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Quantum Brownian Motion *

Hermann Grabert ** and Peter Talkner

Institut für Theoretische Physik, Universität Basel
Klingelbergstrasse 82, CH 4056 Basel, Switzerland

We propose a new master equation describing the irreversible
process of a quantum-mechanical Brownian particle. The

master equation is shown to obey the symmetry of detailed
balance leading to a quantum analogue of the reciprocity
relations, and the fluctuation-dissipation theorem is
obtained. The relation to previous approaches is discussed.

The problem to describe damping of a quantum system
arises in fields as diverse as quantum optics and nuclear
physics. This question has been extensively discussed in the
literature and the different approaches are presented in various
review articles1-. While some of these approaches have been
applied quite successfully to irreversible quantum systems, the
theory is far from having reached a status comparable to the
theory of classical random processes because there are still
open questions even of the principle kind.

For classical processes it is well known that the
microscopic reversibility leads to a certain symmetry of the
random process known as detailed balancing, and the response
functions are connected with the correlation functions by the
fluctuation-dissipation theorem (FDT)2. While these general
features should certainly also be present within a quantum
description, it has proven to be extremly difficult to incorporate
these properties into those approaches^ avoiding a fully microscopic

treatment.
In this communication we shall consider a quantum-

mechanical particle which is acted upon by a thermal bath and
an outside potential. The irreversible motion of the particle
will be described in terms of a master equation which is different

from those put forward to date. The new master equation is
distinguished by the fact that it obeys the symmetry of detailed

balance leading to a quantum analogue of the reciprocity
relations, and the FDT is incorporated correctly, too. Finally,
the relation to previous approaches will be discussed.

A model for a damped quantum-mechanical particle can
be obtained by starting from a purely dynamical model of a hea-
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vy particle of mass m coupled to a reservoir of lighter particles
of mass m'. Upon eliminating the reservoir variables by means

of the projection operator technique^ one finds a closed sub-
dynamics of the heavy particle alone. The density matrix p(t)
of the particle with momentum p and position q obeys a generalized

master equation. We use an approach different from the
usual ones because our relevant density matrix is of the local-
equilibrium type and not a factorizing density matrix. This
allows us to avoid the assumption that the particle is not
correlated with the reservoir initially. Furthermore, the generalized

master equation can be shown to govern the time evolution of
equilibrium correlations exactly.

When the coupling to the reservoir is of the form qr,
where r is a reservoir operator, the generalized master equation
can be evaluated further. Using the mass ratio m'/in; as a
small parameter, one obtains in the Markovian approximation a
master equation of the form

p(t) -iLp(t) -i(Lo+Ld)p(t) ; (1)

where the Liouville (super-)operator is the sum of a reversible
Liouvillian

LoX (1/fi) [h,x] ; H p2/2m + V(q) (2)

describing a particle of mass m moving in an effective potential
V(q), and a dissipative Liouvillian

LdX (kBTm/i-r.2) [q,A[q,K_1x] ] (3)

describing the influence of the bath. Here

m .L. -BH.-l rß -aH „ -(ß-a)HKX ß tr e > da e X e
o

is the Kubo transformation, ß l/kRT is the inverse reservoir
temperature, and

m .- -BH.-l ,e -aH „ -(ß-a)HAX (ß tr e ' da y (a) e X e

is a damping operator, where y(a) is given in terms of the
correlation function of the force T exerted by the reservoir
upon the Brownian particle

y (a) -j—^ £" ds <r(s-itfa)r>
B
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It can easily be shown that in the high-temperature limit the
master equation (1) reduces to the standard Fokker-Planck equation

for classical Brownian motion with a damping constant given
by Kirkwood's formula.

Some interesting properties of the new master equation
can easily be seen. Using the formula [pg,q] ifî/mkBT Kp,
where p ftr exp(-ßH)]-! exp(-ßH) is the equilibrium state, we
find B

<q(t)> (1/m) <p(t)>

Here

Y T ' da y (a)
ts o

is a damping constant. Thus the mean values obey the same equations

that are met with classical Brownian motion. This is as
it should be in view of Ehrenfest"s theorem.

The symmetries of the process are easier recognized
if the master equation (1) is written in the form of an Onsager-
type transport equation

p(t) - Ry(t) - (V+D)u(t)

where

u(t) kBTK_1(p(t)-Pg) (4)

is a thermodynamic force operator^ which drives the system back
to the equilibrium state p and R is a transport (super-)
operator. R consists of a commutator

VX -(i/fi) [Pg,x]

describing the reversible transport.and a double commutator

DX (m/fi2) [q,A[q,x]]

describing the irreversible transport.
The time-reversal transformation IT is defined by

nq q np -p. Using n2 1 and n(i["x,Yj) i[nY,nx]we find
nKn k nvn vT non dt

4
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TThe last relations imply URI. R which is the quantal version
of the reciprocity relations. Here the transpose AT of a (super-)
operator A is defined by tr(XAY) tr(YATX).

Next we study the linear response to an external
perturbation H (t) which acts upon the particle. The perturbation
changes not only the reversible motion but the irreversible
motion as well. This follows from the fact that in the presence
of a time-independent perturbation the particle relaxes towards
the steady state

ps Z-1exp{-ß(H+He)j Pß - ßKHe

where we have disregarded the nonlinear terms. The thermodynamic
force operator (4) is therefore replaced by

kBTK_1{p(t)-p +ßKHe(t)} u(t) + He(t)

and we arrive at the master equation

p(t) -RJy(t)+He(t)} - iLp(t) - RHe(t). (5)

From (5) we obtain
t

Ap(t) p(t) - p. - ; dsX(t-s)H (S)
p —°° tr

with the response operator

x(t) 0(t)exp(-iLt)R. (6)

Here 0(t) is the unit step function. In particular, the response
of the mean position <q(t)> to an external force F(t), that is
H (t) -qF(t), is found to be

t
A<q(t)> ' ds v (t-s)F(s)-co ^gg

where the response functions are defined by xyy(t) tr(Xx(t)Y.)
Besides the mean relaxation towards equilibrium, the

Liouvillian L also governs the time evolution of correlations of
fluctuations about equilibrium. The result is stated conveniently

in terms of the canonical correlation '

CXY(t) tr(XG(t)Y)

where for t>0
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G(t) exp(-iLt)K G(-t) GT(t). (7)

The relation of C (t) to the frequently used symmetrized
correlation SXY(t) is expressed at its clearest in terms of the
associated spectral functions^

Sxy(ü.) -|ßcoth(!fi)CXY(ü.) (8)

where S. -fitu/k T. Because of iL k TRK Eqs. (6) and (7)
give the FDT

X(t) - ßO(t)G(t)

Using (8) and changing to frequency space, we obtain the more
familiar form

coth(ì.ì)x"XY(u) (2TT/fi)SXY(to)

where x"xy(u) ^[xxy (to)-xyx (to)} is the dissipative part of the
dynamic susceptibility. It is also easily established that the
correlation functions satisfy the symmetry of detailed balance.

The present approach differs from most of the
previous work1 in two ways. First, the form (3) of the dissipative
Liouvillian L^ is different. Second, the rules how to calculate
correlation and response functions from the master equation are
different. Shortcomings of the conventional theory of quantum
Markov processes are discussed in detail in Ref. 8. As a
consequence of general principles, the stochastic process of quantum
Brownian motion has the symmetry of detailed balance, the FDT
holds, and the average regression obeys Ehrenfest's theorem.
The new master-equation approach meets these requirements while
previous approaches violate at least one of them.
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