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A Loewner-type interpolation problem applied
to partial-wave dispersion relations
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USSR and G. Rasche, Institut für Theoretische Physik der
Universität Zürich, Schönberggasse 9, 8001 Zürich, Switzerland

(15. XII. 1982)

Abstract. The one channel, T)-unitarity, general I partial-wave dispersion relation with the lett
hand cut approximated by an arbitrary finite number of poles is viewed as a particular case of a higher

_

order Loewner-type interpolation problem. The solvability conditions and the general solution are
given in terms of an iterative procedure resembling the Nevanlinna procedure for the Pick-Schur-
Nevanlinna interpolation problem.

1. Introduction

It has long been realized that the results and techniques of Pick-Schur-
Nevanlinna-type interpolation theory provide a useful method for studying
partial-wave dispersion relations [1-4]. These methods are extremely powerful in
giving the conditions for a solution to exist and in providing the description of all
solutions. In the one channel case using R -unitarity, this has been done for the
pole approximation and general I in [2]. In this note we point out how to deal
with the threshold condition for tj -unitarity in the pole approximation and for
general / in the one channel case. More specifically, it is shown how this problem
is related to a particular case of a higher order Loewner-type interpolation
problem. By an iterative procedure resembling the Nevanlinna procedure for the
Pick-Schur-Nevanlinna interpolation problem, we give the solvability conditions
and the general solution.

After fixing the notation in Section 2 we will present in Section 3 the
analogue of the Blaschke-transform for our problem. Section 4 describes the
iterative procedure and Section 5 contains some simple explicit examples.

2. Description of the problem

Let

S,(s) l + 2iq(s)/i(s)

be the partial wave scattering matrix for elastic scattering in the state of angular
momentum /. Since I is kept fixed, it will be dropped as an index from the
functions. The center-of-mass momentum q(s) is defined in [2]. The function Sis)
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has the following properties:
(a) Sis) is analytic in the s-plane with a cut from 1 to oo and a finite number

of simple poles _at sf < 1 with residues Tt (i 1, 2,.. N);
iß) Sis) Sis);
iy) S(x + i0) is continuous for x>l and at oo, |S(x + iO)| 1 for xêl and

S(l) l;
(8) S(s) has the behaviour S(s) 1 +0((s -1)1+1/2) near s 1.

(7) is the elastic unitarity condition. The general inelastic case can be reduced
to the elastic one by a Froissart transformation (see e.g. [1]).

It is convenient to map the cut s-plane onto the unit disc by

l-(l-s)1/2
z =-l + (l-s)1/2

We define

z-Zi Az
A(z)=n"il-zz, \(l + z)<

where

l-d-Si)1/2
Zi="l + (l-s()1/2

e the cond

(a') A(zj)-7i=rin
and state the conditions on A(z), analytic for |z|<l:

z-, - Zi 1 dz

/#¦ 1 - z.z,- l-zf ds

iß') A(z) Ä(z);
(7') |A(eie)| 1, A(l) 1 and Aiz) is continuous for \z\ =£ 1.

Let B" be the class of Blaschke products of the form

rr z —qk

k=1l-akz'
where the a( are either real or appear in complex conjugate pairs. B° contains by
definition only the function /= 1. Let B U"=o Bn. Then (a'), iß') and (7') imply
that A(z)eB. Since all these Aiz) are analytic in a neighborhood of z 1, we
have

(8') (^)(D-A('\ / 1,2,..., 21,

with the A0) given explicitly in terms of the z,. We remark that because of (7')
and (ß') only I of the A0) are independent of each other (for example, A<2)

A(»(A(1)-1)).
Our task is to derive the conditions on the zt 's and r; 's (or yt 's) for a function

satisfying (a')-(S') to exist and to give the general formula for all the functions
satisfying these conditions. This is a higher order loewner-type interpolation
problem. One possibility for solving this problem was kindly communicated to us
in a letter by Prof. M. G. Krein. It is due to A. A. Nudelman and consists in
reducing it to the Stieltjes moment problem. Another solution might be hidden in
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the powerful recent results in [5] and the references quoted therein. In the
following sections we develop a fairly elementary method of solution. To be more
explicit, for I 0 the condition (8') does not exist and one can obtain the complete
solution by removing the condition (a') via the Nevanlinna method using the
Blaschke-transformation [1]. For .^0 the same method can be used to remove
condition (a) and Nevanlinna's method can be generalized to remove also the
condition (S')- This iterative procedure is very well suited to practical applications.

3. The analogue of the Blaschke-transformation

Let

dfK={fBn=\feBn (1) a(>0) and Ba [J Bna.
J n ldz

Proposition. The formula

2(l + zh)-(l-z)(l + h)a (1
'~2(l + zh) + (l-z)(l + h)a

and its inverse

2(l-/)-(l+/)(l-z)a
-2z(l-/) + (l+/)(l~z)a

^ '

give a one-to-one correspondence between all heB and all f&Ba.

Proof. During the proof we freely use the notation and the results of [6]. Let

i - GjQ 1-z/(z)=. C ij—- (2)
i + G(C) 1 + z

Let Rfinite (Sfini,e) be the class of functions R(S) defined in [6], with the restriction
that the measure in the integral representation of the functions has only a finite
number of points of growth not including the point 0. Clearly feB is equivalent
to G s taRfinite and G(Ç) -G(£). From [6] it follows that G can be represented as

G(£) £F(£2), (3)

with F e S and in our case in fact FeSflmte. Thus we have by (2) and (3) a
one-to-one correspondence between B and Sfimte.

Let (for q > 0) Sa {Fe S | F(0) q} and Sa"ite be defined analogously. It is
clear that (2) and (3) give a one-to-one correspondence between Ba and Samte.

The transformation (first step in the continued fraction expansion)

F(£) a— H(g)
F(g)~a

(4)*™ i-mie' ^ me ' w
gives a one-to-one correspondence between Sanite and Sfimte. To see this, let HeS.
It follows from [6] that |h(|) e R, and so



Vol. 56, 1983 A Loewner-type interpolation problem 1049

Moreover F(£)>0 for |<0, so that FeSa. Now let FeSa. Then £H(£)

1-7^-tgR and is negative for |<0, that is £H(£)e S"1. It follows from [6] that
F (è)

H e S. We thus have a one-to-one correspondence between Sa and S given by (4).
In our case this correspondence is obviously between SamtB and Sfimte.

If h<=B is the function corresponding to HeSûmte via (2) and (3), a simple
calculation gives (la). This completes the proof of the proposition.

Remark. A closer look at the proof reveals a more refined version of the
proposition, namely that (la) gives a one-to-one correspondence between B" and
er1.

4. The iterative procedure

After having removed (see for example [1]) the conditions (a') via the
Nevanlinna method (assuming that z-, and y{ fulfil the solvability conditions for
that procedure), one ends up with a function cp(z)eB, whose derivatives

d^)(D^«i / 1,2,..., 21,
dz

are given in terms of z; and y;. In order that such a cp exists a necessary condition
is that either

«j 0, / 1,2,..., 2Z, (5a)

or

a:l>0 (5b)

holds. For the first alternative the only solution is cp(z) l. If the second
alternative holds, we perform the inversion (lb) to give

2(l-<p)-(l + <P)(l-z)q1
91 -2z(l-<p) + (l + (p)(l-z)«1"

Then cpx e B and its first 2(Z — 1) derivatives ß, are prescribed in terms of the a,. In
order to see this, let us consider the Taylor expansion of <Piiz) around the point
z 1. Indeed one can show by a straightforward calculation that the numerator
and the denominator in (6) are of the form

«i(z-d2+i cn(z-ir,
n 3

where the cn for n 3,4,..., 21 are given in terms of the a;. Again for such a <px

to exist a necessary condition is either ß,¦= 0 for / 1, 2,..., 2(Z— 1) or ß1 >0.
This completes the description of the iterative steps.

If before performing I steps in the iterative procedure, it turns out that at an
intermediate step neither (5a) nor (5b) is fulfilled, a solution does not exist. If (5a)
is fulfilled at one of the intermediate steps, the solution is unique.

Suppose now that after the first l-l steps (5b) is fulfilled. Then one can
perform the /th (and final) step and clearly the solution is not unique and all
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solutions are in one-to-one correspondence with the functions heB. The solution
corresponding to h 1 is called the isolated solution.

5. :Explicit examples

5.1 The case N =1,1 1

We have S(l)= 1, S'(1) 0. In our case

\-zzx \(l + z) /
and[

A(l) l, A'(l)=^i,

A(z)=lr(1+2l)2AUl) 4ll(l-z1)2"
The solvability condition for the Nevanlinna procedure is

|A(Zl)|«l. (7)

If this is fulfilled, we define

i l-ZiZ A(z)-Ajz1)
VW

z-zx l-A(Zl)A(z)'
Thus (a') has been removed by the Nevanlinna procedure. It follows that

m 1 'tu 2A(Zl) 1 + Zl_<p(l) l, <P(D=- TJ-\-a «•
l-A(Zi) 1-Zi

In order that a nonunique solution exists, it is necessary that

a>0. (8)

We can then remove (S') by our transformation (6) or its inverse (la), namely

2(1 + zhiz)) - (1 - z)(l + hiz))a
Viz) 2(l + zh(z)) + (l-z)(l + h(z))a

Conditions (7) and (8) are necessary and sufficient for a non-unique solution to
exist. The isolated solution is given by

(l + z)-(l-z)a
<P.sU)= :—.l + z+(l-z)a

5.2. The case N 2,1 1

We have S(s 1) 1, S'(s 1) 0. Defining

A(z)=^-^S( 4Z \
1-ZjZ l-z2z \(l + z)
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we have

A(l) l, A'(1)-^Ä,
A(z1)=7ri;——-—TT2-T1,

A(z2)=7r2-—-z-TT.—7^-72-

ìr Zi-22 (1 + Zx)2

4 M-z^U-z,)2
ìr 22-Zi (l + z2)2

4 2l-Zlz2(l-z2)2
The solvability condition for the Nevanlinna procedure is

|7il*-l and |72|«sl. (9)

We then can define

L-ZjZ A(z)-7t
<Pi(z) ——

z-zx l-yxA(z)
and calculate

7i 1 + Zj 1 + 7! l + z2
<Pi(D 2

l-7i 1-Zi 1-7! 1-z

<Pi(z2) t : 7-4 1 - 7i72
For a nonunique solution to exist, it is necessary that

<PÌ(1)>0 and H«l. (10)

We then can define

t \ l-z2z <Pi(z)-7

z-z2 l-7<pi(z)
Thus (a') has been removed by the Nevanlinna procedure. It follows that

V'(l)=-^+f^»i(D
1 - z2 1-7

For a nonunique solution to exist, it is necessary that

<P'(D>0. (11)

We can remove («5') as in the last step of 5.1 by our transformation (6) or its
inverse (la). Conditions (9)-(ll) are necessary and sufficient for a nonunique
solution to exist.

5.3. The case N l, 1 2

Taking for convenience sx 0 one can show by a straightforward but lengthy
calculation that in this case no solution exists; it turns out that in the final step the
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derivative at z 1 is negative. This result should be compared to [2], where it is
shown generally that N^l for a solution to exist in the problem treated there.

REFERENCES

[1] G. Nenciu, Nucl. Phys. B53, 584 (1973).
[2] G Nenciu, G. Rasche and W. S. Woolcock, HPA 47, 137 (1974).
[3] G Nenciu, G Rasche, M. Stihi and W. S. Woolcock, HPA 51, 608 (1978).
[4] G Nenciu, G Rasche and W. S. Woolcock, HPA 53, 134 (1980).
[5] J. A. Ball, Interpolation Problems of Pick-Nevanlinna and Loewner Types for Meromorphic Matrix

Functions, Virginia Tech preprint.
[6] I. S. Kac, M. G. Krein, Amer. Math. Soc. Transi. 103, 1 (1974).


	A Loewner-type interpolation problem applied to partial-wave dispersion relations

