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I. Introduction

Theoretical attempts beyond the Standard Model of the electroweak and
strong interactions often imply only few testable predictions at accessible energies.
In comparison with the grand unification scale, accelerator energies will always
remain modest. For this reason there is a growing interest of particle physicists in
cosmology. Indeed, the universe is a supplement to the accelerator as a 'laboratory'

in which new theories concerning very high energy phenomena may be
tested. Since it is likely, that energies comparable to the Planck energy were
present in the very early universe, specific aspects of grand unified gauge theories
can be probed. Unfortunately, this marvelous 'laboratory' shut down over ten
billion years ago, so that one must search for fossils which remain from the
earliest epochs.

An interesting example for the profound interrelation between cosmology
and particle physics is the role which magnetic monopoles play in cosmological
scenarios. Magnetic monopoles were originally introduced by Dirac in order to
explain the quantization of the electric charge. Dirac monopoles are singular
objects and their mass is undetermined. After a period of intensive search for
Dirac poles from 1951 to about 1975, all with negative results, interest in these
particles declined.

The situation changed radically with the discovery of magnetic monopole
solutions in non-Abelian gauge theories by 't Hooft and Polyakov in 1974. These
authors independently constructed an extended regular monopole solution (a
soliton) of a spontaneously broken SU(2) gauge theory, which behaves asymptotically,

i.e. for distances large compared to the Compton wave length of the massive
gauge bosons, like a Dirac pole. It soon became clear, that spontaneously broken
gauge theories for simple gauge groups have always monopole solutions, if the
unbroken symmetry contains at least an U(l) factor. These conditions are fulfilled
by grand unified gauge theories (GUTs), because the unbroken gauge group
contains the electromagnetic group U(l). The magnetic flux of these monopoles is

quantized for topological reasons, and hence they are stable.
If matter can be described, somewhat below the Planck energy, by a GUT,

then one would expect that superheavy magnetic monopoles have been produced
during the phase transition in the very early universe, when the GUT symmetry
got broken down to the SU(3)xSU(2)xU(l) gauge group of the Standard
Model. A substantial fraction of these monopoles should still be around in the
present universe, because only a small fraction of monopoles and antimonopoles
will annihilate. Many cosmological scenarios predict by far too many monopoles,
or else they have other serious difficulties.

It was first shown by Khlopov and Zeldovich, and later by Prescill, that the
abundance of magnetic monopoles, which would be produced in a second-order
phase transition, would be at least 10 orders of magnitude larger than is allowed
by observational limits.
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In order to reduce the monopole-entropy ratio to an acceptable level, it was
then suggested, that the phase transition should be delayed by at least a factor
10~2. A. Guth and E. Weinberg studied the possibility that the supercooling ends
by a quantum-mechanical tunneling of the vacuum, from the higher metastable
symmetric state to the lower-energy stable, but asymmetric vacuum. A severe
problem with this attempt of solving the cosmic monopole puzzle is that the
tunneling process is random. The bubbles, which appear in an uncorrelated
fashion, expand so fast that they can never coalesce and thermalize the energy in
the walls. Thus one would expect that the universe remains grossly
inhomogeneous.

The lack of a smooth ending of the original inflationary scenario of Guth
prompted Linde, and independently Albrecht and Steinhardt, to propose the new
inflationary scenario which preserves the desirable features of the original
scenario while overcoming the troublesome features. In this version it is assumed
that the symmetry breaking is radiatively induced, in a manner first discussed by
E. Weinberg and Coleman. The barrier, that maintains the metastability of the
symmetric phase becomes unimportant after substantial supercooling and the
effective potential is then very flat for small values of the order parameter. Hence
the motion of this parameter to the stable phase is very slow and thus the energy
density remains large, implying an exponential expansion for many e-folding
times. The result is that a single fluctuation can grow so much that it encompasses
the present observable universe.

The new inflationary scenario explains the cosmological homogeneity, isot-
ropy. flatness, and monopole puzzles. If its major aspects survive in one form or
another, it provides a beautiful example of the fruitful interrelation between the
physics of the smallest and the physics of the largest objects.

The scenario is, however, not without difficulties. The mechanism of exponential
inflation requires much fine-tuning, which is unstable against various sources

of perturbations (e.g. gravitationally induced). In addition, it turns out that the
resulting matter inhomogeneities are much too big. Only superdense objects and
black holes, and no galaxies, would be formed.

In all computations of the termination of the phase transition the generalized
WKB-approximation of Langer and Coleman has been used. However, the
determinant in front of the Gamov factor exp[-S] was never really computed.
That this one-loop contribution may have an important effect under some
circumstances is one result of this thesis. Also, anisotropics in the universe could
have dramatic effects on the tunnel probability for the transition from the false to
the true vacuum.

This thesis deals with some, mainly mathematical, problems concerning
magnetic monopoles and the tunnel effect in field theories.

In the first part we discuss important properties, mainly topological, of magnetic
monopoles. After recapitulating some properties of Dirac monopoles and fixing
our notation we establish some results on the topological quantum numbers of
monopoles. We find a constructive characterization of these numbers by using
homology theory. One main result is, that under very general assumptions on the

gauge group G and the unbroken subgroup H, the quantum numbers are degrees
of maps defined by the asymptotic values of the Higgs field.

In the second chapter we work out an explicit construction procedure for
spherically symmetric monopoles. Although the results are nearly the same as

those of Goldhaber and Wilkinson, the derivation given here is, I believe, clearer
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and more elegant. Then we use this procedure for constructing two spherically
symmetric monopoles for the Georgi-Glashow model. At the end of the second
chapter, we derive some properties of spherically symmetric monopoles. For
example, we compute the topological quantum numbers for such monopoles, give
a handy rule how to derive the J 0 Dirac equation in the field of spherically
symmetric configurations, and finally solve the Wong equation for a specific
model.

In the third chapter we study the action of the bounce solution, i.e. the
minimal action which appears as exponent in the tunnel probability for the decay
of the false vacuum. With the help of methods from nonlinear analysis we give a
variational characterization of the minimal action. One of the consequences is a

new proof that the bounce is spherically symmetric.
As an application of our results, we derive lower bounds for the WKB-

exponent. Then we approximate the minimal action for a variety of models in
different space-time dimensions. We also compare the variational results with
known exact or thin-wall calculations.

In the last part we compute the determinant, which appears as prefactor in
front of the exponential factor in the tunneling probability. In one dimension we
connect this determinant with the transmission coefficient of the corresponding
Schroedinger operator. We explicitly compute it for a model with an arbitrary
fourth order Higgs potential.

In higher dimensions we relate the functional determinant to Jost functions of
the corresponding Schroedinger operator. Here we are, of course, confronted with
UV-divergences. We then compute the regularized determinants by introducing
the regularized Jost functions. Finally, we use these results for calculating the
regularized determinant in the thin-wall approximation, and are able to express it
as a product of some Bessel and Hankel functions.

II. Magnetic monopoles

Magnetic monopoles were introduced in 1931 by P. Dirac [Di]. One motivation

for their invention is evident from the quotation: "... The symmetry between
electricity and magnetism is, however, disturbed by the fact that a single electric
charge may occur on a particle, while a single magnetic pole has not been
observed to occur on a particle...."

Although we are mainly interested in monopoles as solutions of the Yang-
Mills-Higgs equations of a non-Abelian gauge theory, we give here a short
summary of the properties of Dirac-monopoles. We do this also, because
monopoles of the 't Hooft-Polyakov type look asymptotically like Dirac poles,
and hence these properties are partially relevant for non-Abelian monopoles.

II. 1. Dirac monopoles

If kb is the magnetic current-density then the generalized Maxwell equations
in the presence of magnetic poles are

dF=4Tr/c*K (1.1)

d*F=-4-rr/c*J, (1.2)
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where d is the external derivative, * the Hodge dual, F the field-strength 2-form
F= 1/2 • F^dx0 Adxc, and J, resp. K, the electric, resp. magnetic, current 1-forms
J jbdxb, K kbdxb. In coordinates we have

*F* =-4ir/c-kb (1.1')

F£=-4ir/c-/b. (1.2')

Written in terms of codifferentials 8*F 4tt/c ¦ K, 8F=4tt/c ¦ J, the conservation
of electric and magnetic charges 8J 8K 0 is obvious. The energy-momentum
tensor is the same as in ordinary electromagnetism and (using 1', 2') obeys

with 4-force density (jb (cp, j), kb (ca, k))

f l/cF^Jc + 1/c *Fbckc

(l/c -jE-l/c ¦ kB,pE-crB + l/c ¦ jaB + 1/c ¦ IcaE).

For dyons (particles with electric and magnetic charge) one has the generalized
Lorentz law

dpbldT=l/mc-[qFbc + g*Fbc]pc. (1.3)

For point particles the currents are (n denotes the nth particle)

ib(x) lqn\drnubn84[x-zn(Tn)] (1.4)

kb(x) I gn J dTnubn 8Ax - zXn)} (1.4')

and the energy-momentum tensor is the usual one.
Using **F=-F, one finds that, if (F,*F;J,K) is a solution of (1,2), then

(F~,*F~;J~, K~), defined via the duality transformation

(X-XFF) CTHO
or equivalently

£)-*,,© £)-«,$
where R(ip)eSO(2), is also a solution of the equations (1), (2). Hence the
electromagnetic field of a dyon at rest is E qdx/r3, B —gdx/r3. Using Lorentz's
law (3) for an electrically charged particle in a dyon-field, we obtain

p° q/mc-Ep or d(ymc2)/dt qqd ¦ xv/r3 (1.7)

p q/mc(Ep°+p/\B) or d(ymv)/dt q(qdx-gdvAx)/r3. (1.8)

The conserved energy and angular momentum are

E ymc2 + qqd/r (1.9)

J J0rb + J^m=xAp + qgdx/cr. (1.10)
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Because J • x/r qgjc, the particle moves on a cone with opening angle 0, where
cos O qgJ\J\.

From the equations of motion (7, 8), or the conservation laws, we obtain in
the nonrelativistic limit (A := qgj tan 6/mc)

d2r/dt2 A2/r3 + qqJmr2

d(f>/dr qgj(cmr2 cos 0)

[dr/dt]2 2E/m - A2/r2-2qqJmr
From the last equation we see that if E<0 the particle is captured in ry<r<r2
and if E > 0 there exists a radius of shortest approach. If the dyon is a 'nucleus'
and the particle is an electron, then these turning points are

r2A -Ze2/2E-(l±w), with w :=[1 + Efc2tan2 0/4Eb]1/2,

where Eb is the binding energy of a H-like ion. Here we used the famous Dirac
quantization condition for a two-dyon system

qyg2~q2gy khc/2 keZ, (1.11)

which can be derived by demanding that the Dirac string is unobservable [Di] or
by interpreting the vector potential of the dyon as a connection of a fibre bundle
with base space R3-{0} and 1/(1) as a typical fibre [Ya], or finally from the
quantization of the angular momentum (10) [GO].

A monopole, which passes through a loop, induces a flux change of
magnitude

E ds dtAcp=\ Edsdt 4TTg/c (1.12)

which, using again (11), is 2k-times the elementary flux quantum,

Acp 2k ¦ hc/2e 4k ¦ 10-15 Wb.

This property could help in detecting magnetic poles.
Since about 1951 [Ma] many experiments were devoted to the search of such

poles.
Some groups [Ma, AI, Fl, KGF, Ca, KVO] searched for Dirac monopoles in

cosmic rays, others looked for monopoles which may have been caught in
paramagnetic substances deep undersea, by applying strong magnetic fields
(~ 100 kGauss) to these materials.

In other experiments [AERW, vH] samples of lunar material and from
meteorites were moved through superconducting coils, hoping to find a change of
the quantized coil flux.

k(rX
/E>o

/t\ A\ r
E < 0 Figure 1

The allowed regions for an electron in the field of a dyon.



Vol. 58, 1985 Some results on magnetic monopoles and vacuum decay 537

Searches were also made [BI, G, CGS, C] at every new higher energy
accelerator, trying to detect monopoles in production processes, like pN —» pNMM.

All these experiments gave negative-results and thus upper limits for the
primary cosmic monopole flux, F or the cross-section for monopole-antimonopole
pair creation in proton-nucleon scattering.

Typical limits are F< 10_1®Mon/cm2s for monopoles with kinetic energies
T < IO10 GeV or o-(pN -+ pNMM) < 10~43-10-34 cm2 for poles with masses mM <
1000 GeV/c2.

II.2. 'f Hooft-Polyakov type monopoles

Now we derive some properties of non-Abelian monopoles. These are
regular solutions with finite energy of the (Euclidian) Yang-Mills-Higgs (YMH)
equations in 3 dimensions.

First we introduce our conventions and notations: We denote the symmetry
group of the theory with G and the Lie algebra of G with G. Then the vector
potential A is a G-valued 1-form and the field strength F a G-valued 2-form. Let
Tp be a o.n. base of G with respect to an Ad-invariant scalar product. Then we
have

A Abdxb ApbTpdxb

F=l/2-Fb\cTpdxbAdxc dA + l/2-[A,A] or

»V Acb — Abc + [Ab, Ac J.

For a field cp which transforms according to a representation U of G, with induced
representation U* of G, the covariant derivative is given by

Dcp d<f> + Un-(A)cp or Dbcp dç/dxb + U*(Ab)cp.

Under a gauge transformation

<p'(x)=[/(g(x))<p(x) (1.13)

A'(x)= g(x)A(x)g-1(x)-dg(x) ¦ g-\x) (1.13')

the covariant derivative and the field strength transform tensorial and hence the
action S J {Lym + Lmat}d"x and Lagrangians

L™ 1/2 -(F,F)= 1/4 -tr (F^F*) (1.14)

Lmat L(cp,Dcp) (1.15)

are gauge invariant, if L(cp, dtp) is invariant under global gauge transformations.
We always have the Bianchi identity DF 0, and the Euler-Lagrange or

field-equations for this action are

D*F=*J or DcFbc=jb

+ matter field-equations, (116)

where the current jb is given by the variation of Lnml w.r.t. A,

/" 8LmaJ8(DbV) ¦ U*(Tp)<p ¦ Tp. (1.17)
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Since it is more familiar to physicists to work with hermitian quantities we set

A~ i ¦ A and F~ i ¦ F

and drop the ~ in what follows.
For a Higgs field the matter-Lagrangian is

Lmat l/2Dbcp • DV + V(<p) (1.18)

and the Euclidian field equations are (Lp:= U#(TP))

AF„ /, where jpi 8LmaJ8(Dltp) ¦ Lptp (1.19)

D,Dt<p dV/d<p. (1.19')

ê monopole is a solution of (19) and (19') with finite energy (3-dimensional
uclidian action).

Because we use V(<p) for breaking the symmetry group G down to a

subgroup H via the Higgs mechanism, V must have an absolute minimum for a

nonvanishing <p (see Fig. 2). We normalize V such that V(abs. minimum) 0.
If two fields <p and t/> which minimize V, i.e. V(ip) V(tfi) 0, can always be

connected via a symmetry transformation, <p U(g)t{t, then the vacuum manifold
{tp | V(<p) 0} : M0 is the coset-space

M0=G/H. (1.20)

For (A, cp) to be a monopole solution, the <p-field must asymptotically lie in the
Higgs vacuum

D(p 0, cpeM0 for |x|—»oo.

So every monopole solution defines via the map

cp
A : directions S2 —* M0

<pA(x/r) lim(p(x)

an element of the second homotopy group U2(M0). If two solutions define different
elements in Il2 then they cannot continuously be deformed into each other.

In the following we call a 3-dimensional YMH-theory topologically nontrivial
if H2(M0) is nontrivial.

In applications the elements of Il2(M0) are often characterized by the
asymptotic behavior of the Higgs field. We call these integers topological quantum
numbers. The theorem below gives a connection between these quantum numbers
and flux integrals.

Hurewicz theorem [BT]. Im M0 is a connected and simply connected manifold

t Vff)

Figure 2
Plot of a typical Higgs potential.%
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with IIp(Mo) 0 for p l,2,...,k-l and nk(M0) + 0, then

Hp(Mo) 0 for p 2,3,...,k-l, and Hk(M0) nk(M0).

Here HP(M0) is the pth homology group i.e. p-cycles mod p-boundaries.
Using de Rhams theorem

R"(M0)~Uom(Hp(M0),R),
where R"(M0) is the factor space of closed exterior p-forms with respect to the
subspace of exact p-forms and ~ means isomorphic up to a finite group, we see
that for every topologically nontrivial 3-dimensional YMH-theory the second de
Rham group is nontrivial.

Because n,(M0) is generally non-Abelian whereas HP(MQ) is Abelian for all
p, the Hurewicz theorem is of no help for p 1 (classification of strings and
vortices). In this case one has [BT], however,

H^IIì/IIIlIU
where [G, G] is the commutator subgroup of G.

In our examples M0 will be compact (which implies that there exists a finite
triangulation) and HP(MQ) has no finite torsion subgroup, hence is a finitely
generated Abelian group,

HP(M0) Z + Z+---+Z. (2.21)

Thus every p-chain Cp is of the form cp =Y.r qp,-, where the q's are integers and
the number r of terms in (21) is equal to rank{Hp(M0)}, which is the pth Betti
number ßp(M0) of M0. The cr1;..., cr. are the generators of Hp(M0).

With the Hurewicz isomorphism we thus see that

n2(M0) -Z + Z+---+Z. (2.22)

for every topologically nontrivial YMH-theory.
If one interprets <p*(S2) as a 2-chain, then

(p*(S2) qyO-y+---+qro-r. (2.23)

The integers Q[<pA] {qy,... ,qr} are invariant under deformations of <pA, because
two homotopic maps M0^>M0 induce the same map HP(M0) —> HP(M0). Furthermore,

Q[<pA] classifies U2(M0), via the Hurewicz isomorphism, uniquely. For this
reason we call Q[<pA] the topological charges of cpA. Now we can state the

Lemma. If M0 is connected, simply connected and compact, then the topological

charges Q[<pA] {q,,..., qr}, defined by

cp\S2) qyCTy+---+qro-r,

classify <pA6 n2(M0) uniquely. The number r of charges is ß2(M0), the second Betti
number of the vacuum manifold MQ.

n2(M0) is also the set of homotopy classes of maps from the 2-tube I2 to M0
which send the face of I2 to a fixed base point in M0. The group operation on
fI2(M0) is defined as follows. If cpA and t/fA represent their classes, the product
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[<pA][t//A] is the homotopy class of the map

V(2x, y) for 0<x<l/2YA(x, y):
>A(2x-l,y) for l/2<x<l.

Using this definition it is not hard to see that in H2(M0)

7A(S2) (pA(S2) + ^A(S2), (2.24)

and that we can interpret Q as an isomorphism II2(M0) —* H2(M0).
Now let us define for an arbitrary, but fixed x e Rr, the homomorphism

Qx:n2(M0)^R, <pA^x-Q[<pA]=Ix.q,.

With de Rhams theorem we conclude that for every x e Rr there exists a closed
2-form cox on MQ with

J<P"(S2) J<T,

and hence

wx X XjCOj, whereby to, 8jk, dcoj 0. (2.25)

So we finally obtain

q, f 0), f <pA*co,. (2.26)
V(s2) Js2

If i, denotes the imbedding of <r, in M0, then i*(o>j) is a closed 2-form on <r,

(pullback and exterior derivative commute!). Because i,(oj) o-,, we may regard w,
as closed 2-form on a,.

However, the integer

deg(cPA,cry)= f <pA*<o,= I [sgndet(<pî)p] (2.27)
JS2 pe<p" '(q)

is the integral formula for the degree of the map cpA : S2 —» cr,, if w, is a normalized
2-form on a,, as is the case [BT].

In the last expression in (27) <pA should not be regarded as the original tpA,
but as that map in the homotopy class of the original cpA which is of the form (23).
The sum if over all peS2 which are mapped into a fixed (but arbitrary) q e at.

So we arrived at the following result: If M0 satisfies the assumptions in the
lemma, then the topological charges 0[<pA] {<}i,..., qr} of <pA are all degrees of
a map, which is homotopic to <pA. Or in other words: q, is the number of how
often cpA winds around the /th generator o-j of H2(M0). This is summarized as
follows:

<pA^[<pA]€n2(MQ)^<pA(S2) Iq)<7,eH2(M0),

The determination of these topological charges, in cases where M0 is not simply S2,
is rather intricate. Only under very special circumstances, e.g. for S2 —* S2,
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S3^>S3, and S3-*G [BePo], [F], [Sk] explicit formulas for the flux integrals (28)
are known.

For later purposes we recall some results from homotopy theory, which will be
relevant for us [Wh].

i) If G is a connected and compact Lie group and H a closed subgroup of G,
then the long sequence

> n,(H) -+ n,(G) -> n.(G/H) -» n,XH) • • • (2.29)

is exact, i.e. the image of a homomorphism (indicated by an arrow) is the kernel of
the next one.

ii) For two topological spaces X and Y

n1(xxY) n/(x)+n,(Y). (2.30)

iii) n^X) is Abelian for /> 1.

iv) Because every Lie group is topologically equivalent to G0 x V, where G0
is a maximal compact subgroup and V* a real vector space, and moreover
G0 FIG, xTn xC, wherein the G/s are simple, T" is the n-torus and C discrete,
we obtain with (30)

n2(Lie group) 0. (2.31)

Applications

a) If G is simply connected we find from (29) and (31) the short exact
sequence

o n2(G) -* n2(G/H) -* iiy(H) -* n,(G) o,

so that

n2(G/H) Uy(H). (2.32)

Formula (32) is still true if G G~/N~, where G~ is the simply connected
covering group of G and N~ a discrete normal subgroup in the center of G'
(hence Ili(G)~N~) and if H is connected. This follows because then G~/H is the
simply connected covering space of G/H

0 Yly(G~) -» Uy(G~/H) -* U0(H) 0,

or ni(G~/H) 0. Therefore, we obtain the exact sequence

0 n2(N~) -+ U2(G~/H) -^ n2(G/H) -? Iiy(N~) 0.

This means that IÏ2(G~/H) II2(G/H) n^H).
b) In particular, if H is simply connected, then

n2(G/H) 0.

c) Let G G~xTp, H H~xT* where G~ is simply connected, H~ is a

subgroup of G~ and T" a subgroup of T" (T" p-torus). Then

n2(G/H) Uy(H~) (2.33)
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(33) holds because in the exact sequence

o n2(G)^^n2(G/H)^i^n,(H) ^X n,(G)
II II

Uy(H~) + Z + --- + Z Z + --- + Z

Ker (<p3) n,(H~) (since H~ resp. T" are subgroups of G~ resp. Tp) and hence
n2(G/H) Im (cp2) Ili(H~). In the last step we made use of Ker(<p2) 0.

d) Now we come to a physically more interesting example. Let G be of the
form G G~xTp with simply connected G~ and H=T". Then Ker (<p3) in

0X+ n2(G/H)X+Yly(T«) —Un,(G~x Tp) • • ¦

II II

n1(i/(i))+- • ¦+n1(i/(i)) n1(i/(i))+- • •+n1(u(i))
is the sum of those 11,(17(1)) Z of Il^H) which do 'not appear' in Tp. Because
Ker (cp2) 0, we conclude that Yl2(G/H) is isomorphic to Im (cp2) Ker (cp3). But
the number of [/(l)-factors of H which do not appear in T" is the codimension of
the projection of the Lie algebra t" of T" into t". Or, if P : t" -* tq is this
projection,

n2(G/H) Z', (2.34)

where r q — dim [Ptp].

Especially in the Salam-Weinberg model of the electro-weak interactions, where
G SU(2) x U(l) and H U(l), r 0, since the generator T of H is T Y + t3.
So in the terminology introduced above the Salam-Weinberg model is topologically

trivial.
Finally, we remark, that whenever G is connected and simply connected and

H is connected, then

n!(G/H) 0 (2.35)

n0(G/H) 0. (2.36)

If a vacuum manifold is a homogeneous space, M0 G/H, we conclude from this,
that the Hurewicz theorem applies, and so the topological charges of a field
configuration (A,q>) are degrees of the asymptotic map q>":S2—>M0.

II.3. Strings and domain walls

Strings and domain walls are the counterparts of monopoles in lower
dimensions.

A string is a solution of the two-dimensional Euclidian YMH-equations with
finite Euclidian action (energy). Again the Higgs field must asymptotically sit in
the Higgs vacuum. The asymptotic map

cpA : directions S1 —» M0,

<pA(x/r) lim(p(x)

defines now an element of the first homotopy group Il^JVfo).
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A familiar example of a topological nontrivial theory is the Landau-
Ginzburg theory for superconductivity, in which G U(l) and H e. With the
short exact sequence for the bundle (G,H,G/H) one finds indeed Ilj(M0)
ni(U(l)) Z. The topological charge is the quantized flux, wellknown for type II
superconductors below the critical temperature. It is possible [JT] to interpret this
flux explicitly as degree of the map <pA.

In general, we can express the topological quantum numbers as degrees of <pA

only if rix is Abelian (compare page 10).
In the 'minimal' GUT-model of Georgi and Glashow, where SU(5) is broken

to SU(3)C x SU(2)x U(1)Y, we expect no 1-dimensional defects

n1(M0)=o,

because n,(Sl/(5)) 0 and I10(SU(3)xSl/(2)x 1/(1)) 0. On the other hand
monopole solutions may exist, since U2(M0) Z.

Domain walls are 1-dimensional solutions of the Euclidian field-equations
which have finite energy. The classifying group is U0(M0), so that, whenever the
vacuum manifold is not connected, we expect 2-dimensional defects (domain
walls) to appear.

A simple example is the kink-solution for the double well potential (A, <p)

(0, const • tanh (mx)). Here G Z2 and H 1 and hence IÏ0(M0) is isomorphic to
Z2 (kink and antikink).

The cosmological implications of the existence of these topological objects
continues to be the subject of vivid discussions. The so-called monopole problem
was even one of the main reasons (beside the flatness- and horizon-problem)
which led to the development of the inflationary universe [Ki, Str].

II.4. Discussion of Higgs potentials

After the general considerations of vacuum manifolds in the previous parts
we study now an explicit model. In this section we develop an efficient method for
computing phase boundaries.

With the help of a lemma due to Bucella, Ruegg and Savoy, we discuss the
'phase portrait' of a Higgs potential with a cubic term, and a Higgs field sitting in
the adjoint representation of SU(N).

Lemma. The absolute extrema of a function /(a,,..., aN) Y,af under the
constraints Z a?= R2 and Y, ai & are never attained if 3 or more variables at are
different. The absolute maximum is only attained if at least (N- 1) of the ocj's are
the same.

Potential with a cubic term

The most general renormalizable potential is

V(<p) m2/2 • tr <p2+ a/4 • (tr <p2)2+b/2 • tr <p4+ c/3 • tr tp3. (2.37)

This form has been used by Guth et al. [GT, GW] to enforce a strongly first order
phase transition in the inflationary scenario. If we rescale the field, cp : c/b • f,
then our potential reads

V= A ¦ {A/2 • tr f2+ tj/4 • (tr/2)2+ 1/2 • tr/4+ 1/3 - tr/3}, (2.37')

where k:=m2b/c2, -n:=a/b and A:=c4/b3 (A>0 assumed).
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Asymptotics

Since V(/) is Ad-invariant, we can assume that / is diagonal:

/= diag (<*!,..., aN) from which

V~A{T,/4-||a||4+l/2.Xa;} for ||a|| :.R—».

Since this expression is homogeneous in a, we can restrict ourselves to SN_1.

At an absolute extremum we have a y
¦ ¦ ¦ ak : p,,, ak + l ¦ ¦ ¦ aN : crk.

Using R 1 and £ a, 0, we find

Pk=[(N-k)/Nk]1'2 and *k [k/N(N-k)]u2. (2.38)

The minimum is attained for k (N±l)/2 if N is odd and otherwise for k N/2.
Hence

Vm~AR4-h/4+l/2N] Neven
AR4 ¦ [tj/4+ 1/2N • (N2 + 3)/(N2- 1)] N odd

and we end up with the stability condition

tj ->—2/N N even
-, -, 2.39)

>-2/N-(N2+3)/(N2-l) Nodd.

Phases of V

On SN~l we have the constraint extremum problem for the function g(a)
A • (1/2 • I af +1/3 • X af) with the constraints R 1 and X a, 0.

Using the constraints we find

g(a) A/2 • X (a, + 1/6)4-A(216+ n)/2592

and with ß,:=a., + l/6 the variational problem becomes

f(ß) A/2 ¦ Ya ßf minimal with the constraints X ß. "/6

and Xß2=l + n2/36.

We can again apply the lemma above and obtain ß1 • • • ßk and ßfc+1= • • •

ßN. In the a-variables we obtain, using the constraints,

ay ¦ ¦ ¦ ak (n — k)/R

ak+l= ¦ ¦ ¦ =aN -k/R,

where R2=n ¦ k(n-k). With the definitions

nk:=[{(n-k)/kY/2-{kl(n-k)Y'2]lnl'2=^f-^P (24Q)
mk := 2n/[k(n - k)] —6/n 2 • n2 + 2/n,

the potential at an absolute extremum is

V A • [A/2 • R2+ (t) + mk) ¦ R4/4-nk/3 ¦ R3]. (2.41)
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The condition dV/dR 0 gives

R=0 or
R=[nk±(n2k-4hkk)V2]/2hk,

(2.42)

where we used the abbreviation hk : mk + t). Because A > 0, the upper sign is the
relevant one, and with (40), (41) we see that k <[N/2] at an absolute minimum.

A necessary condition for the existence of a (local) unsymmetric phase is

hkk < nil4. (2.43)

From (41) we conclude that the phase diagram depends only on A and tj. At a
phase boundary between 'phase fc' and 'phase r' we have

gkr:=Vk-Vr 0.

Instead of solving this often clumsy equation we can integrate the differential
equation for the phase separating curve tj(A)

(2.44)

(2.45)

drj/dA -[dgkjdk]l[dgjdv].
With

dVJdk AR^/2 dVJd-n ARÎ/4

one obtains

d-n/dk -2/[R2k + R .1

Because Vk(k 1/8, tj -2/n) 0 for all (allowed) k, the point

(A.T,)- (1/9,-2/n)

(2.46)

(2.47)

is a ([N/2] 4- l)-critical point and serves as an initial condition for the differential
equation (46).

At the critical point Rk l/9nk. Together with (46) and R0 0 we conclude
that the fc =0 phase is adjacent to the fc 1 phase, the l-phase to the 2-phase,
etc. up to fc [N/2]. So there are [N/2]-t-l stable phases.

The 0-fc-boundary obeys

T) -mk + 2n2k/9k (2.48)

and the phase diagram looks qualitatively like indicated in Fig. 3.
For N=5 (Georgi-Glashow) we find n? 9/20, «1=1/30, m, 13/10 and

Figure 3

A qualitative sketch of the phase diagram which
corresponds to the potential (37).

IT-

A^ 7~/TX77/7/77~
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Figure 4
The different phases for the Higgs potential (37). The left hand graph shows the phase diagram for
G SU(5) and the right hand graph for G SU(9).

m2 7/15, so that

Ry=15/2sqr(5)-[l + sqr{l-&k/9-(13+10r1)}]/[13+10ri]
R2=15/2sqr(30)-[l + sqr{l-8A • (7+ 15t,)}]/[7 + 15t)]

(2.49)

(2.49')

With (48) the 0-1 boundary is tj 1/10A -13/10 and the 0-2 boundary r/=
1/135A-7/15.

We mention also that the amplitude of the field in the phase 1 and also in the
phase 2 grows linearly with A along the 0-1 resp. 0-2 boundaries:

R,(t)(A),A)=10A/51/2 resp. R2(t)(A), A) 9OA/301/2.

For N 5 the stability condition (39) means tj >-7/15 and the critical point is at
(A, tj) (1/9, -2/5). The 1-2 boundary (compare Fig. 4) was computed with (46)
and (49, 49').

III. Explicit Monopole solutions

After the general considerations in the last chapter we now try to solve the
field equations (2.19), (2.19'). As usual one first imposes some symmetry properties

on the solutions. But instead of calculating DjDj<p or Fy for a symmetric
ansatz, it is more convenient to compute the Euler-Lagrange equation for the
action restricted to symmetric configurations. That a critical point of the action
restricted to the symmetric configurations is also a solution of the full equations
(2.19 and 2.19') is true under very general circumstances. This is a consequence of
the theorem quoted below [Co], [Pa], [Str].

Let M be a smooth manifold (generally «»-dimensional) on which a group G
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acts by diffeomorphisms (a 'smooth G-manifold') and let S :M—* R be a smooth
G-invariant functional (S[gcp] S[tp] for all g e G and cp e M). Then a symmetric
point of M under G is a fixpoint under the action of G, gcp tp for all g e G. We
use the abbreviation SG for the set of symmetric points.

Theorem. Let S be a G-invariant functional on a smooth G-manifold M
where G is a compact Lie group. Then every critical point of S restricted to SG is
also a critical point of S on M.

This theorem is also true in other cases, e.g. if G is a group of isometries of a

Riemannian manifold M and S is a C1 functional.
In our applications M is a Banach space and G is compact. Therefore we

indeed can use this theorem for finding solutions of the field-equations.

III.l. Spherically symmetric monopoles

For introducing the concept of spherical symmetry [WW, GoWi] we first
need a imbedding

SU(2) -* G

a->g(a)
from the spin group into the gauge group. Then a spherical rotation T is a
simultaneous rotation in space with R-1(a) and gauge transformation with g(a)

{r(a)cp}(x) U(g(a))<p(R^(a)x) (3.1)

{r(a)A}(x) g(a)R(a)A(R"1(a)x)g-1(a). (3.2)

Here U:G—>L(V) is the representation under which <p transforms.
So the symmetry group is the diagonal group

SU(2)d : diag {SO(3)x x SU(2)G}.

Because of gauge and Euclidean invariance the action is clearly invariant under a
spherical rotation. So we can use the theorem above with G SU(2)d, M {field
configurations} and SG the set of spherically symmetric fields

SG {(cp, A) | T(a)cp cp, T(a)A A for all a e SU(2)d}. (3.3)

The field A transforms as a vector and cp as a scalar field with respect to SU(2)d.
Using the base Sp l/2i • crp of SU(2) and setting Tp g*(Sp) the infinitesimal

form of the transformations (1), (2) for a rotation with angular velocity co,

a exp{-.(wS)}, of a SG-field is

{<oL + Ua,(<oT)}<p (coJ)cp 0 (3.4)

{wL + ad(ft)T)}A (a)/)A -iü>AA. (3.5)

where L is the orbital angular momentum and J L+Ua,(T). From (4), (5) we
immediately conclude

fJ^(x-T)cp(x) 0 (3.6)

ixAA(x) + ad(x-T)A(x) 0. (3.7)
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The 'cp-space' V is the direct sum of subspaces Vj,

V= I e.V.
jeZ/2

where every Vj is an irreducible subspace with respect to SU(2)a. In every Vj we
choose the base \jm). For the moment we assume that we have only one nontrivial
irreducible representation in V, V= V, + V1, such that SU(2)a is trivially
represented in Vx. Using the fact that cp is a scalar with respect to SU(2)d, we find

cp(x) f'(r)- X </'m7-m|00)Y/m(x/r)-|/-m) + Zgq(r)|00)(,.
-j-sm-s/

f(r)- I (-l)'-mY,m(x/rH/-m>+IgJr)|00>... (3.8)

Here (••••!••) are the Clebsch-Gordan coefficients, Y/m the spherical harmonics
and |00)q a base of Vx (we assumed that SU(2)a is trivially represented in V1).

Clearly, ; in (8) must be an integer.
Since A is a vector field w.r. to SU(2)d, only the J 1 sector in L2(S2)xG

contributes to A. Again we assume that there is only one nontrivial irreducible
representation 0, of SU(2)G and decompose G (as linear space) in G, and Gx, so
that the spherical components A^ of the gauge potential A are

AUx) I I ((j+k)mjn | lM)fk(r)YJ+k,m(x/r) • \jn)
m.n k =-1,0,1

+ lgMq(r)YyM(x/r)-\00)q. (3.9)

where, as in the expansion of cp, / must be an integer.
From (1), (2) resp. (8), (9) we conclude that a field configuration is

determined if we know the values of <p and A on a curve from the origin to infinity.
One may regard these values as 'initial data' for (cp, A).

We already used cp(r) := cp(x (0,0, r)) and A(r): A(x (0,0, r)) as initial
data.

With F, -(-)<[3//{(2; 4-1)(2/ 4- 3)}]1/2/1; F0 - (-)'[3/(2/ + l)],/2/0 and F.y
-(-)'[3(y+l)/{(2/'-l)(2/ + l)}]1/7-1 we find the following expressions for A(r)

AÎ(r) [Fy + F0+F_y]\jl)
AZ(r) [-{O' + DliXFy +{j/(j + 1)}1/2F_J |/0>+1 g0q • |00>q

AA1(r) [F1-F0 + Ftata.1]|/-l).

Now we shall prove that there exists a gauge, the so-called spherical gauge, in
which Ao(r) 0. This means in other words, that the initial data of the scalar field
x • A(x) are {x • A(x)}(r) 0. Therefore x • A(x) vanishes everywhere.

We prove this statement by explicitly constructing the transformation. Let
S(x) be the scalar with respect to J, determined by the initial data

S(r) Pexp{-i| dr'AZ(r')}.

(P means path-ordering.) Hence dS(r)S l(r) —îAÔ(r). Now we perform a gauge
transformation with S(x) gS(r)g_1, where a in g(a) is a 'rotation' which rotates
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e3 into x. This is the case for the rotation with Euler angles (cp, 0, -cp),

a exp [—icpS3] exp [—idS2] exp [icpS3]. (3.10)

If cp is a scalar and A a vector field, then the transformed fields

cp~(x)=U(S(x))cp(x)

A~(x) S(x)A(x)S-i(x)-idS(x)S(x)-1

are again scalar and vector fields.
Thus A~(x)x/r is a scalar field, and

(A~e3)(r) S(r)(Ae3)(r)S-l(r)-idS(r)/dr-S-1(r),

or

S-\r)Aò(r)S(r) A0(r)-S~\r) dS(r) 0.

Thus we found explicitly a gauge transformation, s.t. the transformed fields are
again scalar resp. vector fields. Furthermore, the new A-field has no radial
component.

From the reality of A, A A*, we finally conclude that

cp(r) (-Mr) ¦ 1/0)+1 &,(r) ¦ |00>q (3.11)

Aî(r) t)(r)-|/1>
AS(r) 0 (3.12)

A1y(r) v*(r)-\\-l).
The orthonormal base \jm) in (11) and (12) generally are not the same (e.g. if

cp does not sit in the adjoint representation), as should be clear from the
construction.

The generalization of our algorithm to the case when the homomorphism of
the spin group into the gauge group allows more than one nontrivial irreducible
representation is straightforward. In (11), (12) one simply has to sum over these
irreducible representations.

The explicit construction of (11) and (12) simplifies enormously by observing,
that I/O) and |00)q in (11) span exactly that subspace V~ of V which obeys
U^(T3)V~ 0 and the |/T) and |/-1) in (12) span exactly the subspace G
{ad(T^)G~ + ad(T.y)G~} of G. Here G~, analogously to V~, contains the
elements of G which commute with T3. In other words,

{|/0>,|00>q} Ker[U*(T3)] (3.13)

{|/1>, |j- 1)} ad(T?)[Ker (ad(T3))] +ad^T^Ker (ad(T3))] (3.14)

So we end up with the following construction rules:
i) Specify the imbedding SU(2) -» G and find the subspaces V~

Ker[U*(T3)] of V resp. G~ Ker [ad(T3)] of G.
ii) cp(r) is then a r-dependent linear combination of base elements of V~. If

G is the image of G~ under ad(Ty) and ad(T1y), then A(r) is an r-dependent
linear combination of base elements of G

iii) The configuration (A, cp) away from the positive z-axis is now given by a

spherical rotation (1), resp. (2), where a is defined in (10).
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What remains to be done is the derivation of the field equations. Here we use
the theorem quoted above. We insert the general ansatz for (cp, A) into the action
and consider only variations within this class of spherically symmetric functions.
We know that a solution of the corresponding ordinary differential equations for
the functions v(r), f(r) and gq(r) provides a solution of (2.19, 2.19').

III.2. Two examples

Let us study now a specific model. We regard the SU(5)-model due to Georgi
and Glashow with cp in the adjoint representation and hence V G. We choose
the following imbedding of SU(2) in G

M-hr) Tp-{—\t) (3.15)

Because the character of this representation is £ tr [TqAd(-icpT3)Tq]
9+ 12 cos (cp/2) + (l + 2cos (cp)), we have the decomposition G 9G0 + 6G1/2 + G,.
Now using our rules stated above, it easy to see that

a)

<p(r)=gi(r)l
3/2

3/2

+ 5/2 -f(r)
g(r

(3.16)

{AA,AA,AA,}=^ 0 v 0 0 0 0

0 0 0 0

(3.17)

The 3-dimensional selfadjoint matrix g(r) fulfils tr{g(r)} 0.
We choose the potential (2.37) with a cubic term, discussed on page 543ff.
The action for our configuration is still clumsy and we do not write it down.

But it is invariant under

g(x)^Ug(x)U-1
v(x) -^ exp {it/j(x)}v(x),

and has thus an SU(3)x U(l) invariance group. Because of the Sl/(3)-invariance
of the action and the theorem on p. 547 we can set g(x) 0. One cannot use the
U(l) in the same manner for a nontrivial monopole solution. However, tj/ in
v exp {itl>}k is a cyclic variable, therefore we can set i/i 0.

If we define

K(x) {l + irk(r)}/8, F(x)=r-f(r), G(x) r • gl(r), c8r/b

where S2=R2/20 if the broken phase is SU(4)xU(l), or 52 2R2/15 if it is

SU(3) x SU(2) x (7(1) (R2 tr cp2 in the corresponding vacua, compare page 543ff),
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we end up with the following differential equations

x2K" F2K + (K2-l)K
x2F" 2FK2+b{k/82 ¦ x2F+ri/2 • (25F2+ 15G2)F-3x/<5 • FG

+ 27/2 G2F+25/2 • F3} (3.18)

x2G"= b{k/82 ¦ x2G + t}/2 • (25F2 + 15G2)G -x/28 ¦ G2-5x/28 ¦ F2

+ 7/2 G3 + 45/2 GF2}.

These equations were also derived by Steinhardt [St] who solved them numerically.

A interesting property of the solution which asymptotically lies in the
4-1-vacuum (f(r) and g(r) approach 8 sqr(l/20) ¦ R as r approaches oo) is, that
the core is approximately in the 3-2-1 phase. That indicates that the monopole
dissociation process might have occurred in the early universe.

As a second example we choose the SO(3) imbedding

0 0 i 0 Ov

0 0 0 0 0

Vl2T-, [ -i 0 0 0 -(
0 0 0 0 0

0 0 i 0 0/

a o o o o\

oooo o

T3=| 0 0 0 0 0 I (3.19)
0 0 0 0 0

VO 0 0 0 -1/
The character of this representation is ch(cp) 2[2cos (2cp) + 2cos(<p) + 2] +
4[2cos(cp)+l] + 2, hence G 2G2 + 4G1 + 2G0. Our construction rules give

0 0

0 0
1/2 Ty

0 0

0 0

0 0

0 0 0

0 0 1

0 0 0
1 0 0

CP

1.5 2.5

1.5 2.5

(3.20)

/0 Uy u2 u3 0

Vy

Aî | v2\ (3.21)

where F is of course a 3-dimensional hermitian matrix with vanishing trace,
tr{F(r)} 0.

Using the abbreviations v (vx, v2, v3) e C3 and u (u1; u2, u3) € C3, we find
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that the action of this configuration is invariant w.r. to

F(r)^UF(r)l/-1
v(r)-+Uyv(r)
u(r)^U2u(r),

and has thus a SU(3) x SU(3) x SU(3) invariance.
As before we may assume that F=0, u (0,0,h) and u (0,0,0- If we

finally set

R2(x) (r2h2(r) - 2)/62 S2(x) (r2l2(r) - 2)/82

F(x)=r-f(r) G(x)=r-g(r)
where again x := c8/b ¦ r, we obtain for our ansatz as YMH-equations:

x2S" S/2 ¦ (2S2- 1 - R2) + 25S/4 • (F+ G)2

x2R" R/2-(2R2-l-S2) + 25R/4-(F-G)2
x2F"= x2R2(F- G)/2 + x2S2(F+ G)/2+b ¦ [k/82 ¦ x2F

+ Tj(25F2+15G2)F/2-3xFG/S + 27FG2/2 + 25F3/2]
x2G" 5x2R2(G - F)/6 + 5x2S2(F+ G)/6 + b • [A/52 • x2G

+ T)(25F2+15G2)G/2-xG2/2S-5xF2/25 + 7G3/2 + 45GF2/2]

It should be clear from our construction, that a solution of (18) provides an
Srj(N)-solution for every N>2. For N 2, G 0 and a special choice of the
'Higgs parameters' one obtains the 't Hooft-Polyakov monopole [H], [P].

III.3. Properties of spherically symmetric monopoles

a) A discouraging lemma

If a large symmetry group (e.g. SU(5)) is broken down to SU(3) x SU(2) x
1/(1), then we expect monopole solution which approach asymptotically the
nonsymmetric vacuum. For the typical case, where cp belongs to the adjoint
representation (Ad), the vacuum manifold M0 is the orbit of cp0

c • diag(l, 1,1,-3/2, —3/2). Hence one is interested in (spherically symmetric)
monopole solutions, with the property that the asymptotic values cpA of cp are in
the orbit of cp0 and fulfil the YMH-equations. These requirements are, however,
frequently not compatible for a spherically symmetric configuration because of the
following lemma.

Lemma. If (p0eSU(N) is regular and has an eigenvalue A with multiplicity
greater than N/2, then the vacuum manifold M0~ G/H has no 3 elements Xu X2,
X3, which satisfy [X1; X2] ipX3 for some nonvanishing p.

Proof. Let us assume that XjeM0= G/H and that [Xy, X2]=.pX3 holds.
Then X, Ad (U^tpo with Uj e SU(N), and

[Ad (U^cpo, Ad (U2)<p0] ip Ad (U3)cp0. (*)

The left hand side is also equal to [Ad (U^cpo-A • /, Ad(l/2)cp0-A ¦ I]. Because
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cp0 has more than N/2 eigenvalues A and Ad is a similarity transformation, we
conclude that dim {Ker [Ad (l/y)cp0-A • !]}>N/2 or that the dimension of the
kernel of the left hand side in (*), interpreted as element of L(N), is >0. On the
other hand we assumed that cp0 and hence the right hand side is regular. With this
contradiction the lemma is proven.

In typical examples one can argue that the g„(r) is the expansion (8) for cp(x)
vanish. But we always have a 0) representation of SU(2)a, because {Ty, T2, T3}

span an irreducible subspace V\ (we assumed that cp is of type ad). With our
lemma we conclude for example, that for N>4 there exists no solution of the
form (8) which contains only the 0y representation.

Therefore, demanding gi 0 and g=0 in (16) is not consistent.

b) M0 n Sq must be topologically nontrivial

For all spherically symmetric configurations the norm of cp e V and the norm
of A in R3x G depends only on the radius r and not on the direction in R3. This
is a trivial consequence of (1), (2), and (3). Hence the asymptotic map cpA:S2—»

M0 is in fact a map between spheres, (p*:S2-+Sq.

c) Topological quantum numbers for spherically symmetric fields

Now we compute the topological quantum numbers for a connected and
simply connected compact Lie group G and a connected H. For that we use the
isomorphism a : H2(M0 G/H) —* Hy(H) in the exact sequence

0 -* H2(G/H) -* Hy(H) -* 0.

Let tj be an element of H2(G/H) which is represented by the 2-chain c2eC2(G)
with boundary 8c2 in the cycles of H. Then a(rj) is the class [8c2] of 8c2 in Hy(H).

In our case H2(G/H) and Hy(H) are both generated by a finite number of
cycles. We denote the generators of Hy(H) by aly..., ar. A connected H
decomposes as H _Kx L/j^x • • • x L/r(l), with semisimple and simply
connected K. Hence we may choose a, as a generator of Hy(Uj(l)).

For a spherically symmetric field we have cpA(e)= I7(g(a))cp0, with a
exp[—icpT3] exp [i0T2] and where cp0 is the asymptotic value of cp(r). From
U(g(a))<p0 cpo for 6 0, we conclude that g(a(0 0)) is an element of H. Thus
the map

cpA : S2-Northpole -* M0

(<p,0)^cpA(cp,0)

Figure 5

A 2-chain c26 C2(G) and its boundary 8c2. 8c2 defines a

cycle in the subgroup H of G.
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defines a cycle in G/H. The boundary of this G/H-cycle is the map

Ôcp":S1-^H

cp^r U{exp[-icpT3]}.

Now it is straightforward how to compute the topological charges {q,,. qr}.
Since 8cpA(cp)= U(fc(cp))[/(u,(cp)). • • 1/(11,(1)), with fc(cp)eK and u,(cp)e I/,, the
integer qy is the degree of the map

SX^SX

tp - l/(u,(<p)).

But on the other hand fc^u^cp) • • • ur(cp) exp [-icpT3], and so the q's can be
determined with simple algebraic methods.

The procedure is the following:
In the Lie algebra R + • • • + R of the torus-subgroup T' of H we choose the

base Wy,...., wr such that the w, have the smallest possible norm under the
constraint U{exp[—2iirwi]}= Id. Now we can uniquely expand

T3 qyWy+ ¦ ¦ ¦ + qTwr + (an element in Lie (K)). (3.23)

The expansion coefficients q,eZ are the topological quantum numbers, because

exp [—iw,cp] cr, is the generator of Hy{Uj(l)}. (Note that the orientation has
already been chosen.)

Example. The 't Hooft-Polyakov monopole

Here G SU(2), H =1/(1) and cp is an SU(2) triplet. In our previous
notation r 1 and wx S3. On the other hand, there exists only one nontrivial
homomorphism SU(2) —* SU(2) so that T3 S3 or qt 1.

It follows that the topological quantum number of a 't Hooft-Polyakov
monopole is 1.

This is an old result. It was first proven by A. Guth and E. Weinberg [GW].
Later L. O'Raifeartaigh [R] generalized this result to the case where G SU(2)
and <p belongs to an arbitrary representation.

If cp is a triplet then <pA is a map from S2 to S2 and the degree of (the
normalized) cpA is [JT], [Str]

deg{cpA}= l/4ir ¦ j (cpA, dcpAAdcpA). (3.24)

With the help of (8) we find cpAb(x) xb/(r) and thus

N 1/8-jT • J Cbcd/V dxc a dxd.

It is known [JT] that l-|cp(x)|<const • exp [-(l-e)mLr], where mL
min {sqr(A), 2} and e is an arbitrary positive constant. So we arrive at

N= 1/4-jT • j ebcdxbdxc Adxd 1.

We emphasize that our method for computing the topological quantum numbers
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of spherically symmetric configurations is extremely simple and applicable to
nearly all 'interesting' situations, e.g. for G SU(N) and any desired representation

for cp. One only has to normalize the base {w,,..., wr} of the maximal
Abelian ideal in the Lie algebra H of H and calculate q, (T3, wy)eZ for
} !,...,r.
d) Dirac equation in a spherically symmetric monopole field

From the Lagrangian of a Dirac field i/> (which transforms according to a

representation V of G) in external YM- and Higgs fields,

L(lp) 4,(iybDb-m)4'-tp(r,tp)dJ, where Db 8/8xb-iV*(Ab), (3.25)

one obtains the Dirac equation

ihdi(>/dt Hib with H a,(p|-V#(A,)) + mß + ß(r, cp)+V^(Ao). (3.26)

From now on we assume that (A, cp) is spherically symmetric. The Lagrangian is
therefore invariant under a spherical rotation of the Dirac field,

(r(a)trt(x) V(g(a))S(a)tlj(R(ar1x). (3.27)

Here V(g(a)) is defined via the homomorphism SU(2)->G (compare page 547ff),
S(a) is the usual transformation of Dirac spinors with respect to SU(2) (as

subgroup of SL(2, C)) and R(a) is the rotation corresponding to aeSU(2).
From the invariance property

L(r(a)^)(x) L(.»(R-1x)

we obtain the conserved angular momentum in the usual way [Str]:
The 1-parametric subgroup a(() exp [—iS ¦ cot] defines the vector field

X(x) dR(a(f))x/d(|I=0 <oax. Hence the Lie derivative of t// with respect to
X(x) is Lxtp= V%(T ¦ co) th + S a, (S ¦ co)ijj-(ù) ax) Dt/r. Here we used the notation
Tb g*(Sb) from Section III.l. The conserved Noether current is (J',oj)
^{v.m/i+s/i-xAV^.

So we obtain the following conserved angular momentum in the state tb

(dj, Jd,) | 4,*{L + V*(T) + S}* d 3x, (3.28)

which is the sum of the orbital angular momentum (L), the spin (S) and the term
{V*(T)) from the 'internal rotations'. More precisely, we should write cr0°S
instead of S.

One can, of course, check that J L + S + V„.(T) commutes with H by using
the identities (4), (5) for spherically symmetric fields. Hence the eigenstates of H
are classified by their total angular momentum. Especially the state with J 0 is
invariant under spherical rotations, i.e.,

V(g(a))S(a)tl,(R-i(a)x) *(x). (3.29)

Again we can use the theorem on page 547 for the J 0 sector. The Lagrangian of
a Dirac field with / 0 depends only on r and is given by

{LMXx) >P(r){y0d. + y3dr- iy3A(r)}ti,(r) + 4>(rW<p(r)H(r), (3.30)

where t]/(r), A(r) and cp(r) are the initial data of i/,, A and cp (compare page 548).
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Analogously as for scalar and vector fields one finds the following expansion
for the initial data of the upper two components a of t//

«mW Z I <(j + fc)0/M| 1/2 M>U2k(r)-1/M), M =±1/2 (3.31)
j k ±l/2

and an analogous for the lower components ß.
We see that only representations fy with / e {1/2, 3/2, 5/2,...} contribute in

the representation space of the Dirac field.

Example. An isospin-doublet in the field of a 't Hooft-Polyakov monopole.

In the spherical gauge the 't Hooft-Polyakov monopole (G SU(2), ip in the
adjoint representation) can be written in the following way [H], [P]

tp(r) -H(r)/r-S3
A(r) {-[1-K(r)]/r ¦ S2,[l-K(r)]/r ¦ Sy,0},

where H and K are solutions of equations similar to (18) with G 0.
Now we assume that a(ß) is a doublet. Hence only / 1/2 is possible in the

expansion (31).
If c(r) v.y-Vy/3u2 and d(r) =u_, + u,/31/2 then

a1/2 (c(r),0) and o_1/2 (0, d(r)).

So it is extremely simple to handle the J 0 sector. We only have to insert our
expression for t|/(r) into (31) and vary with respect to the functions c(r), d(r) of a
resp. e(r), f(r) of ß to obtain the Dirac equation for the ansatz (31).

Marciano and Muzinich [MM] were able to solve the Dirac equation in the
Prasad-Sommerfield field ('t Hooft-Polyakov monopole with vanishing self-
coupling of the Higgs field) for / 0 analytically. They required, however, that
the doublet does not couple to the Higgs field. They found that in the / 0 sector
there is a pure charge exchange and that helicity is conserved, i.e., an 'up'-quark
is scattered into a 'down'-quark. On this level the monopole catalyzes proton
decay.

One can now ask the question, whether there is some sort of classical
Rubakov-effect or, whether a classical Yang-Mills particle which is scattered at a

monopole field suffers charge exchange.

e) Classical limit of Yang-Mills particles in a monopole field

S. Wong [Wo] derived the classical equations of motion for an isotopic-spin-
carrying particle in an external YM-field. Similarly as one can extract the Lorentz
force law in the classical limit of the Dirac equation in an external electromagnetic
field, he derived these equations by taking the classical limit of the Dirac equation
of an isotopic-spin-carrying particle in a given external YM-field.

These equations are the Euler-Lagrange equations of the action with Lagrangian

L -mc[gbcxbxc]1/2-itr{Ks",Dis}, (3.33)

where D± d/dj — igxbAb and the isotopie spin is I=sKs~l. The matrix K
determines the irreducible representation to which the particle belongs. Here we
simplify the notation and drop the Vs and V^'s.
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The equations of motion for the Lagrangian (33) are

dpb/dr gjmc • tr {/ • F^p, (3.34)

Di/ d//dT-igxb[Ab,/] 0 (3.35)

or
p°=g/mc-{ptr/E} (3.36)

p g/mc -{p°tr JE + pAtr/B}. (3.37)

Equation (34) is the generalized Lorentz law. (35) describes the parallel transport
of the isospin along the particle path xb(r). We notice as an immediate consequence

of (35)

dtr/2 0. (3.38)
dT

The isotopie spin of each particle thus performs a precessional motion [Wo].
We are especially interested in the case when the YM-field is due to magnetic

monopoles. Then E vanishes and we in addition have the conservation of the
kinetic energy

d(Ymc2)/dT 0. (3.39)

Now let us specialize further and assume, that the monopole field is spherically
symmetric and therefore angular momentum is conserved.

Again exploiting the spherical symmetry of A it is easy to see that

L(R(a)x, g(a)s) L(x, s),

where R(a) and g(a) are defined as usual via the SU(2)—-- G homomorphism.
For the conserved angular momentum we obtain in the nonrelativistic limit

J=mxAX-gxAtr{7A}-tr{/T}. (3.40)

Here, as before, T {g*(Si),...}. Using Fikxk (xaB), we find the following set
of equations

dx
md2x/dt2 —Atr(/B) (3.41)

dt
dl/dt i[dx/dt -A, I] (3.42)

and the conservation laws

T=mx2 const (3.43)

tr I2 const (3.44)

J wxAX-gx a tr (JA)-tr (IT) const. (3.45)

Now let us study the motion of a YM-particle in the field (32) of a 't Hooft-
Polyakov monopole and neglect the interaction with the Higgs field (as was
already done in the Wong equation). Here we can expand

I y(t)T
and obtain the following equations for x(t) and y(t):

mx -K'/r- xAy-(K2-rK'-l)/r4-(x,y)xax (3.41')

y y a(x ax)(1 - K)/r2 {(y, x)x - (y, x)x}(\ - K)/r2 (3.42')

J=mxAx + (y,x)x(K-l)/r2-yK (3.45')
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from which follows, for example, that

(J-y)x 0. (3.46)

Because K decays exponentially, we obtain the asymptotic equations

mx ~ x a x(x, y)/r4

y~{(y,x)x-(y,x)x}/r2
J ~ mx a x - (7, x)x/r2.

With the conservation of the kinetic energy we find from the first of the
asymptotic equations that (d is a constant of integration)

r~[2T/m • t2 + d2]112.

Using this, together with |xax|2 r2x2-(xx)2 2Td2/m, yields

J2=[(-y,x)/r]2 + 2d2Tm

or that (7, x/r) const. But with (46) (7, x/r) (/, x/r) const, and hence the
YM-particle moves asymptotically on a cone.

For a vanishing total angular momentum J 0 and (J, x) -(7, x)K 0 the
equations (41', 42', 45') simplify to

mx -xA7-K'/r (3.47)

7 0. (3.48)

So 7 constant and classically there is no charge exchange for J 0. The orbital
motion of the YM-particle is the same as the motion of an electron in a magnetic
field B -yK'/r. Since (7, x) 0 and 7 is constant the YM-particle moves on a

plane which is perpendicular to 7.
In a Prasad-Sommerfield monopole field K Dr/sinh (Dr), we can solve the

equations of motion analytically. For that we introduce polar coordinates (p, cp) in
the plane of the particle's path. With the abbreviation A2 D2/2mT we find

p(t) - 4-ir/M ¦ arcosh {(1 + A')11' ¦ cosh (2AT • t)}. (3.49)

Here M 4itD is the mass of the Prasad-Sommerfield monopole.
One should compare (49) with the solution for a Dirac pole

p(t)2 2T/m -f2.

As one expects p(t), cp(t) approach the Dirac solution for M—»00.

f) A remark on axisymmetric monopoles and multimonopole solutions in the
Prasad-Sommerfield limit

We have seen that ss -monopole solutions must have unit topological charge.
Conversely, Sl/(2)-configurations with unit topological charge have to be ss [We].
According to these results, monopoles of charge greater than unity can only be
obtained by dropping the assumption of ss. But then the field equations (1.19)
become extremely complicated. Without the following observation [Bo] the
problem would probably have remained intractable.
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For G SU(2) and epe su (2) we find that the Euclidian action is

S[A, cp] |||*F+Dcp||2+j V(cp)d3x±47rq (3.50)

and hence is bounded from below by 4tt \q\. In the limit of a vanishing Higgs
potential (Prasad-Sommerfield limit) the action attains its lower bound for fields
which satisfy the Bogomolny equations

Dcp ±B (3.51)

Therefore, for V 0, the field equations (1.19) reduce to these much simpler first
order equations. The Bogomolny limit is the only case in which one can hope to
describe a system of separated monopoles in static equilibrium [Man], [OPW],
because only then the attractive long range force due to the cp-field may cancel
the long-range force due to the A field.

The equations (3.51) have also a geometrical significance. If we identify cp

with A0 then (3.51) is the static version of the 4-dimensional self dual equations
F= ±*F. As a result the whole progress on multimonopole solutions made in the
last years is restricted to the Bogomolny limit of a vanishing self interaction of the
Higgs field.

Perhaps the most fundamental development is a proof, due to Taubes [JT],
that the Bogomolny equations do indeed admit static, separated, monopole
configurations for all magnetic charges q. Furthermore, he showed that the exact
solutions had to be real analytic.

The other problem, to construct explicit solutions with arbitrary charges and
finally to prove a completeness theorem asserting that this construction generates
all solutions (4q -1 real parameters for SU(2) [We]) has as its natural first step
the construction of axisymmetric configurations.

One can define axisymmetric fields by demanding (1), (2) and (3) only for
a e SU(2), which describe rotations around a fixed axis, e.g. the 3-axis. The
configuration is determined by its initial values on a half plane which has the
symmetry axis as its boundary. In the sense of the theorem on page 547 one has to
construct again the most general axisymmetric configuration. For G SU(2) and
cp in the adjoint representation this has been done by Lohe [Lo]. He remained
with a 2-dimensional SU(2)-theory for 2 iso-triplets in a curved space. The
reduced problem is still too complicated for attempting a complete solution. So
Manton [Man] constructed an axially and mirror symmetric ansatz for finding
solutions. Using the same model as Lohe, he was able to express all remaining
fields (two doublets) in terms of one function, the so-called superpotential. The 5

differential equations for the 6 functions in Manton's ansatz still possess a residual
11/(1) gauge invariance. By using this invariance Forgacs et al. [FHP] introduced 2

potentials such that 3 of these 5 equations are automatically fulfilled. The
remaining 2 equations are equivalent to the celebrated Ernst equation of General
Relativity [Er]. Then Forgacs et al. used successfully an appropriate Bäcklund
transformation for generating solutions of the Ernst equation and hence axially
symmetric multimonopoles in an SU(2) theory.

At the same time R. Ward [Wa] constructed an axisymmetric q 2 monopole
solution, using twistor methods. This led then naturally to axially symmetric
solutions of orbitrary charge [Pra].
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But in both approaches not so much is known about the regularity of the
solutions (regularity problem).

At first sight one should expect the axisymmetric solutions to describe both
single monopoles with arbitrary charge and separated poles localized on an axis.
But it was shown [Ho] that axisymmetric systems can describe only single
monopoles.

Therefore one has to give up the axial symmetry to obtain the separated
monopoles predicted by Taubes.

Generalizing his earlier results Ward outlined how to construct a separated 2

monopole solution using the Atiyah-Ward ansätze [Wa]. Ward's solution was
immediately generalized by Corrigan and Goddard to a q-monopole solution
depending on the maximal number of degrees of freedom [CG].

Independently Forgacs et al. generalized their axially symmetric monopoles
to a 4q-l parameter family using the 'inverse scattering' method [FHP]
developed for the Bogomolny equations. The advantage of their method is the
obtained explicit form of the solutions.

The main drawback of both generalizations once again is that regularity is not
automatically guaranteed.

Later Nahm adapted the ADHM instanten construction technique to
monopoles. He replaced the (n +1) dimensional quaternionic vector space for
n-instanton fields by LXÌA}®quaternionic space [Na]. The algebraic
constraints in the ADHM construction are replaced by the equations

dT,
dt_j. eo-ß->>l ' ß' *y

where the matrix functions Ta Ta(t) are antihermitian. The vector potential is
then given by the zero modes of a matrix differential operator which contains
essentially the T's. The question of regularity can hopefully more easily be
decided within this framework.

To summarize, the approaches of Ward et al., Nahm, Forgacs et al. and,
later, by Hitchin [Hi] give the complete set of SU(2) monopoles in the
Bogomolny limit. The generalization of the above results to groups larger than
SU(2) was also considered. Explicit generalization of the Forgacs et al. method
was considered by these authors and by Bais. Ward generalized his own approach
to SU(3). The approach of Nahm makes little distinction between different groups
and lends itself more readily to generalization.

As the most general SU(2) q-pole configuration depends on 4q —1 parameters
of which 3q corresponds to positional degrees of freedom the interpretation

of the remaining q — 1 poses a problem. As it turned out these parameters have
probably a deep (geometrical) significance [Hi, FPH]. For an interpretation of the
parameters in some very special cases compare [OR].

For further review of magnetic monopoles we refer to [Bu, OR, Pre, Ro].

IV. The WKB-exponent in field theory

IV.l. Generalities

The evolution of the universe in very early epoches may have been dramatically

affected by the nature of the phase transition which is associated to the
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spontaneous symmetry breakdown of the grand unified gauge symmetry. It is now
widely believed that this phase transition was of strongly first order.

The 'condensation' of the metastable symmetric phase into the asymmetric
equilibrium state requires the occurrence of the quantum or thermal fluctuations
of the order-parameter (Higgs field) of a certain critical size.

The rate of birth of this critical droplets involves the theory of homogeneous
nucleation. A satisfactory theory based on first principles is not yet available. The
work of Langer, Coleman and others are, however, very promising steps toward
the solution of this difficult problem.

These workers used path integral techniques for calculating the analytic
continuation of the 'energy' resp. 'free energy' in the potential. If the potential is

changed such that the ground state becomes unstable, then the imaginary part of
the analytic continuation of the 'energy' (pole on the second sheet of the resovent,
Weisskopf-Wigner pole) is the decay-width of the metastable state.

For the effective potential one uses the semiclassical (one loop) approximation
and computes the decay width by summing over all multi-instanton contributions.

Treating the collective coordinates in a suitable manner, one finds for the
decay rate per volume and time of the metastable state [La, CC]

T/V i ¦ [S/2Trh]n<2 ¦ exp[-S/h] ¦ [det{-A+ m2}{-A+V"(cp)}X'2- (4.1)

Here cp is the so-called bounce solution of the classical Euclidian field equation,
i.e. a solution of

-Acp + V'(cp) 0 with <p(x)~* false vacuum for |x|-»<», (4.2)

and with minimal Euclidian action (activation energy)

S[cp]=|d"xS S[cp]=j d"x{l/2-(V<p,Vcp)+V(cp)}. (4.3)

In what follows we assume that the false vacuum is given by cp^. 0. The mass m
in the determinant is given by the curvature of the potential at the false vacuum,
m2 V"(cp+), and the prime in (1) means that one should omit the zero mode(s) of
-A+V"(cp).

This nice expression for the decay rate is in general difficult to evaluate. A
very important observation for applications of (1) was a theorem of Coleman,
Glaser and Martin [CGM], which states that the bounce is spherically symmetric
(ss) for a large class of potentials V.

With r2:=t2 + x2 the equation (2) for a ss-field becomes

d 2cp/dr2 + (n - l)/r • dcp/dr V'(cp)

with boundary condition cp(r)—» cp+ 0 for r—»oo. (4.2')

The action of a spherically symmetric function is

S[<p]= 2X2/T(n/2) • | drX[l/2 • (dcp/dr)2 + V(cp)] (4.3')

and regularity at r 0 requires

dcp/dr(r 0) 0. (4.4)

The nature of the bounce solution becomes clearer if we interpret equation (2') as
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the equation of motion of a point particle in the potential -V which suffers a

friction force (n - l)/r (see [CC]).
In applications one chooses usually an initial condition and integrates the

differential equation (2'). Depending on the resulting asymptotic value one
changes the initial condition and integrates again. This procedure is repeated until
the asymptotic value of cp converges to the desired one.

In this chapter we develop an alternative method for calculating S[cp]. We
shall derive a variational principle which is very handy. It can be used to prove
spherical symmetry of the bounce solution, to derive lower bounds on S and for
computing S [bounce].

First of all we establish some preliminaries concerning the spherical
rearrangement of a function and certain Sobolev inequalities which will be used later
on. Then, by making use of the mountain-pass theorem (which we will prove to be
applicable for a specified class of potentials), we derive upper and lower bounds
for the Euclidian action of the bounce solution. Furthermore, we compare the
variational results with known exact results and with the thin wall approximation.

The conclusion of these comparisons will be that the new algorithm for
computing Smin, is not only stable and handy, but leads also to fairly good
quantitative results.

IV.2. A variational characterization of S[bounce]

In this section we prove that the solution of the field equation Acp V'(cp)
with minimal Euclidian action is spherically symmetric. In contrast to the proof of
Coleman, Glaser, and Martin [CGM] our approach enables us in addition to
derive lower and upper bounds for S [bounce]. It is also very useful for constructing

approximative solutions with variational techniques.

a) Sobolev inequalities, spherical rearrangement

In what follows we use the Hilbert space Hy which is the completion of C0o-
with respect to the norm

||cp||2 (cp, cp) J [(Vcp, Vcp) + cp2] d"x. (4.5)

H y r
<= H y is the subspace of all spherically symmetric functions.
For the norm in Lp we use the symbol ||cp||p.

The following imbedding properties are well known:

i) For n > 3 the inequality

IMIp^CpllcpH holdster 2<p<nc := 2n/(n-2); (4.6)

ii) The imbedding Hyr—> Lp(R") is compact for n>3, 2<p<nc.
For proving the main theorem we will need this compact imbedding of Hy r in

Lp. [Although there exists a generalization of the Sobolev-Kondrachov-Rellich
Theorem for unbounded domains, due to Berger and Schechter [BS], by replacing
the usual Lp spaces by weighted Lp spaces, it is not clear to us, how to use this
BS-generalization directly to prove a generalized Palais-Smale condition on H,.]
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We also need the notion of the spherical rearrangement of a nonnegative
function:

The spherical rearrangement (SR) Rcp(r) of a real valued, nonnegative
function cp is the spherically symmetric and with r decreasing function which fulfils
the conditions (6 is the step function)

J d"x0[cp(x)-u]= |d"x0[Rcp(r)-u] forali u>0,

or equivalently (p. denotes the Lebesgue-measure on R),

p.[<p\B)]= p[(Rtp)-\B)] for all Borel sets B in R.

From the first resp. second definition one immediately derives the following
equations resp. inequalities:

iii) R(tp") (Rtp)" ifp>0
iv) V(cp) d"x V(Rcp) d"x for a measurable function V.

With the help of an isoperimetric inequality one can show [GGMT]

v) ||Rcp||<||cp||, where the equal sign holds iff cp is spherically
symmetric and monotone.

With the identity cp(x) j^dt0{ep(x)> t} one can prove

J<p-tM"x<Jvi) I cp • t/f d"x < I (RcpXRi/f) d"x.

Until now we assumed that the functions we are dealing with, beside being
nonnegative, should approach zero as r goes to infinity. One can also define the
increasing spherically symmetric rearrangement of functions which go to infinity
when r approaches infinity. One concludes

vii) cp • t/rd"xs: Rep • Rtpdnx if Rep is the decreasing and Rip the
increasing SR of cp resp. tp. The equal
sign holds iff t^ cp~q where q>0 real.

If the decreasing SR of cp exists, then the increasing SR of cp~q exists and

viii) R(cp"") (Rcp)-q.

For additional properties of the spherical rearrangement and proofs of the stated
(in)equalities we refer to [Fa, Lu].

b) The main theorem

In this section we first quote the mountain-pass theorem, due to Rabinowitz
and Ambrosetti [AmRa]. Then we conclude that the action for a certain class of
potentials fulfils the condition needed for applying this theorem. As a corollary we
shall see easily, that the minimal action solution is spherically symmetric.
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We use the following notation:
The action S is the sum of the kinetic and the potential terms

T[cp]=l/2-f(Vcp,Vcp)dnx

V[cp]= | V(cp) d"x =: J{m2/2 • cp2 + P(cp)} d"x.

By rescaling the coordinates, the function P and the field cp

x*:=mx P*(cp):=l/m2-P(cp) cp* := m1 "/2 • cp

one obtains (dropping the stars)

S[cp]= 1/2 ||<p||2+J P(<p)d"x. (4.7)

We are interested in critical points of the functional S on the Hilbert space H,, or
equivalently, in weak solutions of

Acp cp + p(cp), where p(z):= dP(z)/dz.

If cp is a critical point of S, then T[cp] and V[ep] are related by the virial theorem:

(n-2)T[cp]+nV[cp] 0 S 2/n - T[cp] -2/(n-2) ¦ V[cp]. (4.8)

Because scaling arguments will play a crucial role in what follows, we give the
proof by this method. Let epr := cp(x/r). Then

T[cp,]=r-2T[<p] and V[cpt]= t"V[cp] (4.9)

Thus

S[cp,]=r-2(T[cp]+t2V[cp]).

Since cp is a critical point we have d,S[cpt], 1 0, from which the virial theorem
follows.

For the formulation of the mountain-pass theorem we need the notion of the
Palais-Smale-condition (PS):

Definition. The action S fulfils (PS) if all sequences {cpm}, for which S[cpm] is

uniformly bounded and S'[epm]—»0, have convergent subsequences.

Mountain-pass theorem [AmRa]. Let E be a real Banach space, and let
S e C1(E, R). Assume that S fulfils (PS), the normalization condition S[0] 0 and
satisfies

51) there exist r,a>0 such that S s a on a sphere Sr(0)
52) there exists an eeE-Br(0) such that S[e]<0

Then S has a critical value c>a.

Furthermore, let r: {ge C([0, 1], E) | g(0) 0 and g(l) e}. Then
c :=infgermax.s[0d S[g(t)] is a critical value of S and c>a.

The mountain-pass theorem requires the (PS)-condition only locally, i.e. on a

subset of E, on which e — e <S[cp]<c + e for some e>0.
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Let us define the class of functions P, or equivalently of functionals S, for
which we will prove the validity of the assumptions made in the mountain-pass
theorem.

(PCI) There exist a 5>0 and 7>2(1 + 8), such that

7P(cp) - cpp(cp) + Sep2>0.

(PC2) There exist an a>0 and 0<d<nc-2, such that

\p(<p)-p(ip)\^a \<p\R \(p-ip\ + a \ip\R \<p-tp\, where R:=nc-d-2.
(PC3) There is (at least) one <p0, s.t. P(cp0) + 1/2 • cpo<0.

(PC3) is a necessary condition, because for every solution of the field equation
V[cp]<0 in more than 2 dimensions. (PC2) can be weakened in more than 2
dimensions. The first condition is the strongest and should be weakened.

We will discuss these conditions further later in this chapter and give
examples in which (PC1)-(PC3) are fulfilled.

Proof of Sl. From (PC2) with t/j 0 we find |P(ep)| < a |cp|R+2. Integrating this
inequality over space-time and using (6) we find

S[cp]> 1/2- M2 (1-2a- cTÂ IMP).

So we conclude that S[cp] is positive inside a ball with finite radius (0 excluded) if
nc-d-2>0.

Proof of S2. If the graph of cp is as indicated in Fig. 6 and

t : max(0><Po] | V(cp)|, then

V[<p] <oA-eRnln + j r"-1V(cp(r))[<a>..R',-1{--eR/n + T- h}

i.e. V[ep]<0 if R is big enough. So we can find a t such that the rescaled function
cp(r/f) has negative action.

%

V

Figure 6
For fields <p, which have an extended core wherein ip(r) <p0, the potential energy is negative.

Proof of the Palais-Smale condition. First we show that {cpm} is bounded in
Hi, or equivalently cpm —» cp weakly since Hy is a reflective Hilbert space.

Using (PCI) and |M|2=s|M| we have

S[<pm]- S'(cPm)<pm/7 (1/2-1/7) IMJI2+ [y\ P(vJ- \p(<Pm)<Pm}/y

>(l/2-l/7)||cpm||2-S/7-||<pm||Ia[l/2-l/7(l + S)]-||cpm||2.
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Now, if {epm} is a sequence, with the properties required in the (PS)-condition,
then

M- I/7 ¦ o(||<pm||)>const - ||cpm||2, where const>0,

i.e., the sequence {cpm} is bounded.
We now use the isometric identification of Hy r and H*r via the Riesz-

Fischer theorem.

Hlr*>H*r, cp+q(cp)~S'(cp),

where

j{(Vq,Vta» + q^} :(q,^)= jp(cp)t// :S1(cp)^ forall i/reH,.,.

We use the following strategy to show that cpm has a convergent subsequence:
First we prove that Sl(epm)—> Sl(cp) in Hlr, using the compact imbedding ii)

on page 562. By Riesz-Fischer,q(cpm)—>¦ q(cp) in HXr. But since S'(cpm), which is
identified with cpm + q(cpm), converges to zero, we conclude that cpm must converge
to cp.

Next we show S[(tpm) —* Sl(cp). We use the notation N:= n-2, R := nc-d-
2, T:=4/(n-2), U:=2n/(n + 2).

Clearly

||s;(cp)-s;(cpm)||*= sup
I f{p(<p)-p(<pm)}J

ll*U-i IJ

{J|p(cp)-p(cpm)|p} "-W, (l/p + l/q l).

We divide space-time into 2 regions:

A:={x||<p(x)|>|epm(x)|} and Ac.

In A |<p|R |<p ipm| dominates the same expression with cp and epm interchanged. So

our integral is smaller than twice the integral over A of this expression plus twice
the integral over Ac of the expression with cp and ep,„ interchanged. Replacing A
and Ac by R" we find

"
\\M\Xv||...||*<2a.{J[|cp|R|cp-<pm|r-

Choosing q nc gives

ii- - -n*<2a • {\[wrd w -<pm\)u\lu- IML+<P - <Pm.

Using again the Hoelder inequality for |cp|<T~d)a and |cp — cpm|u, with p
(n + 2)/4+e, where we choose e such that the exponent of cp is nc, then, because

q (n + 2)/(n-2)-/,
||---|r<2ac-||cp||L-||cp-cpm||^fW,
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where we used also the Sobolev inequality for tp. Since Hlr is compactly
imbedded in Lp for 2 < p < nc and cp„, converges weakly to cp, we conclude that
ll<p-<pmL+-^o.

Consequences and remarks

a) Spherical symmetry of the minimal action solution

Let cp cp-H + eptata., where cp+(x): max (cp(x), 0) and analogously ep_. Then
[CGM] the scale invariant ratio R[cp] =-T[cp]"c/2/V[cp] of cp is larger than
min {R[cptaJ, R[cp_]}. Let us assume that R[cp+]<R[(p-] and let us rescale <p+ such
that V[cpta,ta]= V[cp], from which follows T[<p+]<T[<p]. Because we assumed cp to
be a solution of the field equation, we have

-(n-2)/n-T[cp]/V[cp]=l, or S[cp] 2/n • T[cp].

The maximum of S[cp4.,] w.r. to t on the path (p+,(x) cp+(x/t) is assumed for
t2,= -(n-2)/n ¦ T[<p+]/V[(p+] and the corresponding value of S is Sm

2T[cp+]/n • [(2-n)TJnV+T'nc, which is smaller or equal 2/n • T[cp] S[cp]. The
equality sign holds iff cp_ 0.

Now we spherically rearrange ip+ and consider the path R<p+(r/t). Because
V[RcptaJ= V[ep_,.], and T[RcptaJ<T[ep.J and the equality sign holds iff cp+ is

spherically symmetric and monotonically decreasing with increasing radius, we
obtain

max,S[Rcp+,]<S[cp+tm] Sm<S[cp],

i.e., there exists a critical value <S[cp], Thus, to every critical point cp, which is not
spherically symmetric and monotone, there is another critical point with these
properties and which has a lower action than cp.

b) Weakening of condition (PC2)

Let us assume that the potential has the shape sketched in Fig. 7. Then every
solution cp* of Acp =dV*/dcp is a solution of A<p dV/dcp:

On A :={x | ep(x)>epm} the solution fulfils Acp* 0. If p obeys some extra
conditions (e.g. Lipschitz-continuous) then the boundary of A is regular enough
that we can conclude cp* cpm on A. In this case cp* is also a solution of
Acp V'(cp), because ep*<cpm and for these values V and V* agree.

Now one can use the same arguments as in a) to show, that the solution cp

with minimal action fulfils cp<cpm. We simply define cp^x)=cp(x) if cp<cpm and
epi(x) epm elsewhere.

I V, V*

Figure 7

'Every' solution <p* of Acp*= V*'(<p*) is also a solution

of Acp V"(<p).

-Y
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For cp <cpm one can always find a constant such that |ep|R < const • |cp|1+d for
some small d. Furthermore, we saw in the proof of the (PS)-condition, that the
two terms on the right hand side of (PC2) can be replaced by a sum of more terms
with different R's. So (PC2) can be replaced by demanding that there exists a

constant such that |p(cp)| <const • |ep|2+d for cp < cpm, if the potential has the form in
Fig. 7.

c) Remarks on (PCI)

(PCI) for example is fulfilled for P(cp) C/m • epm-A/n ¦ <pn with A>0,
C2O and 2<m < n, because yP-p C(tp/m - l)cpm -A(y/n- l)ep" is positive if
m < 7 < n.

Since |cp"-(//"|<|2ep|n~1 |ep -ip\ + \2ip\"~] \<p~tp\ the condition (PC2) is also
fulfilled if n<nc (this can be weakened as we have seen). Condition (PC3) is

clearly satisfied, so that our example is admissible with respect to (PC1-PC3).
Typical Higgs potentials violate, however, (PCI). For this reason we give a

simple and short proof of the inf-max principle for potentials which are admissible
in the sense of [CGM].

Let G be the subset

G : {g I g e H and V[g]<0}, and let H be a subspace of Hi
depending on V.

Now we prove - using the results of Coleman, Glaser, and Martin - the

Theorem. The minimal critical value Smin for an admissible potential (in the
sense of [CGM]) is given by

Smin infmaxS[g(f)],
G [0,1]

where g(t,x):= g(x/t).

Proof. We first express the kinetic energy of the element g* of {g(f)}, which
has potential energy V[g*] -1, as a function of S[gm], where gm is the element
of {g(t)} with maximal action. We find g* g,„(x/t0), where t0=(-V[gm])~lln.

Using the virial theorem, (n-2) • T[gm]+n • V[gm] 0, or

T[gm]=n/2-S[gm], V[gm]=-(n-2)/2-S[gm], (4.10)

one easily finds

T[g*]= nc/2 • {(n-2)/2 ¦ S[gJ}2/" =:c(n) • S[gm]2/". (4.11)

Next we recall the conclusion in [CGM] that there exists a minimizing sequence
{cpk} for the kinetic energy with the constraint V[cpk]=-1. This function cpk can
be chosen to be spherically symmetric and monotonically decreasing with increasing

radius r. The minimal action solution cpm is then given by rescaling the 'limit
function cp*' of the minimizing sequence of the constraint problem.

Now let us assume that S^,, differs from the action S[cpm] of the CGM-
solution and let gy(t, x):= cpm(xjt). Because cpm e G and S[cpm] max, S[gj(f)] we
have Sm,n<S[cpm].

If the strict inequality sign would hold, Smin<S[cpm], then there would exist a
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ge G such that S[gm]: max, S[g(f)]<S[cpm], Hence we conclude from (11) that

T[g*] c(n) ¦ S[gm]2'" < c(n) ¦ S[<pm]2/n T[cp*],

or that cp* cannot be the limit point of the minimizing sequence {epk}. This
contradiction proves Smin=S[cpm],

The usefulness of this theorem will be demonstrated in Section IV.3, where
we will derive upper and lower bounds for the action of the bounce solution.

It must be emphasized that we have proven much more than the stated
theorem. Indeed, since we showed that the (PS)-condition for a class of potentials
is satisfied, we can apply the deep deformation theorem due to Rabinowitz and
Clark. This theorem states roughly, that one can construct a pseudo gradient
vector field such that the corresponding flux lowers the action of fields with
actions in the interval [c-e, c + e], if these fields are not to close to the set of
critical points with critical value c.

The existence of such 'deformations' or 'homotopies' in a Banach space is

very powerful for proving nice properties for solutions of the Euler-Lagrange
equation of certain actions.

IV.3. Upper and lower bounds for S[bounce]

Now we use the theorem of the preceding section to find lower and upper
bounds for tunnel probabilities with variational methods. The actions we are
dealing with have the form

S[<p]= | d"x{l/2 • (Vcp)2+m2/2 • cp2+P(cp)}.

Let cp(r) be a spherically symmetric function which depends on some parameters
and cr a typical field amplitude. With a typical field amplitude we mean a point of
V, to which the field tunnels. Furthermore, we set cp(r):=a ¦ f(r), where / is a

suitably chosen trial function and y : a/a our first dimensionless parameter. By
rescaling, x*:=m • x, we find (dropping the *'s)

S o>J2 ¦ (ay)2 ¦ m2~n ¦ [y + a] with (4.12)

a F2 + 2(mcry)-2 ¦ f drr"~1P(af) (4.12')

y=\drrn-\df/dr)2. (4.12")

Here we used the abbreviation F}: .f drrn~l ¦ f. With the abbreviation
S0:=o)Jn • o-2m2~n, the action of cpt(r):= cp(r/t) is

S[cpt]= t"-2T[<p]+1" ¦ V[cp] nil • S0y2 ¦ {X -y + t"- a}. (4.13)

If (2-n)a>0 then (n-2) • S[cp,] attains its maximum for

tm [-27/(nca)]1/2, (4.14)

where nc:=2n/(n-2) is the critical exponent (n/2 and nc/2 are dual exponents).
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The maximal (minimal for n 1) action is

Sm(y, S0y27n/2 • (-2/anc)"'"c (4.15)

and the minimum with respect to y is assumed if y : y0 obeys

(n-2)y-da/dy 4a. (4.16)

Computation of a, y0 and S,n for typical models

As a first example, we consider

V(cp)=m2/2-cp2-C/3.cp3 (4.17)

and the tunneling to cr 3m2/2C where V vanishes. Using (12'), (16) and (15) we
obtain

« F2-yF3 y0 4F2/[(6-n)F3] (4.18)

Sm S0y2 ¦ ynl2 • [(6- n)/(nF2)r- (4.18')

Next we consider

V(cp) m2/2 • cp2- C/3 • <p3 + A/4 ¦ cp4. (4.19)

V vanishes for cr 2C/3A • [l±(l-9Am2/2C2)1/2]. If we define

p, : Aa2/2m2, k : F2FJF3,
h (6- n)/(4- n) • (1 + p.)/4p. ¦ [1 ±{1 - (4- n)/(6- n)2 ¦ 32^/(1 + p)2 ¦ k}V2}

then

y0=F3/F4-fc (4.20)

and
-2/(nca) (4- n)/[n{l-(1 + p)/2k ¦ fc}]. (4.20')

For p. 1 we remain with the double-well potential

V(cp)-Acp2l4-(<p 2C/3A)2. (4.19')

As a final example we consider

V(cp) A* • (o-*cp)2- A* • ep4 + Bcp4 • ln (cp2/o-*2).

With the transformation A* A + 2B ln (cr/a*) (2A - B)(a/a*)2 we can write

V(cp) (2A-B) ¦ <r2cp2-A • cp4 + B • cp4ln(cp2/o-2) (4.21)

which is of the form of a one-loop effective potential. Despite the fact that the first
parametrization is more suitable for our purposes, we use (21) in order to have
closer contact to results obtained by other authors.

Using again (12'), (16), and the notation L : j drr"'/4 • In/2, Q:=A/B, we
find

a F2+(2Q-l)-1-[(L-QF4) + F4lny2]y2 (4.22)

and y0 solves the equation

(n-4)F4y2lny2 + {(n-4)(L-OF4) + (n-2)F4}y2-2(2Q-l)F2 0. (4.22')
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This equation can be used to simplify a:

a (n- 2)/(n - 4) ¦ {F2 - y2/(2Q - 1) • F4}. (4.23)

At this point one can apply the multidimensional Newton-algorithm for calculating

Sm(y0,...) in (4). However, for n 4 we can solve equation (22) analytically:

y2 (2Q-l)F2/F4 (4.24)

Sm(n 4) tt272/(8BF4) • [Q - 1 - L/F4- In {(2Q- l)F2/F4}]-\ (4.24')

If we replace in (22), (23), (24), and (24') (2Q - 1) by Q*, where Q* A*/B, then
we obtain the corresponding expressions or equations for the *-parametrization.

Comparison of the variational upper bounds with exact results

Now we demonstrate the excellent agreement of the variational results with
the known exact ones. We first calculate the bounds for the actions corresponding
to the potentials (17), (19), and (21) for B 0. For these three models the actions
of the bounce solutions are, at least for some dimensions (mostly n 1), known
exactly. We mention, without proof, that our inf-max principle is replaced in one
dimension by an sup-min principle.

As a trial function we choose f(r) exp(-rb/2) and find

F2=u- T(nu) F3 (2/3)"" • F2

F4=(l/2)"" F2 7 (n-2)/4-[l + (n-2)u]-r((n-2)u)
(4.25)

where u := 1/b.

1) Cubic potential (17)

Using (18) and (15) we find y0 4/(6-n) • (3/2)"" and (m := n-2)
SX • ¦) S0[4/(6- n)]2 • [m/4 • (3/2)4" • (1 + mu)Y(mu)T12

x[(6-n)/{nuT(nu)}]""2,
The minimal actions, minimal points and y0's for n=l,3,4 are given in the
following table:

(4.26)

On the other hand, the 1-dim solution is cp(r) cr • cosh"2 (mr/2) and its action is

S(exact) 0.5333mo-2. This exact solution is very close to the approximate one
(see Fig. 8).

2) Double-well potential (19') in one dimension

If we insert (25) into (20) and (20') with u. 1, we find

y0= 5/6 • (4/3)" • {1 ±[1-24/25 • (9/8)" ]1/2}

2Sm [2tt/3]1/2 • m/8 • (cry0)2 • {[2-(2/3)"y0][l- u]/sin ™}1/2

n y<) u S (min)
1 1.008 0.5703 00.5346er2 • m
3 3.048 0.6796 19.5643cr2/m
4 6.993 0.7718 91.9398o-2/m2
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f(exact) Figure 8

Plot of the exact bounce solution and the function

which was obtained by the variational principle

for the cubic potential (17).

For both signs u >0.34. The action of the double-well solution is only half of the
expression in (15), since this solution is only 'half a bounce'. We find

Sm 0.166713 • ma2 S(exact) 0.166666 • mcr2. (4.27)

The expressions for the general 4th order potential (19) are clumsy and are not
given here.

3) Model (21) in 3 dimensions

For the potential (21) with B 0 the exact minimal action for n 3 is known
[BP]. Let us compare this with the variational bound. From B ¦ (22') we obtain
y2 4 • F2/F4 and from (22) a -F2. Using (15) and (25) yields

Sm 27To-2/3m • [3ur(3u)]"1/2 • [4"(1 + u)r(u)]3'2.

The minimum is attained for u 0.9136 and the resulting S is

Sm 19.27 - a2/m (4.28)

which has to be compared with Sexact= 18.90 • o-2/m.

Although we used a very simple one parameter (beside t, y) trial function, we
see from the numbers in (26), (27) and (28), that variational results are very close
to the exact ones. We thus developed a very simple and accurate approximation
scheme for computing the minimal action, i.e. the action of the bounce solution.
The usefulness and accuracy of variational methods is well known from other
branches of physics (e.g. for the computation of ground state energies).

Comparison of lower bounds with exact results

Using Hoelder and Sobolev inequalities we derive in this section lower
bounds for S(bounce) and compare these with the exact results in order to
establish their quality.

First we list some inequalities which will be used throughout.

a) Sobolev inequality:

\\f\L^cn-\\Vf\\2 nc:=2n/(n-2), for n>3;
the best value of c„ is [Fa]: c„2 7m(n - 2)[r(n/2)/r(n)]2/".

b) Jensen inequality:

|dP(x)exp[/(x)]>exp[JdP(x)/(x)l.

(4.29)
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Setting exp[/(x)]:=fc(x)/g(x) and dP(x):= g(x) dx/J g(x) dx we find
Jg(x)dx-ln[Jfc(x)dx/Jg(x)dx]>Jg(x)ln[fc(x)/g(x)]. With the definitions
g(x): /(x)4 and fc(x): /(x)2 we end up with

L : - J dxf(x)4 ln f(xf< ||/||4 • ln [||/||I/||/||4]. (4.30)

We will use (30) for deriving lower bounds for S (bounce) for the potential (21).

c) Hoelder inequality

|dxg(x)fc(x)<||g||p-||fc|q if l/p+l/q=l, or
(4.31)

ll^ll/lltaVllC.
Setting a n, b 4-n and p nc/n for n<4, respectively a 4nc/n, b

(n-4)nc/n and p n/nc for n>4, we obtain

(«-4)-||/llnc^(»-4)-||/||M|/||r4 if n>2 (4.31')

For n 1 we use the following inequality [Fa]:

\\df/dx\\2>\\f\\tl\\f\\l (4.32)

With cy:= 1, (29), (31') and (32) we conclude that

7>[F4/(a)nF|)]2M-F2/c2 for n 1, 2 and 4. (4.33)

Combining (15) and (33), we obtain the following inequality, which is valid for all
interesting dimensions (i.e. 1, 3, and 4),

S>cT2m2-"ß ¦ y2FJF2-[(2-n)F2/na]">nc (4.34)

where ß(n 1) 1, ß(n 3) 31/2tt2/4 and ß(n 4) 8ir2/3.
For the derivation of lower bounds for our actions it is always possible, to

change a in such a way, that it only depends on tj := y2 • FJF2. This can be done
with the help of (30) or/and (31'). The inf-max principle then tells us that a
minimum of S(tj) yields a lower bound for S. Let us apply this for our previous
examples.

1) For the cubic potential (17) we find from (34, 34') with (18)

S>o-2m2-"ßT) ¦ [(2-n)/{n(l-X2)}]n/nc.
The minimum is at 17 [4/(6-n)]2 and the corresponding bound is

S>a2m2~nß - [4/(6- n)]2 • [(6-n)/n]nJnc (4.35)

For a comparison with the bounds (26) we list numerical results

S(n l)> 0.2862, S(n 3) >7.5976, S(n 4) > 52.6379. (4.36)

2) For the double-well potential in one dimension (19') we find from (20') for
(x 1, n 1, using (34), (31', n 6)

S>mo-2-h-T,3/2]. (4.37)

Again putting in numbers gives

S > 1.4815 mer2 (4.38)

which is 0.8889 times the exact result, given in (27).
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|5m I

Figure 9
The dependence of the action S,„ with effective potential (21)
on the variational parameter r\.

3) Lower bound for the action with effective potential (21).
Now we come to the more interesting potential (21), which plays an important

role in applications (e.g. in cosmology). From (22), (30), and (34) we
conclude

S > cr2m2"ßri ¦ [(n - 2)(2Q - l)/{n(l - 2Q + Qt, - -n ln t))}]"",c. (4.39)

Because B (75a/8)2 and m2 2B(2Q-l) we find in 4 dimensions

S(n 4)>2/3- (87r/75a)2-[(l-2Q)/T) + Q-lnTj] \
S(tj) has 2 poles, as indicated in Fig. 9. However, we know from (2), that S>0.
So we obtain for the minimizing tj: tj =(2Q- 1), and thus for the corresponding
lower bound

S(n 4)>2/3 • (8Tr/75a)2 • [Q- 1-ln (2Q- l)p. (4.40)

With analogous manipulations we obtain in 3 dimensions

S(n 3) >sqr (2)ir2/75 • o-n/a ¦ [(1 -2Q)tj2 + Qtj - tj ln tj]"1/2. (4.41)

In contrast to the 4-dimensional case we cannot give an analytic expression for
the minimum of S(tj) and we are forced to use a numerical algorithm (Newton
algorithm) for finding T)min(Q). The results for n 3 and n 4, together with the
variational values are shown later in this section.

We see that the lower bounds are typically a factor 2 lower than the exact
results. For the functions (25) the Jensen inequality deviates from an equality by a
factor —In 4, independent of u. The Sobolev inequality (29) is sharp for small
values of b (factor 1.03 for b 0.5, n 4) and gets worse for increasing values of
b (factor 1.83 for b 5, n 4). At any rate, if Q is not too close to 1, then the
bounds (40) and (41), multiplied by 2, can be used as a first guess for the exact
actions.

Variational bounds for the action with effective potential (21)

Now we are prepared for computing the interesting bounds for the effective
potential (21). From the virial theorem (8) we know, that for n>2 V(cp)<0. If
Q ~ 1 this is only possible for functions cp, which have an extended core in which
cp sits in the minimum of V. In such situations our trial functions (25) are not
suitable and we choose different ones. We sketch the computations first for the
functions (25) in 3 and 4 dimensions and then consider other trial functions.

In 4 dimensions our method is very simple. For the functions (25) we need
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Figure 10

Depending on e, we have to choose different trial
functions. £ *A

only a 1-dimensional Newton-algorithm. Using (25) in (24') yields

Sm(n 4) (87r/75a)2/8 • [22"(1 + 2u)r(2u)]2 • [4uT(4u)]1
x [Q - 1 + 2u(l -2 ln 2) -In (2Q - l)]"1, (4.42)

where we used L -n/2 ¦ u22~nu • T(nu). Now it is simple to find, for a given
0.5gîO<1, the minimal point u and minimal value S,„.

For O ~ 1 the following function is more suitable as a trial function

/(r)=l if rsc
exp[(r-c)2/2] if r>c (4.43)

Using this trial function we obtain the following values for 7, L, and the F's:

F2 c4/4 + 3c2/2 +l/2+nu2-(c3/2 + 3c/4) :p(c)

7 TT1/2-(c3/4 + 9r/8) + 3c2/2+l=:q(c)
F4=p(21/2-c)/4

(4-44)

L -q(2,/2-c)/8.

Inserting (44) into (24') results in (d: 21/2- c)

Sm(n 4) (8tt/75«)2/2 • q(c)2/p(d)
x [ Q - 1 + q(d)/2p(d) - In {(8Q - 4)p(c)/p(d)}]-1 (4.45)

The core radius is rB(physical) (c + \)/mt„„ or with (14),

rBcr (c+ 1)1 mr ¦ [p(d)SJ{2(2Q-l)p(c)q(c)}]m. (4.46)

In this manner we have calculated upper bounds and good estimates for the exact
bounce-actions for both regions, Q — 0.5 and Q~l. One can, of course, combine
the functions (25) and (43) for constructing a 4-dimensional collection of trial
functions of the form cp cry ¦ f(b, c, r/t), where

f(b,c,r)=l for r<l, otherwise =exp [-(r-c)b/2] (4.47)

or trial functions, which depend on even more parameter. We have done the
calculations for the functions (25), (43), (47) and also computed the lower bounds
(40). The results are given in Table 1.

The 3 dimensional case is somewhat harder. As we already mentioned, we
cannot find the minimum with respect to y for n 3. So we have to use the
2-dimensional Newton-algorithm for finding the minimum within the family of
functions (25). For the same reason as for n 4 we have to use different trial
functions for Q~l. We choose again the function (43).
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Table 1

o 0.51 0.53 0.55 0.57 0.59 0.61 0.63
S(25) 64.22 105.33 145.77 191.02 243.91 307.32 384.72
S(43) 74.95 116.26 155.18 197.89 247.73 308.39 383.73
S(47) 64.22 104.60 144.44 188.90 240.75 302.72 378.13
S(40) 44.30 64.69 81.83 98.69 116.18 134.86 155.15

q 0.65 0.67 0.69 0.71 0.73 0.75 0.77
S(25) 480.71 601.55 756.06 956.97 1223.06 1582.91 2081.40
S(43) 476.59 592.88 740.98 932.85 1186.11 1527.48 1998.79
S(47) 471.31 588.26 737.18 929.97 1184.15 1526.19 1997.51
S(40) 177.52 202.45 230.54 262.51 299.29 342.09 392.55
O», 10.27 11.22 12.22 13.30 14.51 15.88 17.47

o 0.79 0.81 0.83 0.85 0.87 0.89 0.91
S(25) 2791.60 3837.84 5442.91 8032.25 12485.60 20819.50 38341.70
S(43) 2667.93 3650.11 5151.10 7562.73 11692.50 19384.60 35479.70
S(47) 2665.20 3642.95 5133.03 7520.53 11596.80 19168.33 34948.39
S(40) 452.90 526.31 617.46 733.50 885.99 1094.87 1397.84
rB<T 19.33 21.57 24.32 27.79 32.30 37.67 46.45

Q 0.93 0.95 0.97
S(25) 82087.5 226625.0
S(43) 75447.9 206749.0 954116.0
S(47) 74014.7 201846.7 926542.1
S(40) 1875.7 2738.4 4755.9

'a, 60.3 85.1 141.1

Sin--.)

0.5 0.6 07 08 0 9

Figure 11

Plots of the lower bound S„ upper bound Sm and
thin-wall result Stw for the action of the bounce
solution in 4 dimensions. Sm is obtained with the
variational principle in which the trial functions
(47) have been used. S, has the same origin, but
the inequalities (40) and (33) were used. S^, is

computed in section IV.4.
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Table 2

0 0.51 0.53 0.55 0.57 0.59 0.61
S(25) 0.938 2.234 3.521 4.896 6.405 8.092
S(43) 1.035 2.415 3.755 5.157 6.670 8.336
S(41) 0.428 0.976 1.483 1.991 2.515 3.062

0 0.63 0.65 0.67 0.69 0.71 0.73
S(25) 10.00 12.20 14.76 17.77 21.38 25.78
S(43) 10.20 12.33 14.81 17.77 21.31 25.60
S(41) 3.64 4.25 4.91 5.61 6.38 7.21

^ 0.04 1.03 1.13

O 0.75 0.77 0.79 0.81 0.83 0.85
S(25) 31.22 38.01 46.99 58.11 75.03 98.17
S(43) 30.91 37.60 46.24 57.69 73.34 95.59
S(41) 8.12 9.13 10.26 11.54 13.00 14.71

r&. 1.24 1.36 1.51 1.69 1.91 2.19

o 0.87 0.89 0.91 0.93
S(25) 132.84 188.22 284.81
S(43) 128.78 181.54 273.04 453.33
S(41) 16.75 19.25 22.45 26.79

'a, 2.55 3.05 3.77 4.26

For the family (25) we obtain with (15), (22) and (25, n 3)

Sm(n « 3) (7/(6 • 2I/2) • 87T/750- • y2 • [(1 + u)T(u)]312

x[{l-2Q + y28-"(Q + 3u/2-lny2)}3Mr(3i<)]-1/2.

The results of the numerical calculations are listed in Table 2.
For the functions (43) we find

F2 c3/3 + c + tt1/2(c2/2 +1/4) : p(c)

y X2(c2/4 + 3/8) + c: q(c)
F4=l/8"2-p(d),
L -l/321/2-q(d),

Figure 12
Plots of the lower bound S,, upper bound Sm and
thin-wall result Sm for the action of the bounce
solution in 3 dimensions. Sm and S, were
computed with the help of the inf-max principle (page
55). SM is calculated in section IV.4.

(4.48)

(4.49)

io'¦•
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where again d:=21/2c. For the action we find

Sm(n 3) 4/541/2 • 87ro-/75a • q(c)312 ¦ y2

x[(l-2Q)p(c) + y2/81/2{Qp(d) + q(d)/2 + p(d)lny2}r,/2
and the bubble radius is rBcr 3(l + c)Sm/<r • [47rq(c)y2]~\

For n 3 we did not calculate the minimal action for the functions (47)
because Sm(47) is close to Sm(25) for Q — 0.5 and close to Sm(43) for Q~ 1 as we
saw in four dimensions. In addition we list the lower bounds obtained in (41).

IV.4. Variational results versus thin-wall approximation

The thin-wall (TW) approximation was introduced by Coleman [CC] and
improved by Affleck [Af] who invented a series expansion in the difference e
between the potential energy densities of the true and false vacua. However, even
for the simplest case, the double well potential the computation of the second
term in the expansion is very long and tedious. For this reason it is interesting to
compare variational with TW results.

Let V V0- e • Vj and require

(i) Vo(0)=Vo(or) 0, dVo(0)/dx dVo(<r)/dx 0

(ii) V1(cr)=l, V0(<p)^V(<p) for e^O. l"
As in the variational calculations we split V0 into two terms,

Vote) (m0o-)2/2 • [(cp/o-)2 + 2/(m0o-)2 ¦ P0(<p)].

Then the action of the bounce in the thin-wall approximation is given by [CC]

Snv coJn-[(n-l)/eX-S"y, (4.51)

where St is the one-dimensional action

S, [ dx- x[l + 2/(m0crx)2 ¦ P0(crx)]1/2= mX • L (4.52)
Jo

Furthermore, we define z via e =: mja2 • z and end up with

Stw St(n-lX-r/z"-\ (4.53)

We used the star index because S* cr2m2~" depends on m0, the mass appearing
in V0, rather than on the mass m in V.

For the potential (21) e (1 - Q)Bcr2 or z (1 - Q)/2 and for the integral we
find / 0.20995, so that

Sw(n 4) 54(24tt/5)2 • I4/(l - Q)3

Stw(n 3) 5 12tt/(50),/2 •/3/(l - Q)2.

* V

Figure 13
^f The thin wall parameter e is the difference between the

potential energy densities in the true resp. false vacuum.
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S,w/Sm(n»4|

15

579

Figure 14 l
The ratio of the thin-wall results to the results
obtained with the variational methods in 4
dimensions. 0.5 0.6 0.7 0.8 03

The graphs in Figs. 14, 15 show the ratio of the thin-wall results to the results
obtained with the variational method.

After our lengthy discussion of the variational method for computing
S[bounce] and it's application to various models we now turn to the temperature
dependent problem.

IV.5. Temperature-dependent effective potential

If one computes the effective potential in the SU(5) gauge theory with a
quartic Higgs potential at finite temperatures, then, to first order in a loop
expansion, the effective potential is [DJ]

V(T,cp)=V(cp)+VT(cp) (4.55)

where the VT is the finite temperature contribution

VT(af) 18T4/tt2 ¦ 7{(25/8)1/2 • gy/r, • /}.
We use the notation: r/:=T/cr, y:=a/a; V(cp) is the effective potential (21) at
T 0, and / the integral

I(z)= f dxx2ln[l-exp{-(x2+z2)1/2}]
Jo

-z2-YlK2(nz)/n2.

In [DJ] the fcigfc temperature expansion (z<< 1) has been calculated:

/4(z) -7r4/45 + tt2z2/12- ttz3/6- z4/32 • ln z2 + 5.41/32 • z4.

(4.56)

(4.57)

For the computation of tunnel probabilities one usually needs I(z) not only for
z « 1, but also for z ~ 1. We now use the saddle point method for constructing an
approximate representation of /, which is good for all values of z.

S,w/Sm(n 3)

Figure 15

The ratio of the thin-wall results to the results
obtained with the variational methods in 3

dimensions.

15
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-Kz)

2
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\ ~'\.'

1 V'2

\\<u
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1 1- ^.

Figure 16
Different approximations for the integral I(z). I4 is the high temperature approximation (57) and /2
the sum of the first two terms in (57). / is the result (58) of the saddlepoint method.

For this purpose we expand the logarithm in (56)

I(z)=l/n-I fdxexp[-/n(x,z)], fn(x, z) n(x2+z2)1/2-21n x
n *

and apply the saddle point method to each term. This gives

I(z)~i/n ¦ I[27rd2/„(.r„1)/dx2r1/2.exp[-/„(x„,)].
n

Inserting the value of the saddle point xm, we find

I(z) ~ -(4X'2/e -1(1 + uf/n4 ¦ u~u2 • exp (-«),
where

u: [l + (nz)2]1/2.

Instead of using this clumsy expression, which is not very accurate near the core,
we retain only the first term but change the "constants 1" in such a way that
/(0)=--ir4/45, I"(0) ir2/6:

-I(z) L(z) (47r)l/2/e • (a + u)2/uv2 • exp (-u) (4.58)

where u (b2+z2)v2, a (e/X14, and b 0.682293823.
Usually people only use the first 2 terms I2= -774/45 + (ttz)2/12 of (57) in

computing S[bounce] for the effective potential (55). This treatment is, of course,
only justified if z« 1, i.e., for a2gjT« 1.
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V. The primed determinant

In this chapter we connect the generalized Weinstein-Arenszjan determinants
w(k), which appear as coefficients in the expression for the tunnel probability, to
some scattering data of the corresponding Schroedinger operators. In one dimension

these determinants are well defined and we compute w(k) for a general
fourth order potential.

Then we generalize the discussion to higher dimensions for spherically
symmetric potentials, using the results in one dimension. Here we are clearly
confronted with the problems of regularization and renormalization.

A general remark on determinants

We study determinants of the form

w(A):=det[(H-A)(H0-A)-1] (5.1)

where H0=-A and H =-A+V"(cp)-m2 H0+q are Schroedinger operators.
It's known [Ka, Ku] that, if H and H0 are closed operators and q is of relative
trace class to H0, then w(k) is a meromorphic function in regions of the complex
plane where H and H0 have only isolated eigenvalues. The zeros and poles of
w(k) are at points which are eigenvalues of H and H0. The order of these zeros
(poles) are the dimensions of the corresponding eigenspaces.

For dimensions n>2q is, however, not of relative trace class with respect to
H0, which forces us to regularize the determinants [Si].

V.l. One-dimensional determinants

Here we investigate w(k) for H0=-d2 and H H0 + q where q is the
"massless part" of V"(cp), i.e., V"(cp) m2 + q.

First we restrict ourselves to a finite interval I [-L, L] on which we impose
Dirichlet boundary conditions.

It is well known that the Dirichlet spectrum of H with qeL2(I), is real,
discrete, bounded from below, and that all eigenvalues are simple.

We introduce the fundamental solutions cp, and cp2 which fulfil

Hep Acp (5.2)

with the boundary conditions

cp,(-L,A,q)=l cpJ(-L,A,q) 0 (5.2')

<p2(-L,A,q) 0 <p^(-L,A,q)=l (5.2")

In terms of <py and cp2 the general solution of -cp" + qep +/ Aep has the representation

cp(x) cp(-L)cp1(x) + cp'(-L)cp2(x)+ dy{cp2(x)ep1(y)-cp1(x)cp2(y)}./(y)

If we set <p (p2 and f(y) e • v(y)cp2(y) we find

cp2(x, q + ev) cp2(x, q) + j dy{cp2(x)ep!(y) - <Pi(x)ep2(y)}£i. (y)cp2(y, q + ev)
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so that the Frechet derivative of ep2(x) with respect to q(y) is

<p2,c, [<p2(x)<Py(y)<p2(y)-<py(x)<pl(y)]- e(x-y). (5.3)

On the other hand, cp2(x, A + e, q) <p2(x, k,q- e), or

dep2/dA =-j dyep2q. (5.4)

With these preparations it is possible to compute the determinant w(A). From (1)
we have

d(log w)/dA tr [R(H0, A) - R(H, A)], (5.5)

where R(H, k) stands for the resolvent operator (H-k)\ But R is an integral
operator with the Greens function GH(k; x, y) as its kernel. Using the fundamental

solutions we obtain for GH, for Dirichlet boundary conditions,

GH(A; x, y) cp2(x) • [cpi(y)-tp2(y)cpy(L)l<p2(L)]

-[cp2(x)ep,(y)-cp1(x)cp2(y)]- e(x-y). (5.6)

For such integral operators the trace is nothing else than the integral over the
diagonal elements of the Greens function [Si], and thus

tr [R(H, A)] J dx<p2<Pl-<Pl(L)/<p2(L) ¦ j dxcp\. (5.7)

With (3) and (4) we find

tr[R(H,A)] -dlog{cp2(L)}/dA (5.8)

or

d[logMA) • cp2(L, A, 0)/cp2(L, A, q)}]/dA 0. (5.8')

The equations (3) and (4) tell us in addition, that dcp2(L)/dk^ 0 for all A, or that
all poles in (8) are simple. Since the argument of the logarithm in (8') is analytic in
A and goes to 1 as A goes to °°, we end up with

w(A) cp2(L,A,q)/<p2(L,A,0). (5.9)

This shows that one should interpret cp2(L, A, q) as the generalization of the
characteristic polynom of a linear operator on a finite dimensional vector space.

Using formula (9) we can compute the product expansions for certain
functions. For example, if L 1/2, q(x) co2, and m 0, we obtain

det [(-d2+ co2)(-d2)-'] 1/co ¦ sinh (co).

On the other hand, the eigenvalues of H0, resp. H are A„ (mr)2, resp. A„
(mr)2 + co2, so that

1/co • sinh (eo) njl +(eu/mr)2]. (5.10)

Determinants on R

One can directly use the results obtained so far, in one introduces
cp* :=exp (— mL) ¦ cpi and let L go to infinity.

However, in order to see the connection between our determinants and
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scattering data more directly, we make use of the so-called m-functions. If
A =:k2, they are defined by

epr(x, k, q) :m,(x, k, q) ¦ exp (-ikx) (5.11)

ep,(x, k,q) : m,(x, k, q) ¦ exp(+ifcx), (5.11')

i.e. cpr (cp, describes a particle moving to the right (left). The m-functions fulfil the
conditions

mr(x, fc, q)—»1 m'r(x, k, q)—»0 for x —> — =° (5.12)

m,(x, fc, q)—>1 m',(x, k, q)—> 0 for x—>°°. (5.12')

Carrying out the analogous calculations as on a finite interval, we find

w(A) lim mr(x, fc, q)/mr(x, fc, 0) lim mr(x, fc, q).

Now we need the notion of the reflection and transmission coefficients. They are
defined via the r and /-functions in the decompositions

cp, Lcpr +/+cp* cpr r+cp, + r_cp*. (5.13)

[r_(fc)= l+(k), /_(— fc) -r+(fc)]. The unitary scattering matrix is then given by
(T:=l/r_, -R:=r+/r_)

M_T/*/T* r) (5.14)

Now let us compute det [(-d2+ V"(cp))(-d2+ m2)-1] w(A -m2). With (13) and
(IT) we obtain

mT r+mt exp (2ifcx) + r_m*, or lim mr(x, fc im, q) r_(fc im, q).

Hence we conclude

w(A =-m2) r_(fc im, q) (5.15)

or
det [(H0+ m2)(H+m2Y i]=T(k im, q), (5.15')

i.e., we can express the functional determinant through the transmission coefficient

of the corresponding Schroedinger operator.

Treatment of the zero mode (A* := A + m2)

Now let us assume that A* 0 is an eigenvalue of -d2+V"(cp), or that
A -m2 is an eigenvalue of H. We divide w by A* and use l'Hospitals rule

w'(-m2)= lim Jr_(A)]/[m2 + A]=i/2m ¦ d[r_(im, q)]/dk. (5.16)
A—?—m2

Thus, we end up with

det'[(-d2+V"(cp))(-d2+m2)-,]='/2m • d[r.(im, q)]/dk. (5.17)

Analogous to the formulae (3) and (4), we have [Lam]

d[r_(im, q)]/dk i dxcp\,
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where cp2 is the eigenfunction of H with eigenvalue -m2 and asymptotic condition
ep2(x) —> exp (-mx) for x —> °o.

Finally, using (17) the primed determinant becomes

w'(-m2)=l/2m.||<p2|||. (5.18)

Computation of ||cp2||2

The zero mode is proportional to the derivative of the bounce solution
Bm,/2cp2 dcp/dx, or w'(k) (mBY2T[tp\ 2(2mB)~ 2S[ep]. Hence we are left with
computing the constant B.

From the equation of motion for cp we find

J-

trim "2

dtp[X ¦ {1 + 2/mtp2 ¦ P(iP/sqr(m))} l'2] : /(cp) (5.19)mx
J-p/m

Since m u2 ¦ cp ~ B exp (-mx), this shows that

B lim m 1/2cp • exp [/(cp)]. (5.20)
IP-.0

Let us summarize the results obtained so far.
The primed Weinstein-Arenszjan determinant for A -m2 is

det'[(-d2+V"(cp))(-d2+m2)-,]=l/(2m2B2)-S[cp], (5.21)

where B is given in (20), and S[cp] is the action of the bounce solution. For
computing the tunnel probability one anyway has to calculate S[cp]. The only
additional quantity that must be computed is the integral /(cp) in (19).

Application to typical models

1) Cubic potential

The potential V(cp) m2/2 • cp2-C/3 • cp3 was already discussed in the
preceding chapter. Using the result for S[ep] on page 571 and B 4exm1/2, we obtain

w'(-m2) det' [1 -3m2 cosh"2 (mx){-d2+ m2}"1] l/60m2. (5.22)

2) Double-well potential

Again using the results on page 572 for the potential (4.19') and B crm1'2,
we find

w'(-m2) det'[l-3m2/2-{l-tanh2 (mx/2)K-d2+m2K1]=l/24m2. (5.23)

3) Arbitrary quartic potential

For the potential V(ep)= m2/2 • ep2-C/3 • ep3 + A/4 • cp4 on page 570 we find

w'(-m2) 9/32m ¦ (A/mzC)2 ¦ (z - 1) • S (5.24)

z: 9Am2/2C2 and

S l/72m2z - (z - l)[9/z - 6 + (z/6 - 1/6) log {(1 + sqr(z))/(l - sqr(z))}].
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V.2. Determinants in higher dimensions

In this section we first derive the angular momentum expansion of our
functional determinant. For doing this it is crucial that the bounce is spherically
symmetric. Analogously to the one-dimensional case, we then extract the zero
modes. Finally, we have to renormalize the mass and coupling constants in the
Lagrangian.

We use the dimensional regularization, because this seems to be the most
suited regularization scheme, if one has the analytic properties of the Jost
functions with respect to anglular momentum in mind.

Angular momentum expansion of w(k)

Since the bounce solution is spherically symmetric, the potential q appearing
in the Schroedinger operator in (1) depends only on r, and the eigenspaces are
classified by their angular momentum /, i.e.

w(A) n.w,(A)d(j), (5.25)

where the product goes from 0,1, 2... to °°, and

w,(A) det[(H,-A)(H^-A)-1] (5.25')

is the determinant of the radial Schroedinger operator in n dimensions, H,
-d2/dr2-(n-l)/r ¦ d/dr +j(j+ n-2)/r2 + q, and d(j) the dimension of an eigen-
space with angular momentum / in n dimensions: d(j)
(j + l)(j + 2)(j + 3)... (2/ + n - 2)/(n - 2)

Setting p. : j -1 + n/2 and ip(r, /x)* : r(n 1)/2 • ip(r, /), one sees that ip(r, /x)*
is an eigenfunction of

H(/x):=-d2/dr2 + (p.2-l/4)/r2 + q, (5.26)

iff ip(r, j) is an eigenfunction of Hi with the same eigenvalue. Therefore, the W- A
determinant (25) is also given by

w(A) lIidet[{H(Ai)-AKH°(|üt)-A}~,r=njw(/x,A)rf (5.27)

d 2p.T(p. - 1 + n/2) • [r(n - l)r(jx + 2- n/2)]"1. (5.27')

This shows that the dependence on n in only via the relation between p. and j. Thus
dimensional regularization seems to be well suited for our task. Furthermore, we
are back at the 1-dimensional problem and thus we can proceed exactly in the
same matter as in the preceding section.

The radial equation H(p.)ip ktp= k2ip has two kinds of solutions, the
cp-solution, which is regular at r 0, and the Jost solution /. These have the
following behaviour

log[ep(^,fc,r)]~(lLt + l/2)logr for r-*0 (5.28)

log[/(,x,fc,r)] ikr for r^oo. (5.28')

The relation

cp(p., fc, r)= l/2ik ¦ [f(p, k)f(p, -fc, r)-f(p., -k)f(p., fc, r)] (5.29)
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defines the Jost functions f(p, fc), which play such a crucial role in the discussion of
the scattering matrix. They are analytic in Re (p)>0 and Im (fc)< fc0, whereby fc„
is nonnegative and depends on q. Using the asymptotic behaviour of the Jost
functions in (29), we obtain

w(p, A) lim <p(ß, fc, r)/<p°(p, fc, r) f(p, k)/f(p, fc), (5.30)

where lm(fc)<0. Introducing the normalized Jost functions

F(p,k): f(n,k)/f°(p,k), (5.31)

we end up with

w(k) Ui[F(j + (n-2)/2,k)Y with fc2 A and Im (fc)<0. (5.32)

Here we used the relation between /x and /.

Treatment of the zero modes

Because of the Euclidian invariance of S the Schroedinger operator H has n

eigenfunctions with eigenvalues -m2. They are

cp, const • Xj/r • dcp/dr i 1,..., n, (5.33)

where cp is the bounce solution and hence the zero modes have angular momentum

In order to compute the primed determinant, we only have to deal with the
/ 1 sector. Now we repeat the consideration of the preceding section. We find

w'(p n/2, -m2) lim J(n/2, -fc) • [/°(n/2, -k)(m2+ fc2)]-'.
A—»— m

Using again l'Hospitals rule gives

w'(n/2, -m2) df/dk(n/2, -im) ¦ [/"(n/2), -im)2im\\
Analogously to the identity below (17), wc use the formula [AR]

j tP(p, fc, r)2dr -idf(p-, -k)/dk ¦ [f(p, fc)]"1

(compare with (18)), which holds if tp(p., fc, r) is a bound state and ip —* exp (-mr)
for r —* ». Therefore,

w'(n/2, -m2) l/2m • /(n/2, im)/f(n/2, -im) • j tP(n/2, im, r)2 dr.

Because of (33), and the transformations / —» p,, ip —> ip* above (26), we have

m Xl2ip 1/B ¦ r("-1)/2 • dtp/dr. (5.35)

With the virial theorem we find

f ip(n/2, im, r)2 dr 2/(B2mco„) ¦ T[cp]= n/(B2ma>,,) ¦ S[<p],
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which results in

w'(n/2, -m2) n/(2m2B20A„) ¦ (-1)«-""2 • S[<p] • F(n/2, im).

Putting all together gives finally

w'(-m2) [n/(2m2B2eoJ • (-1)(" ,)/2 • S[<p] ¦ F(n/2, im)]n

xn(<>1[F(y-l + n/2,-im)]d. (5.36)

This equation gives a formal expression for the primed W — A determinant. It
requires again the computation of the number B, which is determined by the asymptotic

behaviour of the bounce. In contrast to the 1-dimensional case, we here need
some information about scattering data.

Because for n 1 only the / 0 and / 1 sectors contribute, and both
dimensions are equal to one, we have

w'(-m2) l/(2mB)2 ¦ S[<p] ¦ F(l/2, im) ¦ F(-l/2, -im).
But F(l/2, im) ¦ F(-l/2, -im) 2, so we find again the formula (5.21).

In ffcree dimensions (36) reads

w'(-m2) -[3/(8Trm2B2) • S • F(3/2, im)]3 II/<:>1F(j +1/2, -im)2, + 1,

and in four dimensions (d (j + l)2) we obtain

w'(-m2) [l/(7rmB)2 - S • F(2, im)]4 n,<>1F(y +1, -im)d.

One-loop counter terms

Now we renormalize the effective action of the dynamical Higgs potential

V(cp) (2A - B)a2<p2- Acp4+ Bcp4 ln cp2/er2

in order to see which parameters in the renormalized determinant are the physical
ones.

The effective action Seff in l-(Higgs-boson) loop approximation is

Seff[cp]=S[cp] + fc/2.trln[{-A+V"(cp)K-A+m2r1] + Sc,[cp]. (5.37)

If q:= V"(cp)-m2, we have

tr ln [.. ] tr ln [1 + q(-A+ m2)"1] : tr ln (1 + A)

^ (-)'-I —-trA1. (5.38)
i 1

The kernel of the integral operator A' is

G,(xi, Xj) J
I dx2 dx,_,G(x1, x2).. G(xy_1; x;) (5.39)

with

G(x, y) q(x)- C(m, x-y).
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P,-P

Figure 17

pi'ri The Feynman diagram which corresponds to tr A'.

Here C(m, z) (2tt) " J exp (ipz)(p2+ m2) 'd"p is the Greens function of A and
hence

tr A' j nid"x,IIiG(x„ x1 + 1)

(27T)-""2 Jnd"pn<jA(Pi - pX(p, + m2rl.

We used q(x) (2tt)~"/2 Jexp (ipx)qA(p)d"p and x1 x)+1, resp. Pi pj+1.
The corresponding Feynman diagram is shown in Fig. 17 and the degree of

divergence is

d(r(A')) n-2/,
i.e., tr A is quadratic and tr A2 logarithmic divergent in 4 dimensions.

The effective potential is the effective action for a constant field cp divided by
Vol (space-time). By substituting y, Xi — xM1 for i 1, ...,/— 1 and y,
Xy + - • - + Xj we find for a constant q

tr A q/(2Tr)-" Vol J dnp(p2+ m2)"' (5.40)

Using the well known formula in dimensional regularization

f d"p(p2+ mX (Trm2)"/2m~2' • T(j-n/2)/r(j)

we are led to

tr ln (1 + A) (l/4Tr)"/2 • m"~4 Vol • [m2qr(l - n/2) - q2/2 • T(2- n/2)]

+ trln(l + A)reg. (5.41)

The first 2 terms come from tr A and tr A2; (1 + A)reg is the regularized operator
in the sense of Simon [Si], i.e.

tr In (1 + A)reg -(1/4ttX ¦ m" Vol • £ (-)' • (q/m 2)'[j(j - 1)(/ - 2)]-'.

It's not difficult to see that

(m2/477

+ l/2-(V")2ln V"/m2]. (5.42)

tr ln (1 + A)reg (m2/47r)n/2/m4 • Vol • [-m2q/2- 3q2/4/reg
r"\2 i„ T/»/™2i
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For the moment we set mo 2(2A-B)er2 and A0/4=-A, or

V(cp) ml/2 ¦ cp2+ Ao/4 • cp4+ h ¦ Vy

where ft • V, is the one-loop contribution of the gauge bosons. In computing the
contribution (42) of the Higgs boson loops, we only have to take into account the
first 2 terms in V(cp), because hVy gives a ft2 contribution to the expression (42).

We obtain (m„:= m2 + 8m2, A0:= A + 8k)

Veff= m2/2 • cp2[l + 8m2/m2-3A/16tt2 • r(2-n/2)-3A/32ir2]
+ A/4 • cp4[ 1 + 8k/k - 9A/ 16-iT2 - T(2 - n/2) - 27A/32ir2]

+ ft • V, + (V")2/64Tr2 • ln V"/m2,

and with

8m2 3A(m/47r)2 • T(2- n/2) SA (3A/4tt)2 - T(2- n/2)

we finally obtain

Veff m2/2 • cp2(l - 3A/32ir2) + A/4 • ep4(l -27A/32tt2)
+ ft • V, + 1/647T2 - (m2+ 3Acp2)2 ln [(m2+ 3Acp2)/m2] +finite.

The described renormalization of determinants is known in literature [Si]. It
amounts in dropping the terms in the expansion (38) which are not finite:

det (1 + A)reg det R(A,[ni2] where R(A, m) (l + A)exp(£ (-1)7/-AM.

V.3. Angular momentum expansion of the regularized determinant

With the preceding remarks it is now easy to regularize the determinant (32),
resp. the primed determinant (36):

In 2 and 3 dimensions one has to drop the linear, and in 4 dimensions the
linear and quadratic terms in q in the power expansion of ln {w'(A, q)}. From [AR]
we take the following expansion of F in powers of q

Hn, fc) 1 +1 (XInl ¦ | • • | n dr; ¦ Kn(ry,..., rn)q(ry) ¦ ¦ ¦ q(rn)

l + Z(-)7n!-Kn(q,...,q), (5.45)
where

/K(ry,ry) ¦¦¦ K(rltrB)v
Kn(r1,...,rJ detl : (5.45')

\K(rn,ry) ••• K(rn,rn)J

K(r„ r,) Ì7T/2 • (r,r,)1/2 • H(p, kr>)J(p, ku)
r> (ri + r/)/2+|r,- r,|/2

U (ri + ri)/2-\r,-ri\/2.
We used the notation H(p, z) for the second Hankel function of /xth order and
J(p., z) for the Bessel function of the first kind of /xth order [AS].
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So we obtain

ln [F(p, k)]=-Ky(q)+l/2 ¦ K2(q, q)- 1/2 ¦ [K,(q)]2 + 0(q3),

with the K„ defined in (45) and (45').
Now it is natural to define the regularized Jost functions

FTes(p, fc) Fin, k) ¦ exp {K(it, q)}, (5.46)

Kip., q) Kyiq) for n 2orn 3

K(/x,q) K,(q)-l/2-[K2(q,q)-{K1(q)}2] for n 4.

(5.46')

(5.46")

Conclusion

The angular momentum expansion of the regularized determinant is given in
(32) resp. (36) if one uses the regularized Jost functions instead of the usual ones.

V.4. Thin wall approximation for the functional determinant

As an application of our results, as well as illustrating the first term in an
asymptotic expansion of the determinant in the TW-parameter (compare page
578f), we consider the square well potential

q(r) q-6(R-r). (5.47)

For r<R and r>R we have the free case, hence with fc':= (m2 + q)1/2,

cp(/x, fc, r) cp0((x, fc', r) for r<R
fip, fc, r) foip-, fc, r) for r > R,

and because of the following equation, valid for r>R (we drop p),

cp(fc, r)= l/2.fc • {/(fc)/0(-fc, r)-/(-fc)/o(fc, r)}

the Jost functions are determined by the matching-conditions:

cp(fc,R) cpo(fc',R)

cp'(fc,R) <p^(fc',R).

Using the explicit expressions for cp0 and /0 [AR], and the abbreviations x := kR,
y := fc'R, we obtain

F(p-, fc) -irr/2 ¦ (x/yT ¦ {xJ(fi. y)H(n + 1, x) - yj(p, + 1, y)H(p, x)}

iV/2 • (x/yT ¦ {xJ(p, y)H'(p, x) - yJ'(pL, y)H(u, x)}. (5.48)

Setting 1 + z (y/x)2, and using the multiplication theorem for Bessel functions
[AS], the normalized Jost function is

F(p, fc) 1 + (x/y)»z ¦ J dx'x'/(,x, (1 + z)v2x')K(p, x')

1 - z • X (-z/2)k/fc ¦ J dx'x'k + 1I(p + fc, x')K(p., x') dx'. (5.48')
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Here the integral extends from x' 0 to x' mR. Comparing this expansion with
(46', 46"), we obtain for the integral operators K„ of the square-well potential
(z:=l/m2):

K„(q. ...,q) 2n- (z/2)" • j dx'x'nI(u. + n - 1, x')Kip-, x'). (5.49)

After a straightforward calculation we found the following expansion in 1/p
iO:=qR2):

Fip, -imR) 1 + Q/4p. + Q2l32p2 + iQ3l24-QimR)2-Q2l2)/16p,3
+ iO4/24-2Q3-4Q2imR)2 + 8OimR)2)/256p4 + 0il/u5)

Kyiq) -Q/4/U, + 0(mR)2/16,Lt3- Q(mR)2/32|Li4+ • • •

K2iq) Q2116 p.2 - Q2/16p3-Q2imR)2/32a4+¦ ¦ ¦

From this we obtain in 2 or 3 dimensions

Fre>, -imR) exp [-Q2/32^3 + 0(l/,x4)]. (5.50)

Thus we find in 2 dimensions ((/) means a finite expression)

wreg(-.m) if) ¦ n, exp [-02/16/3] (/) • exp [-zeta(3)Q2/16] (5.51)

and for n 3 we obtain

wreg(-(m) (/) ¦ n, exp [-Q2/(4/ + 2)2] if) ¦ exp [-(ttO)2/32]. (5.52)

In 4 dimensions the expansion of Kip, q), defined in (46'), is

Kip., q) [-1/p. + imR)2/4p3 + imR)2/8u.4] • Q/4+ Q2/32p-2,

and hence we obtain with (46)

Freg(m -imR) exp[(Q/4M)4 + 0(l/^5)]. (5.53)

For the regularized determinant we find in 4 dimensions

wreg(-.m) (/) • n; exp [(0/4)4/(/ + l)2] (/) • exp [(Q/4)4 ¦ ^/6]. (5.54)

Inspecting the expressions (51, 52, 54), we can see a posteriori, that our angular
momentum expansion of the regularized determinant converges, as expected by
construction.

For obtaining more quantitative answers, one has to use the computer to
calculate the Jost functions (45) and the regularizing exponent Kip., q) in (46").

Summary

In this chapter we first computed explicitly functional determinants in one
dimension of the kind

w(A) det[(H-A)(H0-A)-1],
where H0= -A and H= -A + q(x), with an arbitrary fourth-order potential q(x).

In (15) and (15') these determinants were connected to the transmission
coefficient of the corresponding Schroedinger operators.
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If q(x) is due to the fluctuations around a classical solution, then H + m2 has

inevitably n zero modes. In one dimension we were able to compute the determinants

with the zero mode omitted explicitly. There remained only elementary
integrals over [V(cp)]1/2, resp. [V"(cp)]1/2, for calculating S[<p] and B in (21).

In higher dimensions we first gave the angular momentum expansion in
arbitrary (complex) dimensions n (27, 32). Again we worked out the "primed
determinant" by omitting the zero modes (36). Knowledge of the asymptotics of
the bounce solution determines B. We remained with the computation of the Jost
functions for all angular momenta and for momentum fc -im.

At this point, we clearly also had to renormalize the resulting formal
expressions. The study of the renormalization of the effective potential enabled us
to give a prescription for renormalizing the determinants:

The renormalized determinants are given by the same expressions as the
unrenormalized ones if the Jost functions are replaced by the regularized ones
(46).

Next we explicitly computed these regularized Jost functions for a 'thin wall
potential' which was simulated by the square well potential q-ô(R-r). The
renormalized determinant in this case is given by some combination of Bessel and
Hankel functions (48, 49).

Finally we explicitly proved the convergence of the angular momentum
expansion, by looking at the l/(angular momentum)-behaviour of the regularized
Jost functions. We did not 'work out' this infinite product for obtaining a

numerical answer. With our results this is, however, only a question of computer
time. Nevertheless, it would be valuable to study, for example, the dependence of
the renormalized determinants on Q, where Q:= mR2.

Our asymptotic expansion indicates that w(-im) may depend exponentially
on some power (depending on the dimension) of Q, i.e., may have a dramatic
effect on the tunnel probability (in the TW approximation S[cp] is of order
const • Rn).

There are indications [ASW], that these infrared problems are cured in
supersymmetric theories.

V.5. An application: computation of partition functions

Using Laplace transformation techniques, it is not hard to see, that the
difference of the partition functions with the Hamiltonians H, resp. H0, is

Z(ß)- Z0(ß) ì/2tt ¦ J dz exp (-ßz) • tr [R(z)- R0(z)], (5.55)

where C is a path which encloses both the spectrum of H and H0 counterclockwise.

(Compare the analogous result for the unitary time-evolution operator
U(t) exp [-itH] in Quantum Mechanics.) We used the difference of the partition
functions for justifying the following manipulations.

Using (5), we can write

Z(ß)-Z0(ß) l/2m • j dz exp (-ßx) • d ln w(z)/dz. (5.56)

If both, Z and Z0, exist then the partition function for a Hamiltonian with
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Figure 18
The path of integration C" in the complex fc-plane.

Im(K)

Rt(k)

Dirichlet boundary conditions on [0, L] is

Z(ß) mm • J dz exp (-ßz)d ln cp2(L, z)/dz (5.57)

where cp2(L, z) is defined in (2) (here we use z instead of A for the energy).
Setting z fc2, the transformed path of integration C" looks as sketched in Fig.
18. If spec (H)cR+ then we only have to integrate along R + ie (compare Fig.
18).

In this variables the integral reads

Z(ß) l/2iri • f dk exp (-ßfc2)d ln cp2(L, fc2)/dfc. (5.57)

Formula (57) is obvious if one remembers that cp2(L, z) is the characteristic
'polynom' of H - z and is also analytic in z. Since the spectrum is discrete and all
eigenvalues are simple, (57) yields Z(ß) Y.k exp[-ß£fc].

A nice feature of formula (56) is that we can immediately generalize it from
finite intervals to R. With (15) we conclude

Z(ß)-Z0(ß) 1/2-rri ¦ J dk exp (-ßfc2)d ln r_(k, q)/dk. (5.58)

Examples. Reflectionless soliton potential

These potentials play an important role in the inverse scattering-theory. They
are given by

V„(x) n(n + l)m2 ¦ cosh-2 (mx) (5.59)

and have n bound states fc, i ¦ jm for / 1,..., n. The reflection coefficient R
vanishes.

The piece of (58) around the zeros of r_ in the upper fc-plane gives the
expected discrete part £,exp[-ßE.] and the integral along R + ie gives the
contribution

AZmn(ß) - I erfc {m/(ß)1/2} ¦ exp (j2m2ß).

So we end up with

Z(ß)-Z0(ß) I erf {jm(ß)112} • exp (j2m2ß). (5.60)
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Let us now assume that Z — Z0 and that Z0 exist and Z-Z0«Z(). Then

- ß (F - Fo) ln Z/Z0 ln [ 1 + (Z - Z0)/Zo]

-1 (-)k/fc ¦ (Z - Zof/ZS ~ (Z - Z0)/Z0

and the difference of the free energies is again expressible in terms of functional
determinants. For example, we may think of H„ as a Hamiltonian with quadratic
or quartic potential and of q as a local disturbance.

Now let H0, and H have ground states tp0, resp. ip with energies E0, resp. E,
which are separated from the rest of the spectra.

Then

F-F0~-[exp(-ßE)-exp(-ßE0)]/[ßexp(-ßE0)]~E-Eo,
if ß(E-E0)«l.

Now we change the potential parameters in such a way, that ip ceases to be
the ground state of H and becomes a metastable state. We expect that E goes into
a Weisskopf-Wigner pole on the second sheet of the resolvent i.e. E—* E — iT/2.
Although AF is still real, the analytic continuation of it is approximatively

AF~E-E0-iT72.
Hence the decay width of the metastable state ip is given by

r~2im(F).
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