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SOME RECENT DEVELOPMENTS IN THE MEAN-FIELD DESCRIPTION

OF LOW-ENERGY NUCLEAR PHYSICS#

M. Brack

Institute of Theoretical Physics, University of Regensburg,

Regensburg, FRG

1 Introduction

In this talk I want to draw your attention to some

progress which has recently been made in the Hartree-Fock or mean-

field description of low-energy nuclear properties. I shall mainly
concentrate on static nuclear properties such as binding energies,
radii, charge distributions, deformation energies etc., but also
briefly mention some calculations of giant resonances and sub-barrier

fusion cross sections.
The theoretical description of the atomic nucleus represents

(for Afe 4) a doubly unsolvable problem because 1) of its
nature as a many-fermion system and 2 we do not know the exact
form of the basic nucleon-nucleon interaction. Therefore even the
appearingly most simple extrapolation seen from the many-body point
of view, namely that of infinite nuclear matter with constant
density, is still not completely understood. For finite nuclei, a

certain amount of modelling and parametrizing is unavoidable both on

the more phenomenological level, e.g. when interpreting the exper-

§ Main part of a plenary talk presented at the Spring
Meeting of the Swiss Physical Society at Fribourg, March 28/29,1985
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imental nuclear excitation spectra and data on various nuclear
reactions, and also on a more microscopical level where one attempts
to link nuclear properties with those of the basic nucleon-nucleon
interaction.

On the microscopic level, the most successful and

commonly used methods are based on the mean-field approach, i.e. on

the assumption of an average (and in general nonlocal, spin and

velocity dependent) potential in which the individual nucléons
move independently. This potential can either be parametrized phe-
nomenologically, as it was done when the shell model was invented,
or it can be derived selfconsistently from an effective nucleon-
nucleon interaction with the Hartree-Fock method. This interaction
is not the one between the free nucléons, but that which is valid
in the nuclear medium and thus incorporates many-body effects; it
may be thought of as a re-parametrized G-matrix resulting from a

Brückner-type calculation. In section 2 I shall review some of these
effective interactions and present some selective results of recent
Hartree-Fock calculations.

A second way to justify the mean-field approach from the
many-body theory, which is perhaps less familiar to some nuclear
physicists, is making use of the so-called Hohenberg-Kohn theorem.

It tells us that, at least as far as ground-state energies and

densities are concerned, the mean-field assumption is by no means
limited to the Hartree-Fock approximation but allows in principle to
incorporate any amount of exchange and many-body correlations in
a (mainly) local potential. I shall discuss the Hohenberg-Kohn
theorem and some of its consequences in section 3.

Section 4 is devoted to some semiclassical methods which

recently have been successfully used for mean-field calculations
with effective interactions. They constitute alternatives to the
Hartree-Fock approach which are not only much more economical, but
also in many ways more transparent, and allow to establish direct
connections between the effective nuclear forces and the parameters
of phenomenological models such as the liquid drop or the droplet
model.

Whereas all the methods mentioned so far are starting
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from the nonrelativistic Schrödinger equation, one may ask to which
extent relativistic effects play any role in the description of
low-energy nuclear phenomena. We shall see in section 5 that,
indeed, recent relativistic Brückner-Hartree-Fock calculations have

brought us one step closer to understanding the (extrapolated)
infinite nuclear matter saturation properties. I shall also present
in sect. 5 some recent relativistic mean-field calculations for
finite nuclei.

The selection presented here is necessarily a personal
one and is by no means thought to be exhaustive. I apologize with
all those colleagues .whose work I have not mentioned, either by
lack of time and space, or by sheer ignorance. I am grateful to
R. Brockmann, K. Goeke, P.G. Reinhard and their collaborators for
making figures available to me prior to publication. Some of the
newest results presented in sect. 4 have been obtained in agreeable

collaboration with J. Bartel.

2. Hartree-Fock calculations with phenomenological ef¬
fective forces

2.1. Effective nucleon-nucleon interactions
Due to the strong short-range repulsion of the free

nucleon-nucleon interaction, its direct use in Hartree-Fock (HF)

calculations is practically not possible. One way to solve this problem

is to use Brückner theory to sum the repulsive short-range
correlations into a G-matrix (see, e.g., refs. /1,2/). In terms of the
G-matrix, a perturbation expansion is performed with the HF approximation

as a starting point. This series can be brought to convergence

for infinite nuclear matter (see sect. 5).
For finite nuclei, a number of simplifying approximations

is necessary before a density-dependent effective nucleon-nucleon
interaction (in short: effective force) can be extracted from the
G-matrix and used in HF calculations /3/. Such calculations require
very few adjustable parameters - beside those of the phenomenological

nucleon-nucleon potential from which they usually start - but
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rather large numerical efforts /4/. For large-scale systematical
investigations and extensions like time-dependent HF(TDHF) or RPA

calculations, one therefore often replaces these density-dependent
effective G-matrices by phenomenological forces which are
parametrized in a mathematically convenient form.From the large variety
of effective forces used in HF calculations (see ref. /5/ for a

review), we shall pick here only a few examples and present some

recent results obtained with them.
The mathematically most simple and therefore also most

popular type of effective interactions was originally proposed by
SKYRME /6/ and used for the first time by VAUTHERIN and BRINK /7/
in HF calculations for finite nuclei. The Skyrme force has

mathematically a zero range, but some velocity dependent terms simulate
the finite range of the nuclear interaction. Due to this simple
form, the nuclear part of the HF energy can be written as an

integral over a local energy density

E^f^E^W^Wft/O^,V " JWI 4»yLft,«-i, J^ (1)

where c_, (r) is a simple algebraic function of the nucléon
densities p (r) and their gradients, the kinetic energy densities

->¦ 1 ¦*¦¦*¦
t (r) and the spin-orbit densities J (r), which are defined inq <2 a •+
terms of the single-particle wavefunctions ip?(r,s) and the
occupation numbers n° by

iSt'

(2)

(The index q denotes neutrons or protons, s and i are the spin and

spatial quantum numbers.) According to the number of exchange terms
and the form of density dependence included (see ref. /8/ for a

general formulation), a Skyrme force usually contains 6-10 free
parameters. These are fixed once and for all by a fit to some

observables (usually binding energies and radii of some spherical
nuclei, sometimes also spectroscopical data) and then kept constant
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in all applications and for all nuclei. Depending on the emphasis

put on different observables in these fits, different parameter
sets can of course be determined. The literature is unfortunately
too abundant in such Skyrme force parameter sets; more efforts
should go into broad-scale investigations, taking as many observables

into account as possible (see e.g. ref. /9/), rather than
into finding a new parameter set for each type of application.

Pairing correlations are usually included in the Skyrme-
HF calculations in the BCS approach at each iteration (see ref.
/10/), using one or two phenomenological constants G or A

although HF-Bogolyubov (HFB) calculations are in principle possible
with Skyrme forces in a restricted space, if the exchange terms
are suitably chosen /11/.

A finite-range effective force designed for HFB

calculations was developed by GOGNY /12/. The technical difficulties
connected with the nonlocal exchange terms were reduced here by

choosing a Gaussian form of the interaction and by expanding the
wavefunctions in a harmonic oscillator basis, so that most of the
integrals can be done analytically. A density-dependent and a

spin-orbit part with zero range are added like in the Skyrme force,
leading to a total of 12 parameters for the Gogny force. No

additional pairing parameters are needed since the pairing fields are
obtained selfconsistently from the Gogny force in the HFB

calculations

A hybrid force with a direct finite-range part of Yukawa

form and otherwise only zero-range terms was developed particularly
for time-dependent HF (TDMF) calculations by BONCHE et al. /13/.
It does not, however, allow for differences between neutrons and

protons (except for the presence of the Coulomb interaction) and

can therefore not be used for medium and heavy nuclei with N ^ Z.

In the reminder of this section, we shall discuss a few

illustrative results of HF (+ BCS) or HFB calculations obtained
with these effective forces.
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2 2 Static properties
Binding energies of stable spherical nuclei can be

reproduced both with the Gogny and with Skyrme forces with an accuracy

of ~ 1 MeV, i.e. the order of one part in a thousand for
medium and heavy nuclei. This is perhaps not too surprising since
the energies of nuclei like Ca or Pb are usually imposed when

determining the force parameters. But it is still a surprisingly
good achievement because, as we shall see, many other experimental
data can be well reproduced with the same set of ~'10 parameters.
For deformed nuclei, the errors usually run up into several MeV;

this is partially due to the presence of spurious rotational
energies in the HF results (because deformed Slater determinants
have no good total angular momentum), partially to truncation
effects connected with the finite basis in which the deformed
HF wavefunctions are expanded in most calculations (see refs.
/5, 10, 12/).

For ß-unstable nuclei, the discrepancy between experimental

and calculated binding energies increase for most standard
Skyrme forces as one goes away from the ß-stability line. This
shows that the asymmetry properties of these forces have not been

well determined yet. There is, however, room for doing so by

playing on the exchange parameters x1 and x_ which have been

chosen to be zero in many cases. An improvement in this direction
has been achieved by TONDEUR /14/.

The experimental charge r.m.s. radii can typically be

reproduced within less than ~ 1 %, although the radial charge
distributions are not always equally good. The Orsay family of
Skyrme forces /15/, e.g., tends to give too steep surfaces, which
is connected with the unrealistically large nuclear matter in-
compressibility coefficient K ~ 350 - 400 MeV of these forces. A

OO

particular problem with the charge distributions is that most HF

results exhibit much stronger shell fluctuations in the nuclear
interiour than the experimental ones. (We refer to CAMPI /16/ for
an extensive discussion of HF charge densities.) This discrepancy
has often been quoted as an evidence for correlations which go
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beyond the HF approximation and should be included in the
calculations before comparison is made to the experimental results.

As a counter-example we show in Fig. 1 the HF charge
densities of four spherical nuclei, obtained with a recent Skyrme

(fm'3) (fnT>)

208LO 075075 PbCa

050 050

025 025

6 R(fm) 0

?c Pc

(fm(fm n
58wi .075 - 90075 Zr

.050 050

025 -025

I 1 1

10 R.fm)

0 2 4 6 R.fm) 02468 R(fm)

Fig. 1. HF charge distributions (full lines) compared
with the experimental results (dots). From TONDEUR/14/.

force parametrization by TONDEUR /14/. (The same force gives very
good binding energies and charge r.m.s. radii for a sample of 11

48spherical nuclei including such ß-unstable isotopes as Ca and
1 32 Sn.) The excellent agreement with the experimental charge
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distributions should not be considered as accidental. In sect. 3

we shall see that all kinds of correlations can, indeed, be

already included in the HF densities obtained from phenomenologica
effective interactions. A recent systematic fit of Skyrme
parameters to experimental binding energies and charge form factors,

2including a detailed discussion of x values and variances of the
different parameters, can be found in ref. /17/.

The situation is different for the HF single-particle
(s.p.) energies which,only partially contain correlations. Parti-

208cularly in magic spherical nuclei like Pb, the coupling of the
s.p. states to collective vibrations has been estimated to shift
the s.p. energies quite appreciably (see, e.g., ref. /18/). Therefore

the fact that some Skyrme-HF calculations give s.p. spectra
of a quality comparable to that of Woods-Saxon or Nilsson shell-
model potentials (see ref. /5/)should be taken with some care.
(See also the discussion in sect. 3.)

The static HF method allows not only to calculate ground
state properties but also deformation energies, if suitable
constraints (i.e. external deformed fields) are applied /19/. An

important application of the constrained HF (CHF) method is the
calculation of fission barriers. These are until today still most

efficiently and most accurately calculated with the well-known
shell-correction method by STRUTINSKY /20/. (For a review on fissio
barrier calculations until 1979, see ref. /21/.) Since the HF

theory is the basic framework from which the Strutinsky method
can be derived (see below), one should expect it also to be able
to reproduce the experimental fission barriers. It was therefore
quite a puzzle that the first fission barriers obtained in CHF

240calculations for ' Pu, both with the Skyrme SIII force /22/ and

with Gogny's force /23/, were appreciably higher than the experimental

one (see also the discussion in ref. /21/).
This problem was resolved when a new Skyrme force,

labelled SkM*, was determined which reproduces the empirical
240

average fission barrier of Pu in a selfconsistent semiclassica]
calculation /24/ and at the same time gives excellent ground state
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/X'qi
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fc /ta^---"'
a X-^r \co

1 r—"^ 1 1

12 U 16

deformation (C)

240Fig. 2. Average fission barriers of Pu calculated
by the semiclassical density variational method with 4 Skyrme
forces: SIII/15/, Ska /26/, SkM* /24, 25/ and SkM /27/. The
cross indicates the empirical saddle point /28/. From BRACK et
al /24/.

properties of stable spherical nuclei /25/. As an illustration,
240

we show in Fig. 2 the average fission barriers of ' Pu obtained
in ref. /24/ with the density variational method, to be discussed
in sect. 4.2, with four different Skyrme forces. (See ref. /28/
for the definition of the elongation parameter c; c 1 corresponds

to the spherical shape.) The SkM* force was adjusted to
yield the empirical saddle point (shown by a cross). The fact
that all the forces shown here except SkM give comparably good

ground-state properties, yet barriers different by a factor ~ 2,
shows that the ground-state properties of the known stable nuclei
do not contain enough information for the extrapolation to the
large deformations occurring in the fission process. Thus,
similarly as it is practised in liquid drop /29/ or droplet model

fits /30/, the large-deformation behaviour of effective forces
must be imposed by including fission barriers along with the
ground-state properties in the fitting of their parameters.

BERGER and collaborators /31/ have recently readjusted
the parameters of the Gogny force such as to get a fission barrier

240of Pu close to the experimental one. In Fig. 3 we show their
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15050 100 200 250 300 <0,n>lb)20

240
Fig. 3. Fission barrier of Pu obtained in a HFB

calculation with a modified Gogny force. <Q2o> an(^ <Q30> are the
mass quadrupole and octopole moments. From BERGER et al. /31/.

result of a HFB calculation with simultaneous constraints on the
quadrupole and the octopole moments. (For details, see ref. /31/.)
The deformation energy surface seen in Fig. 3 has the topology
known from Strutinsky calculations (see, e.g., ref. /28/). In
particular, the octopole asymmetry of the second saddle point,
which is the static origin of the mass asymmetry in the fission
fragment distribution, is exhibited here for the first time in an

HF calculation.
Before closing this section, we mention briefly that HF

calculations with Skyrme forces have also allowed to test numerically

the basic assumptions of the Strutinsky shell-correction
method and to demonstrate that the latter is indeed an excellent
approximation to HF theory, in particular if the shell model and

the liquid drop model parameters are determined consistently from

the same effective interaction /32/.
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2.3 Some dynamic properties
The same or similar effective forces as mentioned above

have also been used in numerous dynamical calculations. We cannot
here discuss the multitude of dynamical nuclear processes which
can be described by the TDHF method or approximations thereof
We refer the interested reader to the proceedings of a recent
conference about TDHF, its approximations and extensions /33/.

As an example which fits into our above comparison of
various Skyrme forces, we mention a recent calculation of the sub-

1 fi 1 fibarrier fission cross section for the system 0- 0 using the
"quantised adiabatic TDHF" method by REINHARD et al. /34/. These

authors have shown that this cross section is extremely sensitive
to details of the effective force used. As one might expect for
the fusion process, a good description of the nuclear surface is
hereby crucial. In ref. /34/, a modified version of the BKN force
/13/ was determined by fits in particular to the surface regions
of the charge distributions in light nuclei and gave good agreement

between the calculated and the experimental fission cross
section. In a more recent calculation, different Skyrme forces
were also used /35/. We show the results in Fig. 4. What is shown

here is the so-called astrophysical S-factor, which is equal to
the fusion cross section divided by a geometrical factor depending
exponentially on the Coulomb barrier and thus the quantity mostly
sensitive to the nuclear structure, as a function of the cm.
energy of the O- 0 system. It is interesting to note the
performance of the three Skyrme forces, which is very similar to that

240seen in Fig. 2 for the fission barriers of J Pu. In particular
the fact that the force SkM*, which was adjusted to the fission
barrier and thus to the surface property of a very heavy nucleus,
gives the best results also for the fusion of very light nuclei,
is gratifying.

Some dynamical quantities which are sometimes included
in the fit of effective force parameters, are the energies of giant
nuclear resonances. These are well described in the HF plus RPA

approximation, but also with sum-rule or fluid-dynamical approaches.
(See ref. /36/ for a recent review on the theoretical description
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Fig. 4. S-factor for the sub-barrier fusion of 0 on

O, obtained in a quantized ATDHF calculation with various effective
forces. For the modified BKN force and the experimental

results, see ref. /34/; the three Skyrme forces are as in Fig. 2.
(Courtesy of K. GOEKE et al. /35/.)

of giant resonances.) The latter are particularly simple and allow
systematical investigations with different forces. The energy of
the breathing mode or giant monopole resonance (GMR) plays a

special role because it depends sensitively on the incompressibi-
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lity K which is easily determined from a given effective inter-OO

action. Detailed investigations /37, 38/ showed that forces with
K £ 300 MeV can hardly give the correct GMR energies of finite
nuclei; the most probable values are in the range 200 MeV ;$ K <

OO

< 250 MeV. This rules out a series of older Skyrme forces with
K £ 350 MeV /15/. (Note that SkM* has K =216 MeV and the Gogny

OO CO

D1 force has K 228 MeV.)
oo

The fact that a certain amount of RPA-like correlations
is most likely already contained in the HF ground states (see the
discussions in sects. 2.2 and 3), raises a question of possible
double-counting when calculating RPA excitation energies on top of
HF results. This problem was discussed recently in ref. /39/, where

the RPA-correlations were calculated in an approximate way and

added to the HF energies before re-fitting the parameters of
the Skyrme force (see also ref. /17/).

3. The Hohenberg-Kohn theorem and its relevance to
nuclear physics

HOHENBERG and KOHN /40/ proved in 1964 the following
theorem: Given N interacting electons in a local spin-independent

-?
external potential V(r). The Hamiltonian is

H T + Ìv(rc-) + iZ **
; (3)i-Tj »?c-*V •

A A

<•. _ t<j ' ' i ~ ' S

If the ground-state, given by the Schrödinger equation

(W. «M>0, (4)

is non-degenerate, then the exact energy E can be written as a

universal functional of the local ground-state (g.s.) density

E„« [dV£[£(?)] E [p.i, (5)

where the latter is defined by
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p.(rt«[a\f*Vf... [à\ Mr.tJ,. - O \x. <«>

The functional E[p] is independent of V(r) and is such that it
takes its variational minimum for n with the value E

po o
This theorem looks rather surprising since it allows in

principle to calculate the exact g.s. energy, including exchange
and correlation contributions, from the local density by a simple
variational procedure. However, the exact functional E[p] is not
known and in practice one has to find approximate functionals with
the help of soluble cases or model calculations. A very useful
application of the Hohenberg-Kohn (HK) theorem has been formulated

•Ar

by KOHN and SHAM /41/: Assume that p (r) is the g.s. density of
a non-interacting electron system in some external potential
V(r) (i.e. so-called non-interacting V-representability). Then we

¦+ -»
can write p (r) in terms of some s.p. wavefunctions ip.(r) as ino 1

eq. (2) (with occupation numbers 1 or 0), and the kinetic energy
T [p ], which according to the HK theorem also is a unique
functional, is just Ti /2m times the integral over the density
T(r) in eq. (2). We then rewrite the total energy of the
interacting system as

where F[p ] now contains not only the total potential energy
including exchange, but also the correlated part of the kinetic
energy. Performing the variation of E[p ] not with respect to p

o o
but with respect to the auxiliary functions ip., leads to a Hartree
like equation:

(8)Î-^A-Vtp.tf)]] ip.(r)« Ei^lr).

The local potential V(r) V[p (r)] is hereby the variational
derivative of F[p ]:

Vtf.l- j^Ftp.l.
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correlations whose contributions to the energy functional
take the form of powers and gradients of P, since several such

terms are present in the Skyrme functional eq. (1) with adjustable
parameters. When fitting these parameters to the experimental binding

energies and densities, we cannot tell a priori how much comes

from the HF part and how much from the correlations. The Gogny

force /12/ leaves perhaps less room for such correlations since it
contains only one density-dependent term with one adjustable
parameter in the energy integral.

2. We can- go one step further than the Kohn-Sham theory
and try also to find local density functionals for the kinetic
and the spin-orbit energies - they, too, must exist due to the
HK theorem. The shell effects make it very difficult to determine
the exact functional T [p]. However, if one is interested in the
average kinetic energy of a nucleus - i.e. if one neglects the
shell effects - the corresponding functional for the average
kinetic energy T [p] (and, similarly, the spin-orbit energy) can
be determined rather accurately in a semiclassical model (see sect.
4.1). Thus, the HK theorem allows to calculate the average binding
energies and densities of nuclei using the density variational
method. We shall see examples of such calculations in sect. 4.2.
The inclusion of the shell effects after the variation of the
average energy by means of the Strutinsky method has been shown

numerically /43/ to lead to an excellent approximation to a full
HF calculation. A particularly interesting case is a system of
Fermions at finite temperature. If the temperature is high enough

(in the nuclear case, kT ^ 3 MeV, which can be realized
experimentally) the shell effects are washed out due to the broadening
of the Fermi surface. In this case the semiclassical functional
T [p] - which depends explicitly on the temperature - becomes

s
practically exact, as we shall see in the next section.

4. Semiclassical mean field calculations

Since the very first years of nuclear physics, density
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variational calculations have been used to calculate the average
energies of nuclei. BETHE and WEIZSÄCKER developed in this way
the semi-empirical mass formila /44/ using the Thomas-Fermi (TF)

model /45/. More sophisticated energy density functionals were
developed along with the Brückner theory /46/. A review of
density variational calculations up to ~ 1972 is found in ref. /47/.
In most of these calculations, the kinetic energy functional was

approximated by the familiar TF relation

TTFl^ *?" *.|fart\ (10)

which is correct for an infinite Fermion system but does not take
account of the density variation in the nuclear surface.

Over the last ~ 15 years, two main developments have

allowed to refine appreciably the density variational calculations
of static nuclear properties: 1. the development of the Skyrme

type effective nuclear forces sketched in sect. 2.1, for which
the energy is already a local functional of the densities p,i and

J eq. (2), and 2. the refinement of the so-called extended Thomas-

Fermi (ETF) model, which we shall briefly discuss in the following
section, and which allows to determine the functionals x[p] and

J[p] for the average densities.

4.1 The extended Thomas-Fermi (ETF) model

Systematic corrections to the TF functional x p[p]
eq. (10), which take variations of the density into account, can
be obtained from a semiclassical expansion of the density matrix
proposed originally by WIGNER and KIRKWOOD /48/, used in atomic
physics e.g. for calculating virial coefficients /49/, and
re-discovered in the context of nuclear physics only more recently /50/.
(An independent alternative method was developed by KIRZHNITS /51/.)
The resulting functional for the total kinetic energy for non-
interacting Fermions in a local potential is /52, 53/
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x[l(hy - 2r(f)X a 2ï(f)']}
A phenomenological gradient correction of the same form as the
second term in eq. (11) was proposed by WEIZSÄCKER /44/, although
with a different coefficient which subsequently was discussed in
the literature (see, e.g., ref. /54/). Corrections to T [p] due

to the spin-orbit potential and the variable effective mass in
the Skyrme-HF-Hamiltonian, as well as a corresponding functional
for the spin-orbit energy, have also been derived from the ETF

model /53, 55/.
A formal difficulty of the ETF model was for a long time

the fact that its expressions and thus also the functional eq. (11

could only be proved inside the classically allowed region defined
for a given potential by V(r)< A where À is the Fermi energy.
The functional eq. (11) was nevertheless used in the whole space,
assuming that it could be analytically continued to the classically

forbidden region. Only very recently, we have proved
rigorously /56/ that it holds also outside the classical turning
points, i.e. in the tail region of the density where the Fermions
are tunnelling into the walls of the potential, by taking a suitable

T -*¦ 0 limit from the extension of the ETF model to finite
temperatures T (see also sect. 6 of ref. 24 for a detailed
discussion)

The functional eq. (11) has been tested with Strutinsky-
averaged quantum-mechanical densities for various potentials in
refs. /53, 57/. It was shown to reproduce the exact average kinetic

energy to within less than one part in a thousand. The use of
the numerical Strutinsky averaging method /20/ for the elimination
of the shell effects is consistent with the semiclassical ETF

model, as shown explicitly in several examples /50, 58/.
The ETF model has recently been generalized for Fermion

systems at finite temperature T /56, 59/. (The corresponding
generalization of the HK theorem also exists /60/.) The functional
T [p] looks more complicated for T > 0 than eq. (11) and depends

explicitly on the temperature T; a corresponding functional S [p]
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Fig. 5. Kinetic energy of 70 nucléons in an axially
deformed harmonic oscillator potential at a temperature of kT

5 MeV. q axis ratio. Eqm (solid line): exact quantum-mechanical
result. Dashed lines: semiclassical results using the ETF functional

Ts[p] at various orders (see text). From BARTEL et al. /59/.

for the entropy with gradient corrections has also been derived.
The knowledge of these functionals allows to extend the density
variational calculations to systems at finite temperatures (see

sect.4.2 for some results). These functionals have been tested in
ref. /59/ with exact quantum-mechanical densities p (r) defined as

in eq. (2) with Fermi occupation numbers n.. As an example, we

show in Fig. 5 the kinetic energy of 70 nucléons at a temperature
of 5 MeV in an axially deformed harmonic oscillator potential as a
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function of the axis ratio q. The solid line shows the exact
quantum-mechanical kinetic energy. The dashed lines are the results
obtained via the ETF functional in terms of the exact density p(r).
Three approximations are shown: taking only the lowest order (TF)

term in the functional T [p], adding the Weizsäcker-type correction

(E + E_) and adding all gradient corrections up to fourth
order (as in eq. (11) for T=0). We see that in this latter case
the ETF functional reproduces the exact kinetic energy with an

accuracy of ~ 10 Similar results were obtained in ref. /59/ for
the entropy. This is perhaps the first time that the exact kinetic
energy and entropy of a finite Fermion system have been calculated
from the local density alone; it constitutes a nice - and by no

means trivial! - example for the Hohenberg-Kohn theorem.

4.2. Results of density variational calculations
Many density variational calculations for average nuclear

properties have been performed in the last years using Skyrme

type forces and the ETF functionals. We refer the interested reader

to a recent review article /24/ and the literature quoted
therein. As an illustration we show in Fig. 6 a comparison of the
nucléon densities obtained for two spherical nuclei, both
microscopically by the HF method and semiclassically by the ETF variational

method. Apart from the shell fluctuations in the HF densities,

the agreement between the two approaches is excellent, in
particular in the nuclear surface region. The higher-order gradient

corrections in the functional eq. (11) were hereby essential
to obtain the good agreement in the tail regions.

An example of a semiclassical fission barrier calculation
has already been shown in Fig. 2. Needless to say that such a

semiclassical calculation for a deformed nucleus is faster by 2 to
3 orders of magnitude than a constrained HF calculation. Thus,
even if one HF iteration must be added at the end in order to
recover the shell effects, the density variational method constitutes

a very economical tool for systematical calculations of masses

or deformation energies and for searches of new force parametri-
sations, in particular when including barriers.
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Fig, 6. Neutron and proton densities of Pb and Ca,
obtained with the Skyrme force SkM* in HF (solid lines) and density

variational ETF calculations (dashed lines). The corresponding
r.m.s. radii agree within less than one permille. From BRACK et
al. /24/.

The variational ETF method becomes particularly gratifying

for systems at finite temperatures, where the shell effects
disappear and the ETF functionals become exact, as demonstrated

2nflabove. To demontrate this, we show in Fig. 7 the entropy of Pb

versus its excitation energy E* E(T) - E(O), calculated with the
Skyrme SIII force. The solid line is the result of an earlier HF

calculation at T>0 /61/, the dashed line that of the semiclassical
variational calculation with the T>0 (TETF) functionals /56/. Above

an excitation energy E* of ~ 100 MeV, which corresponds to kT « 2.5
MeV, the shell effects are washed out and the two curves perfectly
agree. In that region, the relations of the so-called shifted Fermi

gas model /62/ are seen to be nicely fulfilled /56/:

S~2./c.0(E*+AEo)
}

&*~ aoT2-AET0 (12)
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CUD
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i i
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E*+AEn

300

208Fig. 7. Entropy versus excitation energy for Pb,
calculated with Skyrme SUI force in the HF (solid line) the variational

TETF (dashed line) and the so-called low-temperature
approximation (dashed-dotted line). (Results taken from refs. /56,61/.)

where a is the level density parameter and AE is the ground-stateo -I tr 0 7>

energy shell-correction (which is ~ -18 MeV for the HF and zero for
the TETF case). Also shown in Fig. 7 is the (rather bad) result
obtained in the so-called low-temperature expansion of the TETF

functionals (see ref. /24/). In ref. /56/ we showed also that the
208

proton and neutron r.m.s. radii of Pb obtained in the HF and the
TETF calculations agree within less than two permilles over the
whole range of excitations energies O < E* < 300 MeV.

Such variational calculations of "hot" nuclear systems
may be useful in the near future both in heavy-ion physics, where

highly excited compound systems can be encountered, and in
astrophysics, where the equation of state of hot nuclear matter can play



Vol. 58, 1985 Mean-field description of low-energy nuclear physics 737

a crucial role in the evolution of supernovae (see e.g. ref./63/
and the literature quoted therein).

Another useful application of the density variational
method consists in a so-called leptodermous expansion of the nuclear

densities, which allows to establish direct relations between
the effective nucleon-nucleon force and the liquid-drop /29/ or
droplet model /30/. In particular, the droplet model relations can
be tested and possible improvements can be derived (see esp. sect.
5 of ref. /24/). With this method it has also become possible to
study the temperature dependence of liquid drop (or droplet model)
parameters /64, 24/ which is of interest in the astrophysical context

/65/ and allows to estimate the effect of the temperature on

the fission barriers /66/. (The latter can, of course, also be

calculated directly in finite-temperature variational calculations
/24, 56/.) In ref. /59/, the surface and curvature energy coefficients

have been calculated as functions of the temperature by

solving exactly the (nonlinear, 4th order) Euler variational
equation for the semi-infinite nuclear matter profile.

We finally mention that energies and sum rules for nuclear

giant resonances have also been calculated using semiclassical
(or "fluid-dynamical") methods, both for T 0 /38, 67, 68/

and for T > 0 /69/, and lead practically to the same results as
RPA calculations.

4.3 Partial resummation techniques
Another type of semiclassical mean-field calculation

which does not make use of density functionals, but is closely
related, has successfully been realized by BARTEL and VALLIERES

/70/. It relies on a method originally proposed by BHADURI /71/
and then further developed in ref. /72/. Here the semiclassical
Wigner-Kirkwood expansion /48/ is partially resummed to all orders
in "fi, neglecting only higher than first (or second) derivatives of
the potential V(r). In this way, semiclassical densities p(r) and

t(r) can be obtained directly in terms of V(r) and its lowest
derivatives; no turning point problems are encountered, in
contrast to the original -R-expansion /48-50/. Densities and potentials
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can then be iterated like in a HF calculation, but without use of
wave functions, until convergence is reached /70/. The results of
this procedure /73/ are very similar to those of density variational

calculations; in fact, the two methods confirm each other
quantitatively.

A similar resummation procedure was also applied to the
Coulomb case; it allows to calculate atomic binding energies and

electron densities in a parameter-free way and yields results very
close to HF results /7.4/.

Relativistic calculations

5.1 The nuclear saturation problem
We have already in the introduction mentioned the probler

of the saturation properties of infinite nuclear matter. Although
this is a hypothetical system, we know from extrapolations of the
experimentally known saturation properties of finite nuclei, that
symmetric, uncharged infinite nuclear matter should have a binding
energy per particle of (E/A) -a - 15.8 MeV and a density of p ^
ca 0.16 fm corresponding to a Fermi momentum k a 1,3 fi These

values could so far not be reproduced in conventional non-relativistic

many-body calculations using realistic nucleon-nucleon
(N-N) potentials. Brückner theory can be brouqht to convergence in
the so-called hole-line expansion /75/, but it results either in
too high densities or in too low binding energies. This is illustrated

in Fig. 8, where (E/A) is plotted versus k_ for symmetricoo £

infinite nuclear matter. The dashed lines are saturation curves
obtained in a standard non-relativistic Brückner-HF calculation
using three different N-N potentials (A,B,C) which give equally
good fits to experimental phase shifts of N-N scattering /76/. The

locus of the saturation points is roughly a straight line, often
called the Coester line /75/, which clearly bypasses the empirical
saturation point (lying in the squared area in Fig. 8) This line
is found in all non-relativistic calculations: whether one include
higher-order diagrams in the hole-line expansion /75/ or internal
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Fig. 8. Binding energy per nucléon (E/A) versus Fermi
momentum kF of symmetric infinite nuclear matter. Dashed lines:
nonrelativistic, solid lines: relativistic Brückner-HF calculations.
A, B, C corresponds to different N-N potentials used. The empirical
values lie in the squared area. (Courtesy of BROCKMANN /76/.)

degrees of freedom of the nucléons /77/, whether one uses
phenomenological N-N potentials /78/ or these derived from meson-exchange

theory /79/ - the results always lie more or less exactly on

the same Coester line. Also more recent many-body theories (different
from the Brückner approach) confirm these results /80/. (in

finite nuclei, similar pictures as in Fig. 8 are found if one plots
E/A versus the total r.m.s. radius.) Note that this problem does,
of course, not exist in HF calculations with phenomenological effective

N-N interactions which are adjusted to the experimental saturation

properties.
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Recent relativistic Brückner-HF calculations /81, 82/
have shown that the Coester line is moved in the right direction
if the small components of the nucléon wavefunctions are taken
into account. BROCKMANN and MACHLEIDT /82/ were the first to
reproduce the empirical saturation point in a fully selfconsistent
way using a N-N potential that fits the experimental phase shifts.
Hereby the selfconsistent inclusion of the medium corrections
(expressed in terms of the nucléon self-energy) in the small
components of the Dirac spinors was crucial. It leads to an additional

repulsion which shifts the Coester line to the empirical
saturation point, as shown in Fig. 8. There remains to be shown that
the higher-order diagrams (beyond HF) don't spoil this result.
Still, it represents an important step forwards for the
understanding of one of the most fundamental problems of the nuclear
many-body theory.

5.2 Relativistic mean-field calculations for finite
nuclei
In this final section, we shall very briefly mention

some recent relativistic mean-field calculations for finite nuclei
starting from phenomenological Lagrangians. One of their strongest
motivations is the following. The above-mentioned relativistic
effects are renormalized into the phenomenological effective
forces discussed in sect. 2, which can successfully be used in
non-relativistic HF calculations. However, these effective forces
all contain one ingredient of clearly relativistic origin, namely
the spin-orbit interaction which is, in fact, their least well-
defined ingredient. This becomes a sincere handicap e.g. in the
extrapolation to the so-called superheavy nuclei whose stability
against fission depends most crucially on the strength of the
spin-orbit interaction /83/.

In a relativistic mean-field calculation, the spin-orbit
potential arises naturally along with the central potential and

requires no extra free parameter. That such calculations are
feasible /84/ with the present techniques and computers, is
demonstrated in Fig. 9. Similar calculations have earlier been used

to calculate the spin-orbit splitting in light hypernuclei /85/.
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Fig. 9. Binding energy per nucléon for finite nuclei,
obtained in a relativistic Hartree calculation with an effective
Lagrangian (squares connected by dotted lines). The circles
(connected by solid lines) show the experimental results. (Courtesy of
P.G. REINHARD et al. /85/.)
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