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INTRODUCTION TO THE MEASURABLE QUANTITIES OF NMR

J.J. van der Klink

Institut de Physique Expérimentale, Ecole Polytechnique Fédérale de
Lausanne, PHB-Ecublens, CH-1015 Lausanne, Switzerland.

A summary introduction is given to most of the terms in the general

nuclear spin Hamiltonian and to how their measurable effects on NMR spectrum

and relaxation contain information on the microscopic properties, both static
and dynamic, of the nuclear surroundings.

1. Introduction

This paper attempts to summarize how the wealth of phenomena that can

be studied by nuclear magnetic resonance techniques arises from the differences
in symmetry of only a few terms in a nuclear spin Hamiltonian. It does not deal

with experimental considerations. To give here a full derivation of all relevant

equations is of course both impossible and unnecessary : several excellent
books on the subjet exist. Instead, the key results are presented and their
relationships discussed in a rather general and formal framework. The actual

applications of these theories to problems in solid state physics and materials

science will be shown in other contributions to this series : in this

paper very few specific results will be dealt with. Its main purpose is to

provide a quick reference for concepts used in the following papers. Readers

who want to obtain a deeper understanding should consult one of the monographs

(cited in the references) that have been used in preparing this text.
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2. The Nuclear Operators and the Nuclear Spin Hamiltonian [l,2]

Most elements of the periodic table have at least one isotope that

in its ground state has a nonzero total nuclear angular momentum I (usually
named "the" spin of the nucleus, although it is composed of spin and angular

momentum operators of the constituent nucléons). Since parity is well-defined,
the multipole expansion of the nuclear charge distribution contains only odd

electric multipoles and only even magnetic multipoles. According to the Wigner-

Eckart theorem, the only multipoles that can have nonzero matrix elements are

of order t< 2 I, Therefore, in addition to the Ü 0 point charge, nuclei of
1 13 31 195

spin one-half (e.g. H, C, P, Pt) can only have a magnetic dipole
¦* ¦»

moment y; those of spin > 1 can have an electric quadrupole moment eQ; for
I > 3/2 the magnetic octupole is possible, and so on. It turns out that the

only moments of importance in NMR are those with 1=1 and 5. 2 : the higher

ones can always be neglected (and the Î, 0 part does not give different coup-
¦Ar -*¦

lings for different spin substates). To establish the relation between I, y

and e($ we need the spherical tensors I. with i 1 and I 2 and where m runs
xm

from - H to + I. As an example we have for I, :
Ira

i... ï \ /T (I til)1±1 2 x y

ho - \
(1)

The Wigner-Eckart theorem now says that y is proportional to I By conven¬irli
tion, the proportionality constant is denoted yft and Y is called the

gyromagnetic ratio. Similarly, eQ is proportional to I„ and the conventional nota-
zm

tion for the proportionality constant is eQ/I (2 1-1) where now eQ is called
"the" quadrupole moment of the nucleus.

Basically, a magnetic resonance experiment observes < y> (or more
¦A- ->

precisely : its component perpendicular to the Zeeman field), but since I, y
^ -»•

and eQ are tied together, < y> is influenced not only by purely magnetic

couplings with a field B of the form y • B, but also by couplings I 'J to
another angular momentum J and by couplings to an electric field gradient V

"• =* • it iiof form eQ : V. It is therefore useful to write all interactions as spin

interactions, using the representations of the nuclear operators given above.

Neglecting for the moment the "external" part of the nuclear spin Hamiltonian,
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due to the externally applied static and rf magnetic fields, the following
terms can be important in an NMR experiment :

1) The shielding ("chemical shift" or "Knight shift") Hamiltonian X • The

physical origins for chemical and Knight shifts are slightly different, but

both modify the magnetic field at the site of the nucleus and can be written

n><='nYl-s'-B (2)

where S is a tensor of rank two, characteristic for the nuclear site.

2) The quadrupolar Hamiltonian )-( Just as a magnetic dipole is aligned by a

magnetic field, an electrical quadrupole is aligned by an electric field
gradient. But while a magnetic field B can be represented as a vector, the

electric field gradient V is a second-rank tensor : its Cartesian elements

V are the second partial derivatives of the electric potential :
xy

*HQ -61(21-1) *•*•* (3)

3) The spin-rotation Hamiltonian HD • This describes the coupling of the
R

¦*¦ -*¦
nuclear spins I in a molecule with the angular momentum J of the molecule :

fiHR h î- (f- J (4)

The mechanism is seldom important in NMR of solids, and will be neglected

in the following.

A) The dipolar Hamiltonian H_ Nuclear spins are well-localized and well sepa¬

rated, and therefore their magnetic dipole coupling can be described

classically (unlike the case of electrons). Contrary to the first three mechanisms,

that are described by single-spin Hamiltonians, the dipolar
interaction couples every spin i in a sample with all other spins k :

fiHjj1 Z (-2YSkh2) î1- rîik. îk (5)
k

-Ar

where the cartesian representation of D has elements

Daß= 2 r (rarß' 3 r V
and r is the vector from nucleus i to nucleus k
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5) The indirect spin-spin coupling Hamiltonian HT • In addition to the direct
dipolar coupling, there exists coupling between nuclei mediated by the

electrons. The physics is slightly different for insulators and metals (where

it is also called Rudermann-Kittel coupling) but its general form is similar

for both cases :

h Hj - h I Î1 1ik • îk (6)
k

The general structure of all these Hamiltonians is

H C f : (7)

where thé C is some proportionality constant (like yfi for M-.). R a tensor

reflecting microscopic properties of the surroundings of the nucleus under

study (like V for )-( and T a dyadic constructed from two vectors, one

of which is always the nuclear spin vector and the other is one of the

following : a magnetic field, for )-( ; the same spin, for Hn > the molecular
S Q

angular momentum, for H„ > a different spin, for Hn and HTR D J

All the properties of a solid, liquid or gaseous system that can be

studied by NMR are contained in the static and dynamic properties of the

tensors R : their time-averaged values show up in shifts and splittings of the

resonance lines, and their time-variation in the nuclear spin relaxation times.

Typical examples are : the study of the conformation of proteins in solution
by probing Hn and X T

[3] ; of structural phase transitions in ionic crystals
by H_ [AJ ; of molecular geometry by X [l] ; of properties of the electronic

Q D

structure in metals by H and X [5]

To discuss the general properties of the tensors R it is convenient

to use their irreducible representation R. From a general second-order
Xta-Q

Cartesian tensor (with nine elements) one can form a zero-rank tensor (£ 0,

m 0; an invariant, containing one element), a first-rank rensor (Î, 1, m 0,

il; the antisymmetric part, containing three elements) plus a second-rank

tensor (î. 2, m 0, i 1, i 2; the traceless symmetric part, containing five
elements). It can be shown that the effects of the antisymmetric part (if it
is not already zero by the nature of R) can be neglected in magnetic resonance,

so that we are left with six independent components. These are conveniently
described by three values (denoted a, 6, r\) in the principal axes system
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(PAS) of R plus the three Euler angles (a, ß, y) that describe the orientation

of the principal axes system with respect to some reference system (e.g.
the crystal axes). The definition of 0", 6, Tl is chosen such that 0 measures

the isotropic part of the interaction (invariant under rotations), 6 measures

the biggest principal value (axial deviation from isotropy), and T) the deviation

from cylindrical symmetry around the "biggest principal axis". According

to the nature of the different internal Hamiltonians, one or two of these

parameters may be zero : the dipole-dipole coupling has no isotropic part
(its average over a sphere vanishes) and is symmetric around the dipole-dipole

vector; therefore its a and T| are both zero. From Laplace's law it follows
that the isotropic part of the quadrupole coupling vanishes (a 0). In cubic

point symmetry its 6 and Tl vanish also; in tetragonal symmetry <5 is
nonzero (and called "the" field gradient by convention), and in lower symmetry

both 6 and Tl (called the asymmetry parameter) are nonzero. For reference,
the constants in the conventional representation of the components of R in
the Hamiltonians are given in Table I, and the corresponding irreducible
representations of the tensors T (cf. Eq. (7)) in Table II.

The NMR experiment (the observation of < y >) is done in the laboratory

axes system (LAB) rather than in the principal axes system. The components

of irreducible tensors in different axes systems are related by Wigner
£rotation matrices D (a, ß,Y). where a ß Y are the Eulerangles to rotate one
mm

Table I. Constants in the conventional representation of internal Hamiltonians.
(See Eqs. (7) and (9)).

Hamiltonian C a ô n

S Yh Kl), 02) 6s ns

Q eQ/61 (21-1) 0 eq n

D -2y Y ti 0
-3

rik 0

J li J ÔJ nj

1) Knight shift, in metals
2) chemical shift, in molecules
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Table II. Irreducible spin operators T-, (see Eq. (7)).
J6m

Hamiltonian T00 T20 T2±l T2±2

s

Q

D

J

(I1)2

/3 xo Bo

^[3(I0Ì)2-(1Ì)2J

-J- I1 B 0

u±\)2

I1 Ik
±1 ±1

axis system into the other

Im (LAB) I R (PAS) D (a, ß, y)
m'—J,

Um
(8)

3. Spectral Structure [l]

We will consider only the case where all "internal" Hamiltonians are
much smaller than the Zeeman Hamiltonian X so that the spectra can be cal-

z

culated from first order perturbation theory, starting from the eigenfunctions
of X • We only retain those parts of the T. that have nonvanishing diagonal
elements < I, m I T„ I I, m > (The approximation is often excellent in NMR,

z Jem z

but rarely so in EPR, where exact diagonalization has to be used in many

cases), ln the case of y-{ and X T
we need to distinguish the coupling between

"like" spins I and I (that have the same Hamiltonians) and "unlike" spins

->¦-?.I and S. This restriction on the number of T. considered is known as "res-
triction to secular terms" or "truncation of internal Hamiltonians". The only
elements that survive are T.. and T as given in Table II.

Using the irreducible representations, the Hamiltonian (7) reduces to

X C a T + C 6 (|r [(3 cos2 6 - 1) - n sin2 6 cos 2 <t> ] T
00 '8 20 (9)

where 0 and <t> are the polar angles of the magnetic field in the principal
axes system of the interaction considered. Note that X, and therefore the

energy values, depends on five variables (of the six generally available)
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only : in the laboratory frame there is invariance under rotations around the

magnetic field and the Euler angle a disappears. Note also that the 9, $-
angular dependence of the spectrum (when the Zeeman field is rotated with
respect to the crystal axes) is the same for all internal Hamiltonians. This does

not mean, of course, that the spectrum is the same for all X- .In the basisint
| I, m > with the frequency shifts of the NMR lines (w.r.t. Y Bn) given by

hv =< I,i |K. I I,m > - < I,m - 1 I X. I I,m - 1 > (10)
m z1 int' ' z z

' ' vint '
z

we see that Xc gives one single line; X„ gives 21 lines; and Xn and XTo Q D J
give (21+1) or (2S+1) lines. Furthermore, the spectra are symmetric around

the frequency determined by Col
This implies that for half-integer spin under influence of Xn the

11 ^
central transition (+\T> _ %j is not shifted, at least in first order. In a

number of cases however, X„ is not very small compared to X and a seconded
z

order treatment is necessary. Then the central transition is shifted as well,
with an angular variation different from that in Eq. (9); for r) 0 it is

Av oc sin2 6'(9 cos2 6-1) (11)

If the sample is in the form of a powder, rather than a single crystal,

each constituent crystallite has its own 8 and <J> and the distribution
of crystallite axes is a random distribution on a sphere. The spectrum becomes

an average over 8 and <$> weighed by the distribution. The mathematics can be

worked out exactly, but is rather long. As an example consider the case of
2axial symmetry (r| 0) Then we need only consider the variation of (3 cos 8-1).

The extrema of this function are 2 (for 9 0) and -1 (for 8 Tt/2), and the

probability to find a certain 8 is maximum for 6 tt/2 and minimum for 9 0.

4. Nuclear Spin Relaxation Ç6,7 ]

In simple cases, nuclear spin relaxation is described by the famous

Bloch equations :

d< M '> < M (t) > - < M (°°) >
z z z

dt
~

T-,
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d< M^ > < M (t) >

^— & (12)dt T2

where T is called the longitudinal or spin-lattice relaxation, T the

transversal or spin-spin relaxation, the angular brackets denote expectation values,
and M the nuclear magnetization. In NMR of solids there are only few cases

where these equations can be derived from fundamental considerations.
To obtain spin-lattice relaxation we have to consider the coupling

between the pure spin-system (X +X f) and the purely non-spin variables

(X-, • )• All Hamiltonians X- presented before are examples of such cou-lattice int
plings : in the form of Eq. (6) the tensors R depend on lattice variables

only and the tensors T on spin variables only. The components of X- that

are active in relaxation are those that are time-dependent and have zero time

average (the static parts give line shifts and spectral structure).
As a simplification, let the internal Hamiltonian, Eq. (6), be given

by a product of classical "lattice" functions R„ and quantum mechanical spin
2m

operators T„ (the classical approximation for the lattice is often suffi-2m

cient : the two typical exceptions being the electron-nucleus interaction in
metals, and the spin-phonon interaction in ionic solids). In that case, second-

order perturbation theory leads to the following equation for the relaxation
of the irreducible components I (see Eq. (1)) of the nuclear spin :

m

2

4- < I ,> =-C2 Z <[t, [T, I ]]> xdt m' „ ^-1 2iu* ' 2-m' m' JJ
m=-2 J

r (n)
x < R. (t) R,. (t-T)> exp iiu T dT

2-m 2m o

Here the< R. (t) R„ (t - x) > is the autocorrelation function of the "lattice2-m zm

motion", caused e.g. by diffusion of the atom bearing the nucleus under

consideration. It is customary (but not always justified) to assume that all
autocorrelations are simple exponential decays, with characteristic time T (the

correlation time). The spectral density J. (co) is the Fourier transform of
Jem

the autocorrelation function :
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J£m(u) < Vm(0) R*m(0) >
_

~2 2
<14>

1 + to T
c

In most cases where this kind of spectral density is found, it is
due to thermal motion, e.g. translational or rotational diffusion, where T

is the average time between thermally activated jumps. Then T can be well
described by an Arrhenius equation : T T„ exp (E /kT), where E is called

c 0 a a
the activation energy.

2If the motion is very rapid, (m to T << 1, (a condition known as

"extreme narrowing", because it diminishes the line width), the relaxation
equations become independent of the Larmor frequency, and (for most mechanisms)

the Bloch equations are obeyed.

Another condition under which simple spin-lattice relaxation curves

occur is the existence of a "spin-temperature" during the relaxation (its
existence in equilibrium is assured by the coupling with the lattice). This is
a very useful general concept in NMR of solids, although it is hard to justify
on a priori grounds : it has rather the status of a postulate. It states that
after a disturbance such as a tt/2 pulse, the off-diagonal elements of the

density matrix vanish very rapidly (loosely speaking : T is very short) while
the relative values of the diagonal elements can be described by a time-dependent

temperature T higher than that of the lattice T This forces a

certain structure on the part of the density matrix that describes the lattice
p at all times, and it is found that (T -T relaxes exponentially : its
time constant is T

The spin-lattice relaxation rates essentially probe the spectral
densities of the motion at the Larmor frequency, as illustrated by Eqs. (13)

and (IA). For most nuclei, and for typical values of the field B this
frequency is between 10 and 100 MHz. Very low (< 1 MHz) frequency motion has

little effect on T except in very low Zeeman fields, that lead to low

sensitivities and sometimes complex second-order spectra, and therefore are

impractical to use. To measure low-frequency motion it is preferable to use an

rf pulse sequence that aligns the magnetization along an rf field B in the

rotating frame (where B is a static field) and watch its time evolution
described by T. the spin-lattice relaxation time in the rotating frame, that in
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analogy to T is sensitive to the rotating frame Larmor frequency YB,• Since

B is typically 10 G, these frequencies are in the kHz range. This method of

measuring low-frequency motion is rather generally applicable. If the internal
Hamiltonian that is being modulated leads to a structured spectrum (in absence

of motion), then the washing out of the spectral structure when the motion

becomes faster then the spectral splittings is another way of probing motion

at lower than Larmor frequencies. This latter method is often used to study

chemical exchange [2]

5. Metals [5,8]

Most characteristic magnetic resonance properties of metals are due

to the hyperfine coupling between conduction electron and nuclear magnetic

moments. The hyperfine coupling may originate in several ways : coupling to

the electron's orbital momentum, similar to Eq. (4), dipole-dipole interaction
as in Eq. (5) or the non-classical Fermi contact interaction :

HF -¥ w* ì'ì 6(Vv (i5)

which is similar to the COT part of Eq. (6) in the case of "unlike" spins

I and S. But the effect of the Hamiltonian (15) on the nuclear magnetic

resonance of I is easier to see by considering 8ttycYt h/3 as the constant C

in Eq. (7), S 6 (r - r as a quantum mechanical "lattice operator", analo-

gous to R and T as the operator in nuclear spin space, corresponding to T
-»- ¦+

The expectation value of the "lattice operator" S. o (r -r )(that involves a

trace over electron spin and space variables for a N-electron system) can be

related to the density of states at the Fermi level, and the probability to
find the electron at the site of the nucleus. The density of states in turn
can be represented by the Pauli susceptibility, and the final result for the

Knight shift K is :

f K=^Xp|okF(0)|2 (16)

¦*¦ ->¦->¦where Bloch wave functions U, (r) exp (ik • r) have been used. Eq. (16) says

that this contribution to the Knight shift K is isotropic, nonzero only for
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s-electrons, temperature independent, and always positive (in a given field B

the metal resonance frequency is higher). It is the prevailing term in simple

metals, like the alkalis. In more complicated cases, like the transition
metals, the other terms mentioned above play a role, but a more important
effect is "core polarization" : an electron belonging to the innermost s-shells

(like ls or 2s) causes a very large hyperfine field, and it_ the probabilities
of spin-up and spin-down are slightly different, a considerable net effect can

result. The slight difference is due to the Pauli exclusion principle : the

s-shells are very extended in space, and the inner s-electrons have an

"exchange" interaction with the outermost, polarized, d-electrons. In NMR of

transition metals the exclusion principle makes that the Knight shift due to

core polarization is negative : the metal resonance is at lower frequency in
constant field. The effect is important e.g. for Pt.

The fluctuating part of the Fermi contact interaction causes a

characteristic spin-lattice relaxation, according to Eq. (13). The "lattice
correlation function" < R„ (t) R„ (t - x) >T now has to be evaluated by quan-J6-m Jem L
tum mechanics. It describes a spin-flip of the electron, accompanied by a

scattering from a wave vector k to a wave vector k : the difference in
Zeeman energy (nuclear plus electronic) is carried away by the difference in
kinetic energy of states k and k' The correlation function is resonant

(exp itoT) rather than dissipative (exp - t/x but otherwise the standard
c

procedure of T -calculations gives, for the Hamiltonian (15) and a free electron

gas :

K2 T T/S 1 (17)

2 2
with S Y ti/4Trk_Y K is the Knight shift, and T the temperature,e on
The relation (17) is known as Korringa relation, and its left-hand side as

Korringa ratio. The latter turns out to be different from 1 for electronic

systems more complicated than the free electron gas. The IT ¦ constant is a

fairly generally valid result however, and the order of magnitude of T at
low temperatures is much smaller in metals than in diamagnetic ionic solids.
These two results can be considered typical for the metallic state.
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6. Ionic Solids [9]

For most nuclei in ionic solids, the quadrupole Hamiltonian, Eq. (2),
describes the important properties of the nuclear magnetic resonance. The static

part of the field gradient tensor, whose elements are the second partial
derivatives of the electric potential at the site of a nucleus, can often be

calculated to an excellent approximation by a classical point-charge model.

The dynamic part (that may lead to relaxation) is often due to the vibrations
of the crystal lattice that modulate the electric field gradient at the site
of the nucleus. This coupling between phonons and spins enables a relaxation

process whereby a phonon is scattered, and takes the nuclear Zeeman energy

with it : the process is often called Raman relaxation. There is a similarity
with the relaxation in metals, but since electrons are fermions and phonons

are bosons, their occupation number statistics are different, and so are the

temperature dependences of the spin-lattice relaxation processes. In the case

of Raman relaxation, a high-temperature approximation to a Debye phonon spectrum

predicts a spin-lattice relaxation rate proportional to the square of the

temperature, but the proportionality constant is hard to evaluate.

7. Molecular Solids and Polymers [l0"|

The most important static effects are chemical shielding and spin-

spin coupling, both direct dipolar and indirect. The typical dynamic effect is
13

molecular rotation. A very simple C spectrum of a molecular solid is the

powder spectrum of solid benzene, showing axial symmetry (the value of n in
Eq. (7) seems to be zero). Since the point symmetry of the carbon site in benzene

is known to be lower, one concludes that this is a dynamic effect : the

molecules rotate around their hexad axes at a speed larger than the splitting,
and the expected fully asymmetric powder pattern is washed out : we observe

the component of the shielding perpendicular to the molecule's plane, and the

average of the two components in the plane.
An interesting experimental method to collapse such a broad line

into a single narrow line at a position determined by the trace of the tensor

(the isotropic shift a) is to apply a rapid rotation to in real space (a

mechanical rotation) around a well-defined axis.
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Consider an axes system fixed in the rotating powder sample (RP) :

in this axes system, the R. in the Hamiltonian are given by the equivalent
Iof Eq. (8) where the arguments of the D are different for each crystal-m —m

lite, but constant in time. Next apply a transformation from the RP axes system

to the LAB system :

1 IR. (LAB) Z R. (RP) D (rotation)
Jem J6m mm

m =-l (18)
1 I I
Z R. (PAS) D „ (fixed) D (rotation)

n
Jom mm mm

m ,m =-Jt

Restriction to secular terms as in Eq. (9) in the LAB system leaves only the
I

m 0 term. Then the m' dependence of D (rotation) introduces the time
mm

dependence due to rotation at a speed to as factors exp (im' to t) If to is
r r r

"sufficiently" high, we observe only time averages : the only term that
survives is m' =0, so the spectrum is determined by

I ¦

R.n (LAB) D* (0, ß, 0) Z R.. (PAS) D^„n(fixed) (19)
JCU UU JcU m 0

m =-Jc

where ß is the angle between the axis of rotation and the magnetic field.
2

From the explicit form of D one finds that the "magic angle" for which

R
n (LAB) vanishes for all crystallites in the powder is ß= arc cos (1//T) %

1354°. This technique has been applied e.g. to the study of C in solid glassy

polymers in ref. 11. These authors find that a short T, for carbons in the
lp

main chain of the polymer indicates motions fast enough to lead to plastic
flow, thereby dissipating impact energy as heat, without stress concentration,
crack formation or brittle failure. As an example of this correlation between

microscopic (T and macroscopic (impact strength) properties, they discuss

the effect of annealing on quenched films of poly (ethylene terephtalate).
Annealing inert

sile strength.

Annealing increases the T for the ethylene carbons, and decreases the ten-
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