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FIRST DIRECT OBSERVATION OF THE QUANTUM MECHANICAL
BEHAVIOUR OF A TRULY MACROSCOPIC OBJECT

R.J. Prance+, J.E. Mutton+, H. Prance+, T.D. Clark+,
A. Widom* and G. Megaloudis*, (+Physics Dept., University
of Sussex, Brighton, Sussex, England and *Physics Dept.,
Northeastern University, Boston, Mass., U.S.A.)

It is well known that the current-carrying state in a thick
superconducting ring can be characterised by the integer number (n for n-2ir) or
"winding number" of the electron pair condensate phase, where n 0, ±1, ±2,...
If the ring is subjected to an external applied flux 4>x, the magnetic field
energy storage in the ring is given by

Wn(*x) (n*o - *X)2/2A 0)
where $0 h/2e, A is the geometric inductance of the ring and n$0 is the quantised

flux trapped in the ring at $x 0.

The well known experimental technique adopted to facilitate transitions

between winding-number states is to include a "Josephson" weak link in the

ring1. Quantum-mechanically, the effect of this weak link is to connect states
of different winding number (here, referred to as the principal quantum number)

by the coherent transfer of magnetic flux bundles ($0) across the weak link.
Quantum-electrodynamically, this transfer can be considered to constitute the

second or "conjugate" Josephson effect, by analogy with the coherent transfer
of superconducting pairs through a weak link. We note that in this quantum

electrodynamic view2 the flux ($) in the ring inductor (A) and the charge (Q)

included on the weak-link capacitor C) become associated with non-commuting

operators Q -»- rt13/3$ or $ -*- - Ì1.3/3Q such that [*,Q] - rfi. In the simplest
theoretical model of a weak-link ring we can restrict transitions to nearest-
neighbour winding-number states (i.e. n ¦*¦ n ± 1) with a transition matrix ele-
ment-fffi/2, where fi is the frequency for the coherent transfer of flux bundles

across the weak link. If Dn is the amplitude for the ring to have a winding
number n then we can construct a Schrödinger equation to describe this infinite
set of nearest-neighbour transitions in terms of the above matrix element and

equation (1). This equation, which is of the form

Wn($x)Dn - Ctffi/2)(Dn+1 + Dh-l) EDn (2)

allows us, for the case of "weak coupling" (-T.fi small), to calculate the lowest-

lying energy level of the weak-link ring accurately. Here, each winding-
number transition (±1) corresponds to a quantised flux change (±$0) in the ring.
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Equation (2) takes on a more familiar form when we make the

transformation from a winding number (n) to an angular (9) representation3, i.e. in
terms of the angular rotation 6 of the electron pairs in the ring as a whole.

The macroscopic wave function describing the complete electron pair condensate

as a single c

equation (2)

as a single quantum object is ifi(6) Z Dnein which obeys the transformed

(i/2A)[-i$0(3/3e)-$x]24i(e)-fifi cos e i|i(e) E<j.(e) (3)

where the energy-level solutions of this equation are periodic in 4>x, i.e.
form "energy bands" such that EK($x + $0) EK($X). In terms of these solutions

the screening supercurrent and magnetic moment polarizability of the weak-

link ring are given by Is -(dEK/d$x) and X A(d2EK/d$x), respectively. We

note that the energy bands (EK versus <3>x) are constructed from a coherent

amplitude superposition of winding-number states of the ring in which the "good

quantum number" is now k not n.

Fine-Structure Quantum Numbers

In the conventional theory^ of the Josephson weak link there exists a

"plasma frequency" usQ for the link given by Wq (1/Aeff C) where Aeff and C

are, respectively, the effective inductance and the capacitance of the weak

link. For the weak link contained within a ring, u0 takes the form of a coupled

plasma oscillation with (l/Ag-pf) (1/A) + (4e2v/h), where h/4e2v is the

"kinetic" inductance of the weak link and v is the Josephson pair transfer
frequency through the link. To include these excitations (energy mfiu_0, m 0,1,2,

3,...,) in the macroscopic Schrödinger equation we can simply write the

amplitude (above) as i(j(6,m) where m is the number of photon excitations. In

the e-representation the Schrödinger equation (3) now has the form

(l/2A)[-i$0(3/39)-$x]2i(;(6,m) + nH.woij)(e,m) -
-fi l fi™, cos 6i(j(e,m') Eij.(6,m) (4)

m1 '""
where the matrix element fimm> for m' photons to go into m photons during a

n -r n ± 1 transition is given in terms of combinational factors (with r going

from zero to the minimum of m and m') and a factor X acting as a coupling

parameter linking winding number and photon transitions together, by

^m. fi E viTrîT. [r;(m-r):(m'-r)n"1 A(m+m' "r) (5)

Again, the Schrödinger equation (4) yields energy bands (EK versus $x), with
good quantum number k, but now these bands are created from an amplitude

superposition of different winding number and photon excitation states.
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The Weak-Link Ring Band-Structure Measurement Technique

In principle the technique we use to monitor the energy-band structure
of a weak link ring as a function of $x is extremely simple although in practice

it has required us to develop a state of the art UHF receiver with an

effective system noise temperature (Tm) - few K. I-magine, first, an inductor
(L), narrow-banded by a capacitor connected in parallel,at a temperature T.

If the centre frequency of this tuned ("tank") circuit is uR, such that
fio)R « kBT, then the inductor L will act as a "classical object" and the flux
noise in this inductor, integrated over the band pass of the tank circuit,
will be just <A$2> =kgTL. If this tank circuit inductor is coupled through a

mutual inductance M to a weak-link ring of magnetic-moment polarizability
X A(d2EK/d$x), we have shown elsewhere that the flux noise in the inductor
is now given by5

<A$2> kBTL [1 + K2A. (d2EK/d$2)] (6)

where, as usual, K2 M2/LA and here the external flux $x is controlled by a

slowly varying current Ix flowing through a bias coil coupled to the weak-link

ring.
The very-low-noise-temperature receiver system we use to measure

these flux fluctuations is shown in block form in figure 1. We have chosen

430 MHz as the centre frequency of this receiver (bandwidth - 35 MHz) partly
for historical reasons1 but also because of the ready availability of very
low-noise GaAs devices in this frequency range. The receiver is power-matched

capacitively to the LC "tank" circuit under loaded conditions, i.e. with the

tank circuit coil coupled to the weak-link ring. The quality (Q) factor for
the ring-tank circuit combination is approximately 40. The approximate noise

temperatures, and operating temperatures, for each amplification stage of the

receiver are given in figure 1. The particular features to note about this
system, apart from its amplification

stages, are (1) an

extremely stable local

oscillator [few parts in 1010

frequency stability] (ii) a

properly broad-band matched

and terminated input to the

IF amplifier (iii) very broadband

noise isolation between Figure i

ramp
generator

430 Wz

\s\

30dB -lOdB20dB 20dB

X
OK 1O0K2K
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the room temperature electronics system and the 430 MHz resonator circuit and

(iv) massive electromagnetic shielding for the receiver and the low-temperature

circuitry. We note that for the double-derivative noise spectroscopy
technique to work, as expressed in equation (6), the effective "environmental"
noise temperature Tpj/\R created by the receiver (i.e. measurement) system at
the weak-link ring must be less than the ambient (bath) temperature T of the

ring, i.e. for T 4.2K, Tjvjar < few K. This can be achieved provided (i) the

system is operated narrow-band and (ii) the first and second-stage amplifiers
are cryogenically cooled.

The experimental technique used to observe the magnetic moment

polarizability x of the ring is very simple. We adjust all the UHF (+ output)
amplifier stages for minimum noise temperature and plot the mean square flux
noise <A<J>2> generated in the tank-circuit coil, integrated over the tank-circuit

bandpass, as a function of a slowly varying external flux ^XDC- ^e output

of the receiver is displayed on a standard x versus t plotter with a

bandwidth from DC to a few Hz. Typically noise plots, extending over 10 to 20 $0

of external bias flux (both positive and negative), are recorded over time

periods of up to five minutes.

The Weak-Link Ring

It is clear from equations (3) and (4) that macroscopic quantum-
mechanical effects will be most readily observable if Üfi and -Rw0 are large,
i.e. if the cross-section of the weak link in the ring is made as small as

possible ^ a few superconducting penetration depths A across). At the

present state of superconducting device technology these requirements can still
be best achieved by working with rings containing point-contact constriction
weak links. Mechanical and thermal stability is achieved in practice by making

use of the so-called "Zimmerman" two-hole

structure [1], as depicted in figure 2.

In our devices [6] the block, screw and mechanical

lock nuts are machined from niobium and the

mechanically stabilised point contact is oxidised
before the final adjustment is made. Typically, with NbWEAK LINK RING
these point contacts adjusted to have maximum sustain- Figure 2

able supercurrents in the yA range (v - 10I3Hz) the effective capacitance (C)

and cross section (d2), as inferred from other experiments [3], appear to be

< 10~15 F and < 1000A square, respectively.

KJcm

S
O-O



Vol. 56, 1983 Quantum Mechanical Behaviour of a Truly Macroscopic Object 793

Magnetic Pol ari zabi li ties
In figure 3a we show an experimental plot of <A$2> versus *xqç

with the UHF receiver set for minimum noise temperature. Here, the maximum

sustainable supercurrent in the weak-link ring used in this experiment was in
the pA range and T 4.2K. We can see that the output of the receiver as a

function of $XDC ^s a series of noise spikes, separated

- Îby precisely (to better than 12 accuracy) <i>0 intervals
The position of these spikes on the $XDC ax'"s is t'ie ^^
same when the input bias coil current (*XDC) ^s reversed

to sweep the flux between ± 20$o, i.e. there is no

J
(a)

W \Ju
3T tal >

J
lb)

LJ VJ
Hi

tata- ° -taFxgure 3

observable hysteresis.
What we are seeing in figure 3a is the

external flux-dependent magnet-moment polarizability
of the weak-link ring in the lowest (k=1) band solut- '

ion of the Schrödinger equation (4). In figure 3b we

show X(k=1) versus fyQç, calculated from the lowest band

(m=0) solution of equation (4) with fi taken, for best

fit, from the experimental linewidth of the spikes in

figure 3a, i.e. with-fifi 0.05 $£/A, where $o/A can be

considered to be the natural scaling energy for the weak

link ring.
We have been able to make use of a very convenient experimental

technique to kick the weak-link ring from one energy band to another, at
least for the lowest bands. It is well known that the excess noise temperature

of a high performance GaAs FET amplifier is a function of the gate

voltage (Vq) applied. In most circumstances it is the "in-band" (e.g. for us

430±15 MHz) noise of the amplifier which is of interest. However, it should

be appreciated that these devices produce noise up to extremely high frequencies

(> 50 GHz). When Vq is adjusted the level of all these noise components

is changed, including those at many tens of GHz. It is these extremely high-
frequency-noise photons that we have utilised to kick the weak-link ring
between the various low-lying allowed bands. Our technique is to adjust Vq on

the second stage GaAs FET amplifier (at 77K) to change the in-band noise

temperature (TNß2. by ± few K. Now, with an estimated 30 dB of in-band reverse
isolation between this amplifier and the weak link ring, a 10K adjustment in
TNA2 results in a 0.1K change in T^r. This is negligible in terms of the
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<*$*>

large flux-transfer frequency (fi) implied by figure 3a. However, even though

the in-band reverse isolation is good, our receiver system is virtually
transparent to injected noise above 5 GHz. It appears, therefore, that when we

change Vq on the second (or other) stage amplifier we inject a burst of

extremely high-frequency-noise photons into the low-temperature system. This

acts to kick the weak-link ring from band to band. We emphasise that we are

dealing with a single quantum object so in no sense is there a Boltzmann

distribution for this "particle" in the various available bands on the timescale

of a single sweep in <A$2> versus $XDC- A
In figure 4a we show experimental plots of <A$2>_

'

versus <3?xDC at T 4.2K for the weak-link ring kicked

into the second band in external flux space. We see that
the original noise spikes of figure 3a have "split" in a

characteristic manner. We can generate such a pattern
from the second band (m=l solution of equation (4). In (a)

figure 4b we show the x(k=2) versus $xDC pattern calculated

from this second band solution with, as before,
fifi 0.05$g/A and, for best fit, -fio)0 0.07a*©yA. In
both figures 4a and 4b the coupling parameter A is set

at 0.5. We note that modest changes in A(0.5 ± 0.2) have

little effect on the theoretical polarizability patterns
of figures 3b and 4b. These patterns have been suitably 'b'

scaled on the vertical axis to match the experimental

plots of figures 3a and 4a.

With definite values of the -Ufi and -fioiQ we can compute the lowest-

lying bands (EK versus <ä>xDc) f°r the above point-contact weak-link ring. The
2 2first three bands are shown in figure 5 with-fffi 0.05 <£>0/A, -f\§0 0.078$o/A

and A 0.5 The energy spacing between these bands at <1>XDC 0 is-fîu.0. We

X

U

Figure 4

-\y\MMta\/VtaK

-I* >iF.

Figure 5
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see that the third band-scheme solution has an elaborate structure which

generates a very characteristic second-derivative polarizability pattern. This

is shown in figure 6a and we see that the split noise spikes of figure 4a have

split again. In figure 6b we show the experimental <A$2> versus $XDC Plot f°r
the weak-link ring kicked into the third (m=2) band. Ax
From the experimental plots (figures 3a, 4a and 6b) it I

is apparent that the weak-link ring can remain stably
in a particular low-lying band for some considerable
time - of the order of 1 to 2 minutes is typical for
the UHF receiver system used in these measurements.

Conclusions

From a theoretical viewpoint it is evident
that superpositions of macroscopically different states|<

exist as solutions to the Schrödinger equation. The

experimental problem of observing such superpositions
becomes that of reducing the random environmental
noise sufficiently over the time required for the

observation. It is apparent from figures 3,4 and 6

that we have now achieved this required degree of
"electronic isolation". We note that for large-capacitance

weak-link devices, such as the Josephson tunnel

junction, "fimo will be very small. There is little doubt that at the present
state of the electronic art such finely spaced levels would remain unresolved

spectroscopically.
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