
dominant contribution to e (to) above TM- The analogy with the
2D Coulomb gas allows us to write down immediately the expression
for the conductivity a entering this second term :

a b2 JL nf (11)

where D/kßT and n^ are, respectively, the mobility and the density

of the free dislocations. n^, in turn, is approximately
given by nf g ç~2 (T), where ç+(T) is the correlation length in
the fluid vortex phase (T > TM) [5] :

Ç+(T) z a exp ^-n.
where v ~ 0,37 for a triangular lattice and s is a non-universal
constant.

From Eq. (8) we can now deduce the complex vortex
impedance Zv of the Corbino-disk geometry. In this configuration

one is dealing with an azimuthal driving force of the form
F (BI/2itr)ê,. As a consequence, only shear deformations
propagating in the radial direction are excited. Then, a simple
calculation shows that :



Vol. 56, 1983 Melting in a Lattice of Superconducting Vortices 775

z. --±L
v 2 it

C(q) [1 + -^-]_1dq (13)

where C(q) -. q-1 for R-1 < q < RT1 and C(q) 0 otherwise. In
Eq. (13) t-1 is the (complex) relaxation rate of the transverse
mode q in the dissipative vortex medium :

x-1 ^ q2 -JL— q2 (14)
g n ne (to)

Since Re[e-1(to)] and Im[E-1(to)] show, respectively, a shoulder
and a peak at a temperature T(to) > TM determined by the condition

£2[T(to)] ~ D/to [11,13], one would expect characteristic
structures in Z associated with the melting transition of the
vortex lattice. Closer inspection of Eq. (13) shows, however,

that, at T 0, the relaxation times t of the relevant shear
modes consistent with the above form of C(q) lie between
- 5 xlO-3 s and -Is for a typical choice of parameters and

are even much longer in the vicinity of TM. In the temperature
region of interest to-u is therefore much larger than unity at
the frequencies used in our experiments. As it clearly results
from Eq. (13), in this régime vortex motion in ideal, i.e.
pinning-free, superconducting films is controlled by viscous
forces only and consequently all information about a possible
melting transition of the vortex lattice is lost in this case.
As it will be shown in the subsequent discussion, vortex pinning,

unavoidable in real films, provides the essential mechanism

allowing the detection of melting phenomena of the vortex
lattice.

B. Solid Vortex_Phase_With Pinning;

If one assumes that vortex pinning does not seriously affect the
dynamic response of the dislocations described by the dielectric
constant (10), the equation of motion for the vortex continuum
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is simply Eq. (8) with an additional force -VU(r) arising from
the interaction of the vortices with a random pinning potential
U(r). It is well-known that Al-films prepared, as in our
experiment, by evaporating the metal in a controlled oxygen atmosphere

consist of a random distribution of metallic grains. The

resulting structural inhomogeneities act to pin vortices by

interaction with their normal cores. Since the grain size is
usually much less than the core diameter, which is of the order
of the coherence length, the pinning potential U(r) is weak and

can be treated as a perturbation [14]. In the experiments
described in Section II, however, we found evidence also for
strong pinning effects, possibly associated with a dilute random

distribution of holes, which are known to be very efficient
p-inning centers [10]. We think, therefore, that in our films

Gta

U(r) will behave in a way somewhat similar to that sketched in
Fig. 6, where a dilute random distribution of deep potential
wells (holes) is superposed to the weak small-scale random

potential due to the grains. In order to perform an explicit
calculation of Zv, the strong pinning component of U(r) is
approximated by a random distribution of deep parabolic wells
of equal strength and, on the average, a distance L apart. In
the dilute limit considered here we assume L >> a. The weak

pinning part of U(r) is represented by randomly distributed
shallow parabolic wells. In the equilibrium configuration each

well is occupied by a vortex sitting at the bottom of the well.
Using this model, a calculation within the framework of the
so-called Coherent Potential Approximation (CPA) shows [15] that
Zv is still given by Eq. (13) where, however, the relaxation
rate -t"1 is replaced by :

T_1 Tq' + TV + T~ol (15>

In this expression x"1 is the relaxation rate of lattice modes

with a wavelength of the order of - L which are induced by the
strong component of U(r) :
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ne (to)
JL.
T 2

(16)

t0, on the other hand, is the relaxation time of a single vortex
in a shallow parabolic well and, therefore, does not depend on

UR y/e (to)

Eq. (15) has a simple physical interpretation. For

long-wavelength Fourier components of the driving force, such

that qL << 1, the presence of strong pinning centers at an

average distance L from each other causes the excitation of
lattice deformations of much shorter wavelengths, of the order
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of ~ L. For this case, the response of the vortex medium is
strongly influenced by pinning,and the lattice relaxation rate
is much faster than in a pinning-free situation (xT1 >> t"1).jl q
In the opposite limit (qL >> 1) the strong pinning centers have

little effect on the lattice response.
Typically, for our Al-films we expect a << L << R..

Then, since x-1 << xT1 for the relevant modes of the Corbino-
q li

disk geometry, from Eq. (13) one obtains :

Zv Rf[l + ^]_1 (17)

where R- (R-„ /2it)in(R /R.) is the flux-flow resistance of ther ro o iCorbino disk and t-1 ~ xT1 + t-1 in this case. In the low-tem-L o

perature solid vortex phase (T << TM), where only a few bound

pairs of dislocations are thermally excited (e ~ 1), estimates
of xL using reasonable values of L (L 10 -50 urn) and of t [2]
show that tox << 1 at our frequencies. Then, from Eq. (17) it
follows that Re[Z ] R (tox)2 and Im[Z ] R (tox) and,
consequently, Re[Z ] << Im[Z ], a result which clearly shows the
importance of pinning in reducing the dissipation and in
enhancing the inductive response of the solid vortex phase. As

discussed in Section II, this prediction of the model agrees
with our low-temperature experimental data (Figs. 2 and 3).
Under certain conditions, both Re[Z ] and Im[Z ] exhibit, for
T > TM, frequency-dependent structures, which reflect the
peculiar behaviour of e-1 (to) in this intermediate temperature
region (see Section III A). These features will be discussed
in more detail later on in this paper (Section III D). In the
high temperature fluid vortex phase (T >> T„) the presence of
a large number of free dislocations leads to a vanishingly small
e_1 (id) and thus x x In this case, Z reduces to the
expression for a single vortex, as one actually expects for a

liquid in which particles are uncorrelated. However, our model

is a typical "solid" model in which the displacement field u
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describes deformations with respect to a fixed equilibrium
structure. Thus, Z which is proportional to the vortex mobility,

vanishes in the limit to 0. Since this is clearly not
the case for a liquid, where the dc mobility is finite, in the
next subsection we discuss the response of the fluid vortex
phase in presence of thermal fluctuations.

C. Fluid Vortex_Phase_With Pinning_

Since the potential wells associated with the strong pinning
centers are assumed to be very deep (with activation energy much

larger than kßT) and dilute (L >> a), the contribution of
vortices sitting in these wells to the overall vortex impedance of
the fluid phase well above TM is expected to be very small. For

this reason we consider a model in which all vortices interact
only with the weak component of the pinning potential, namely

that associated with the granular structure of the Al-films.
For T >> Tjyj vortex motion is uncorrelated, so that it is sufficient

to consider the Brownian motion of an individual vortex
in the random pinning force field. To our knowledge, the
problem of finding the frequency-dependent mobility of such a

particle has not been studied in detail. However, a solution
containing all the essential physical features can be easily
obtained from a ID model in which the random potential U(r) is
replaced by a ID sinusoidal field U(x) U cos qx. In this
case, the Langevin equation of motion for a vortex of mass m

can be written as :

mx - n'x + U0q sin qx + f (t) (18)

where i, ' n/na (n0 B/<j> is the areal vortex density) and

f(t) is the fluctuating Langevin force with a white-noise
spectrum defined by the correlation function

<f (t)f (t')> 2n' kBT 6(t -f) (19)
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The frequency-dependent vortex mobility, which is the Fourier
transform of the velocity-velocity correlation function, and,

consequently, Zv can now be deduced from Eq. (18) using the
continued-fraction method first applied by Fulde et al. [16] to a

similar problem. In the so-called Smoluchowski limit, where the
viscous force dominates over the inertial force in Eq. (18), a

two-pole continued fraction expansion leads to :

x /x' -1
Zv Rf[1 + :

D ° ] (20)V 1 L 1 - llOXp

where x^;1 D q2 is the vortex diffusion rate over distances ofD v
the order of the wavelength of the periodic pinning potential
(D„ ktataT/n' is the vortex diffusion constant). The relaxationV D

time ratio t_/t' is given by :

^2 [T2(y) _ i] (21)

where y U0/kßT and x^ is related to x0 [Eq. (15)] by tJ
t0 I0(y)/Ij(y). ^(y) and I1 (y) are modified Bessel functions.
In the low-frequency limit (ojtd << 1) from Eq. (20) one deduces :

Rf Iq(Y) -iRe[Z ] - Im[Z, 1 R. ioxn ; (22)
v I2(y) v f D I^y)o o ¦*

These expressions show that, at low frequencies, the dissipative
component of Z is independent of to, whereas the dispersive
component scales linearly with to. Moreover, as one easily
deduces from the properties of I (y), both Re[Z ] and Im[Z ]

exhibit a thermally activated behaviour and Re[Z ] > Im[Zv].
These are precisely the features shown by our high-temperature
experimental results (Fig. 2 and 3), which can indeed be fitted
to the above theoretical expressions. Assuming that, near Tc,
R,- z R B/H „(T) - [1 - (T/T )]_1 and that U varies with tempe-f no c2 ' c o r
rature as the superfluid density, i.e. U (T) U [1 -(T/T )]
near T one obtains an acceptable fit of the data for Ali
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using U g 50 K and T z 2 xlO-5 s. This value of U is con-oo D oo
sistent with an estimate of Fisher [2] for granular films, who

finds U0(TM) of the order of kgT-, in films whose TM is relatively
close to T Moreover, using the Bardeen-Stephen theory [9]

to calculate n', from x we infer X 2-r./q - 35 ym. Because of
the random nature of the pinning potential operating in our
films, it is difficult to assess the significance of this figure.

D. The Transition_Region

A description of the pinned vortex medium at intermediate
temperatures (T > TM) is difficult and certainly requires a more

detailed theoretical treatment. From a phenomenological point
of view, however, it is possible to describe its dynamic response

in the vicinity of the melting transition using a simple
interpolation scheme. With this in mind we write for the vortex
impedance Z :

Zv Rf 1 +

* / -1

- *1 -X0)TD.

X-1 + T--1 Well above T

(23)

where x is still given by x-1

(T >> T in the fluid vortex phase, e_1 (to) vanishes and,
consequently, x z t If x* is identified as the vortex diffusion
time x defined in III C, then Eq. (23) becomes identical to
Eq. (21), the dynamic response of the vortex fluid. On the
other hand, if t* becomes very large (xî ->¦ °0 Eq. (23) transforms

into the vortex impedance of the pinned solid vortex phase

Eq. (17) These considerations show that the dynamic response
of the vortex medium in the transition region (T > T..) can be

described in simple terms if one assumes that in Eq. (23) x*

diverges as one approaches the melting temperature TM from above,

i.e. x* -+ °° as T ~ T+. It seems therefore natural to identify
iî, for T > T„, as the time free dislocations need to diffuse
over distances of the order of the correlation length Ç (T) [see
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Eq. (12)] in the fluid vortex phase, i.e. x* ; ç2(T)/D. Relying

on this phenomenological approach, we have determined the
vortex impedance near the solid-liquid phase transition from Eq.

(23) using Eq. (10) for e (to) To this purpose the contribution
e, (to) associated with thermally excited bound pairs of dislocations

has been calculated using the procedure described in Ref.

[13]. Three parameters enter this calculation, namely

i ~ ln[ (D/to) 1'2/a] y/y_,(T~) and s. Since estimates of D are
not available so far, we have set D z d obtaining I ~ 1 for a

frequency of 1 kHz and a 1 ym, which correspond to B : 20

gauss. To be consistent with Fisher's estimate [2], we have

chosen y/y^T") 2. Then, setting s 2t., ut IO-3 and ux
ri M 0 li

IO-4 at low temperatures, where e 1, we obtain the results
shown in Fig. 7. A peak in dissipation and a shoulder in the
inductive component of Zv show up approximately at the temperature

T defined in Section III A [S2(T % D/to]. These
(l) + to

0 /
Im[Zv] / \\ y

Re [Zv]

1.00 1.01 1.02 1.03

T/T

Fig- Real and imaginary part of the complex
vortex impedance as a function of temperature

in the vicinity of the melting
transitions as deduced from Eq. (23).



Vol. 56, 1983 Melting in a Lattice of Superconducting Vortices 783

structures are a manifestation of the unique behaviour of e-1(io)

in the vicinity of T„. If one lowers the frequency, while keeping

all other parameters fixed, the characteristic structures of
Fig. 7 are still well resolved but their intensity decreases

approximately linearly with to. At higher frequencies, the
structures at T are washed out. Notice that the results shown

in Fig. 7 confirm the already discussed and experimentally observed

crossover from Re[Z ] < ImtZ ] in the low-temperature solid
vortex phase to Re[Z ] > Im[Z ] in the high-temperature fluid
vortex phase.

The model discussed above shows that vortex pinning
plays an essential role in experiments probing characteristic
features of dislocation-mediated melting. Whether the structures
emerging in our experimental data just above the predicted melting

temperature can be understood on the basis of the present
model remains, however, an open question. It is possible that
the small peak in the 990 Hz-data of All results from the
dislocation unbinding mechanism. As predicted by the model, it
disappears, in fact, at higher frequencies and is probably
blurred by noise at lower frequencies. Further experimental
work, however, is necessary in order to ascertain this conjecture.

Unexplained by the present treatment are the well-resolved

peak structures observed for A12, which do not shift with to,

and whose intensity is by far too large to be accounted for by

our model. As already mentioned in Section II, their explanation

will probably require the development of a more elaborate
non-linear theory.

As a final point, we would like to stress an intrinsic
difficulty one faces in experiments probing melting phenomena of
a lattice of superconducting vortices. Unlike the case of the
superfluid transition in 2D superfluid He-films [13] and in 2D

superconducting films [17], where it is possible to couple the
driving field directly to the vortex excitations, in experiments
probing the shear modulus of a lattice of vortices the external
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force couples primarily to the total displacement field of an

elastic continuum with thermally excited dislocations and not

directly to the dislocation field. As a consequence, characteristic

features arising from the dislocation-unbinding transition

are difficult to observe. In this paper we have shown that
vortex pinning is an essential tool to overcome this difficulty.
We think that experiments dealing with well-controlled pinning
structures [10,18] will prove to be very useful in ascertaining
the nature of the melting transition.
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