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Resonances defined by modified dilations

By H. L. Cycon1)

Technische Universität Berlin, Fachbereich Mathematik, 1000 Berlin 12, BRD

(26. II. 1985)

Abstract. We construct a method generalizing the usual complex scaling method of Aguilar,
Balslev and Combes to describe resonances of Schrödinger operators. The method is based on a
modified dilation in the momentum space and allows to treat multicenter potentials and potentials with
compact support. We give also some assertions on the locations of resonances.

1. Introduction

The study of resonances in Schrödinger operator theory has been an object of
growing interest in the last 10 years. There are several mathematical concepts but
there is no general theory which can describe all physical phenomena considered
as resonances.

One very powerful method is the complex scaling which was introduced by
Aguilar, Balslev and Combes [1, 4]. It was extended in many directions (see [7]
for a survey).

This method, while very fruitful, works only for the restricted class of dilation
analytic potentials which are essentially functions having as radial part the
restriction of an analytic function to the positive real axis.

This class clearly excludes potentials with compact support and potentials
with multicenter singularities (multicenter Coulomb potentials for example) for
which one expects resonances to exist. There are several methods trying to
overcome these restrictions (see [2, 3, 15] for example). We mention especially a
recent paper of Sigal [14].

We propose here a method which has some similarities with that of Sigal but
which is simpler and has therefore, we believe, a wider range of applications. It is
a further development of ideas discussed in [9] which go back to Mourre [12], see
also [8]. As the usual complex scaling, our method is based essentially on a
transformation (a modified dilation) cf>e of the underlying (momentum) space IR"

depending on a real parameter @. This induces a family of unitary maps Ue in
L2(1R") which give rise to family Hid) of operators unitary equivalent to the
considered Schrödinger operator H H„+ V.

In contrast to usual complex scaling and also to Sigal's method we do not
need a group structure of 0i-»l/6 which gives a considerable larger freedom for
the choice of cf>e. If chosen suitably ®-+<pe can be continued (component-wise)
analytically into a complex domain. The complex discrete eigenvalues of the
associated 'deformed' Hamiltonian H(0) (also suitable continued) are then called
resonances of H.
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We discuss in this paper mainly an explicit choice of cpe which has, if
continued, bounded imaginary part. This is the technical reason why we can
consider potentials with compact support or translated singularities.

Moreover this explicit choice of <_/>„ has the advantage that one can calculate
the essential spectrum of the deformed Hamiltonian explicitely. In the case we
discuss here it is a (slightly deformed) lower branch of a parabola. The explicit
knowledge of H(0) allows also to make some assertions as to the location of the
resonances. We note, however, that the method is not restricted to this special
choice of cpe. Any local distortion of the essential spectrum can be obtained by a

suitable choice of 4>e. The paper is organized as follows.
In Section 2 we give a general theorem which allows to define resonances by

general deformations of the Hamiltonian. We then turn to a concrete deformation
and discuss some of its properties. Furthermore we introduce a class of potentials
which can be treated by this method, and give some examples.

In Section 3 we prove some estimates on the resolvent of the deformed
Hamiltonian which imply that resonances do not occur in a certain region near the
reals axis. These results are in accordance to one-dimensional results of Nussen-
zveig [13].

We use throughout the paper the notations Dt:= L2(R") and Dt2'-={cpe
Dt | lDacp e Dt, |a|<2}, for the Sobolev space.

2. The definition of resonances

We begin with a theorem which describes the general situation of complex
scaling. This is an extension of an idea of Combes [5].

Theorem 1. Let {!/„} del a family of unitary mappings, I being an open
interval in U. Let H be a self-adjoint operator in the Hilbert space Dt and denote
Hi6):=UBHU-\

Assume that there is a complex neighbourhood G of I and a dense set A<=Dt
such that 6—--Ueil/, U-'ip, for ipeA has analytic continuations and that Hid) has
an analytic continuation of type (A) iwhich we also denote by H(ft)) into G.

Assume furthermore that for 6 e G\I aess (H(0)) is a one-dimensional manifold
in C* := {z eC | Re z >0, Im z s()}. Denote by S0 the union of connected components

of C+ \cress(H(ö)) having an open intersection with U+. Then
(i) for any 6eG\I; cp, ip e A z—* icp, iH - z)~{ip) has a meromorphic continuation

from C++ : {z eC | Re z >0, Im z>0} through the positive real axis into Se,

which is given by

feiz):=(Uë<t>,(HiO)-z) 'LU), zeS,e-

(ii) this continuation is unique in the following sense. Let dy, 62eG\I, 0, ^ 02
then feiz) feiz) for all zeSetDS9,.

Remark. l(ii) implies that the poles of /e(z) (which are of finite order) are
independent of 0 as long as z stays away from o-css(H(0)).

2. Since (H(0) —z)~' is analytic in Se except of discrete eigenvalues of H(0)
(see [10, p. 176]), finite order poles of f„ can only occur at discrete eigenvalues of
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Hid). If in addition {Ueip/ipe A} is dense in Dt, discrete eigenvalues give rise to
arbitrary values of |/e(z)| if ip, cp are suitably chosen.

This motivates the definition

Definition. We call the discrete non-real eigenvalues of H(0) in Se the
resonances of H.

Proof (of Theorem 1). Let 8eG; cp,i(/eA and consider /e(z) as defined
above. Assume first that zeC++. As long as del Ue is unitary and

fiz) := icp, (taff - z)~'t/>) coincides with /e(z). By analyticity in 0 this is still true for
deG\I. But since z-+iH(d)- z)-1 is meromorphic in zeSe, /„(•) is obviously a

meromorphic continuation of /(•) into S„. The uniqueness of /e(-) is an obvious
consequence of the uniqueness theorem for analytic functions on connected sets
in C, since it is unique for zeC++. D

The simplest example for Theorem 1 is the usual complex scaling (see [1] or
[4]) for Schrödinger operators. In this case we have H H0+ V in Dt := L2iU")
where V is a dilation analytic potential (see [18] for definition). A is the set of
analytic vectors in Dt, i.e. the vectors of which Ue4>ix) := e'"/2)fl(eex), 0 eR has an
analytic continuation in 0 into a strip G in C around the real axis. Then

aessiH id)) e-26U+

and Se conv hull {U+, o-css(H(0))}\<Tess(H(0)).
Theorem 1 covers also all other cases where resonances are defined by any

kind of complex scaling (see [7, Chapter 8]). But in contrast to these constructions
no group property of Ue for deU is needed here.

We will now introduce a special family of 'deformations' leading to resonance
theory for a large class of potentials. It has some similarities with Sigals [14]
construction but we need considerably less structure here.

Let deU. Consider the map (in momentum space) </>„ :[R"—>IR"

t^cpe («):=*--dhii
where

fi(£):
,g(l«l)
6

III
and

rlïl
g(lfl):- c0 X is) ds

with *e C", xa0, x(0)= 1, *(s) 0 for s>s0, s0>0 suitably and

c..:=M x(s)ds| •

This cpe induces a unitary map in L2(Un).

Ue4ri0:=[Ie(0Yn>r>(<Pe(t)), feR", <peL2iMn)
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where /e((): det [D<£e(()] is the Jacobian of cf>„. Note that

/e(() det [(1 - 0g(())l - 0^ (1,1,)]
III

for g(() ||| ' g(|||) and where ((; (;) denotes the matrix

'«i I. li • I2

I2 ' li I2 ' I2

Note also that g(() and g'(!) • |(| are bounded uniformly in (eR". Thus

/«(() i + ePrie)

where P4(0) is a polynomial of m-1-th order in 0 with coefficients bounded
uniformly in (eR". This implies that

Ie(()>() for any (eR"
and therefore that Ue is a well-defined unitary operator in L3(Rn) as long as

0e/:=(-0(„ 0„), 0„>O suitably.

Remark. Note that <pe is no flow in R" (there is no group property in 0).
Thus the family of {Ue}, del has not group structure.

Now consider the dense set

A:={^eL2(R")|^eCÔ(R")}
where denotes the inverse Fouriertransformation. Note that ipeA can be
analytically continued into C" by the Paley-Wiener theorem. Therefore for ipe A
Uedj and l/eV can easily extended into 0e<\ where

<_V {zecllz|:£0o}.
Before wc prove the analyticity of these extensions wc give some useful properties
of the map cpe. We denote by |-| the usual norm in R" and C" respectively, i.e.

ki-(£«?)
1/2

for (eR"

and |z| (|Rez|2 + |Imz|2)1/2, for zeC".

Lemma 2. Let deGe„ and cpe as above. Then there exist constants c,,c2>0
such that

(i) Cl|(|<|<M()|<c2|(|,(eR"
(ii) cJ(7-(2|e|<M(i)-<Ml2)|Ec2|(,--(2| (,,(2eR".
(iii) Image <pe(èy)- Image cpei£2) çz A„, (,,(2eR" where

Ae := {z eC" I |Im z|âmin (c |Re z\,c |Im 0|)}

for suitable c, c > 0.
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Proof, (i) follows by inspection, i.e. since

|cV()| |((i-0g(())|
we have

I4>e(()|<|(|(l + |0||g(()|)

and

|<M()|>|(|(i-|0||g(()|)

which gives (i) for |0| small enough since g(() is uniformly bounded.
(ii) Note that

I<MI.)-<MI2)-(I,-|2)I |0|IMI,)-M(2)|.

Since |ri(()| is uniformly bounded in (eR" and has-a finite derivative, there is a

c>0 such that

|<M!,) - *•(&) - (Ii - l2)l ^ |0| c |(, - (2|

(iii) Since ri(-) has a bounded derivative we have for a suitable c,

IMW-Mfe^Cala-feJ + ota-feJ for 1^-feHO.
Furthermore |h(()|gc2.

Thus for d e GBo

4>e((1)-^e(l2) li-|2+(Re0)(h((1)-'i(l2))-KlmÖ)(h((1)-ri((2))
and for any z e Image <£e - Image cpe we have

|Im z|taic |Re z| for a suitable c>0
and

|Imz|Sc2|Im0|.
This implies (iii). D

We remark that it is obvious that for (eR" the map from Ge„ into C"

0>-><£„(() is analytic

(in the sense that each component is analytic). This has a consequence that the
unitary operators Ue and U-1 for 0e /:= (-0O, 0O) have analytic continuations G6n

on A as we show in the following

Lemma 3. Let 4/e A and Ue, U-1 defined as above for del. Then there is a
0,>O such that

(i) Ueip and C/êV have analytic continuations into G0i: {z eC||z|a0,}
(ii) UeiA) is dense in Dt for deGe>

Proof, (i) We prove (i) only for Ue.

For U~i the proof is similar.
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Step 1. We first show that Ueip is locally (in 0) bounded. Then for (eR",
using integration by parts and that |Im (pe(<p)\-É\9\ • c for suitable c>0 we get

|UMt)\£|/i/2(l)l j|e'x*",êVU)|dx

-CN(1 + |g|)N-
for any NeW

and suitable CN>0; where R := diam (supp ip). Thus ||l/ei/»|| is bounded for 0 in a

compact set.

Step 2. We show that 0i-»(o5, Uei\i) is analytic for all epe A and 0 contained
in bounded subsets of Ce„- Note that the map d)i-*cp(£)UHip(i) is continuous in
(eR" and analytic in deG8u. Now consider

Fk(0): f d(<M()l/B.M(). for keiM.

then Fk(0) is analytic in 0 by Fubini and Cauchy's integral formula. Since Fk(0)
converges uniformly on compact subsets of G„it to F(0) :=(<£, Ueip), as fc—»oo, F(0)
is locally analytic. Step 1 and Step 2 now imply that Ueip is analytic in 0 e ©„ (see
[11, p. 365]).

(ii) Consider the bounded operator J in Dt, defined by:

(J-/r)(():=e~e: *«K(), (eR", t/Ve^, DiJ):=Dt,
where * denotes the convolution, and define for 0eC„n the operator Ve := L/e°J.
We show that V„ is bounded and analytic in Dt. Let ipeDt then

V9«M() | dxe-«p((, x)taii(x)

where

p(x,():=ei9^>'*J<'2(()e -"
and " is the inverse Fouriertransformation. Thus Ve is a pseudodifferential
operator which is bounded by the theorem of Calderon and Vaillancourt (see

Taylor [17, p. 347]), since the symbol p has bounded derivations in x and
Additionally one can show similar as in (i) above that Ve is bounded analytic in

Now consider the weighted Hilbert space

^i: {ta/reL2|e^*^(()eL2}
and denote the restriction of V8

Ve:=Vfl \Dty.

This is obviously also an analytic family of bounded operators from Dty into Dt.

Thus Ve and also V^ is continuous in 0 in the jeneralized sense (see [11, p. 366
and p. 206]), furthermore V* converges to V* (for 0^0) in the generalized
sense. Note that V* i. Since J:Dt^>Dtx has a bounded inverse this is also true
for V* and 0 in a suitable neighbourhood G^o, for 0„>O suitably [11. Theorem
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2.23, p. 206]. Thus V*, deG§a is injective and therefore we know that Ve has a
dense range in Dt. Since /(A) AçDty and since Ve:Dt-y—*Dt is bounded, we
have

V9(A)=lV/(A)=l/e(A)
is dense in for 0e©e„- Now choose 0,:=min{0o, 0O}. D

The next lemma shows why the above choice of cpe is useful for Schrödinger
operators. We first consider the 'free' Schrödinger operator in momentum space
and calculate its spectrum.

Lemma 4. Lef H0=(2 be the representation of the Laplacian in momentum
space and del. Then Ho(0):= t/eH()t/e' has a continuation which is analytic of
type (A) into deG8[ (which we denote also by Ho(0)). This continuation has in
momentum space the representation

Ho(0) (2+02g2(|(|)-20|(|g(|(|), (eR", 0e<?9„ (1)

and

(T(Ho(0)) a,«(Ho(0)) {zeC|z (2+02g2(|(|)--20|(|g(|(|),(eR"}

Proof. Let 0e/ and ipeA. Then for (eR".
Ho(0).M()=l/flHol/e'</,(()

[det (D</>e(!))]1/2«>e(!))2[det (D<pê '(<MI)))],/2'M4>o'(<Pe(!)))

(4>e(())2

(2+02g2(|(|)-20|(|g(|(|).
This expression has an obvious analytic continuation of type (A) in 6eGBi. Since
this is a multiplication operator in L2(R") the assertion on o-(Ho(0)) follows by the
spectral mapping theorem. D

Remark. If 0 iß, ß > 0 then o-(Ho(0)) is a line C+" which starts linearly at 0
with some angle (since gis)~ s for small s) and ends up to be the lower part of a

parabola (since g(s)= 1 for s>s„).

We introduce now a class of perturbations which leave the essential spectrum
invariant.

Definition. We call a symmetric operator V <£-analytic if
(i) V is H0-compact
(ii) The operator family V(0):= UeVUe ', 0e I:= (-0,, 0,) has an analytic

type (A) continuation into a neighbourhood Gv of J in C as a family of bounded
operators from Dt+2 to Dt.

Theorem 5. Assume that V is cp-analytic and consider the Schrödinger
operator H:= H0+V. Then

(i) H(0):= UeHUe[, 0e/:= (-0,, 0i) has an analytic continuation as a
family of type (A) into G:=GvnG6i iwhich we also denote by Hid)).

(ii) Let 0 e G then cres5(H(0)) <t(H(1(0)).
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Proo/. Since both, H„(0) and V(0) are analytic families of type (A) with
D(Ho(0))=^+2çD(V(0))for 0e©, (i) is obvious. Since/(0):= V(0)(Ho(0)+1) '

is compact for del and an analytic bounded operator-valued function in 0 e G, it
is compact for all 0eC (see [18, p. 126]). Thus V(0) is Ho(0)-compact for 0e©
and (ii) follows from a theorem of Sigal [15]. D

Corollary 6. Let V be ^-analytic, 0 iß, ß>0 and Hid) defined as above.
Then aess(H(d)) is a concave (parabola-shaped) line in C^~ and the discrete
eigenvalues of Hid) in S9 conv hull {Rv Uo-ra(H(0))}\(jra(H(Ô)) iwhich we call
resonances of H) are independent of 0 as long as they stay away from aessiHid)).
They coincide with the finite order poles of the continuation of icp, iH-z) ]ip) for
suitable cp,ipe A.

Proof. The Statement on eress(H(0)) follows from Lemma 4 and Theorem 5.

Clearly Ue and H fulfill the conditions of Theorem 1. Thus the singularities of (</>,

(H- z) 'i/O do not depend on 0. Furthermore, since {Uedj \ ipe A}, deG is dense
by Lemma 2(ii). Thus poles of icp, (H-z)~'t/r) occur at and only at discrete
eigenvalues of H(0) in Se. D

We give now a class of examples of <f>-analytic potentials.

Lemma 7 (Sigal's class [14]). Lef V be a real-valued H0-compact multiplication

operator in L2(R"), such that is Fouriertransformation V exists and has analytic
continuation into

A:={zeC"/|Imz|Sc1|Rez|(l + c2|Rez|ro'}

for Cy,c2>0 suitably and 0<asl, such that

|V(z)|<|W(Rez)|, zeA
where W is a suitable real-valued function with We L1(R")+ Lr(R") for r<
in/n-2) if n>2 and r<œ for n<2. Then V is <p-analytic.

Proof. We have only to show that UeVUe ' has bounded analytic continuation

as operator from Dt+2 to Dt := L2(R"). We work in momentum space. Denote
V(d):=UB^V^'iUe'. &:= Fourier transform. Then for i/reA and
._//:= (1/1+ (2)<Â, 0e/, (eR"

V(0),M()=l/flV*(l/eV)(()

L/e|v((-^(())/ni)->(î)di

|/y2(()v((f,e(()-cf,9(())/*/2(()^(()d(

By Lemma 2(iii) and the assumptions V(0)i/<(() is analytic in 0 in a suitable
neighbourhood of 0 pointwise for (eR" and by similar arguments as in Lemma 3

we can conclude that icp, V(0)t|/) is locally analytic for all cp e A. So we are left to
show that V(0)t/> is locally bounded (see [11, p. 365]). Denote h(() := (1 +|(|2)-1.
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Since

\v(d)h ¦ -Mois Jdf |C2(()I |VW()-<M())I H III |fc(*)l <HÎ)

<cJd(|W((-()||.i(()|<M()

c|Wl*|fc|-|*|«), fee,,,

thus by Young's and Holder's inequalities

||V(0)(H„+1) V||2<|

for s > n/2 and r < n/n - 2 if n > 2 or r < °c if « < 2. If W e L ' we can set s oo and

r= 1. Thus V(0)(H„+ 1) ' is bounded for all 0e©8]. This together with the local
weak analyticity above implies that 0—»Va(H()+l) ' is bounded analytic
operator-valued. D

Remark. If VeCofR"), N>n i.e. V is ZV-times continuous differentiable with
compact support then V(0) is a family of operators bounded uniformly in OeG, a
fact which eases the arguments in Lemma 7 above considerably.

To see this we use integrations by parts

| V(<M!)-<MÉ))| ||e-"«^«)-*.«MV(x) dx\

sCN(|<M£)-<MÏ)|) NeRc"taR" ||DNV|U for (,(eR"
where R: diam(supp V), CN>0 suitably

c0: sup|Im(<MI>-<MÎ))|
and

DNV:= Ya d"v-
le-l-SN

Since by Lemma 2(ii)

^«(O-^^r'-ScK-il '

we have

|V(^a(()-cf»9(())|<cN(|(-(|) N=:W((-()
where WeL'(R") for N>n. Thus by Young's inequality for any ifeL2(R")

||V(0)ta^||<||W*ta>||2<||W||,W2,i.e.

V(0) is a bounded operator with ||V(0)||<|

Example 1 (Multi-center Coulomb potentials). Let ni= 1, R. eR", j
I,. k and

k

V(x):= X U-RiT1, xeR".
/=i



978 H. L. Cycon H.P.A.

Then we have

V(()= t e"iRy-li)
/ i

for Vc(x): l/|x|. Thus (see [10, p. 187] for example)

Vc(() c0|(P ", c„>0 suitably, (eR".
This has an obvious analytic continuation into C"\{0| given by

in \\ n/2

Vt.(z):=<z„...,zn)-> I zf

Thus

IVfz^c^i^^^^ïlRez.l2)"
'"

<c|(|'" for zeA, c>0 suitably

where

A:={z eC"| |Im z|<min{c! |Re z\, c2}}; c,, c2>0 suitably.

The last estimate above holds since |Im z\ is bounded and Re z Thus if we set

W(():=c|(r".
WeL'(R") + L2(R"), for \<r<nln-2 and fulfills the conditions of Lemma 7.
(See also [14, Lemma 2.2].)

Example 2. Let m<2, VeL^R") with compact support. Then V(-) can be
continued to a function which is analytic everywhere in C" and

|V(z)|<eR|Im2|R"||V|U : W

for z e A, where

A: {zeC"||Imz|<min{c,|Rez|,c2}}
for c,,c2>0 suitably and R: diam(supp V). This means that V is in the class
discussed in Lemma 7.

Remark. The above example contains in particular 'double barrier' potentials
which is the typical case for so-called shape resonances to occur (see [6] for
example).

3. On the location of resonances

We will prove now some estimates on the 'deformed' resolvent of the
Schrödinger operator. They will imply that resonances do not occur in a certain
region near the real axis. Note that the imaginary part of the resonance can be
physically interpreted as the inverse of the life time of the resonance state of the
quantum mechanical system, described by the Schrödinger operator in question.
First we give an estimate for the spectrum of the free Hamiltonian.
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Lemma 8. Lef 0 iß, O<ß<0o, H„(0) H0(iß) defined as above and let
z À - it), À > 0, rj > 0 and denote by

S.0 := conu. hu// {R+, o-(H0(iß))}.

Then there exi'sf ß0e (0, ß) and A„>0 such that

||(H0(iß)-zr1||<c1A-1/2 (2)

for z A - it) e Sj0,. n {z e C | A > A0}

(c,>0 suitably) where Sißo is defined analogously.

Proof. Note that g(s)= 1 for s>s0. Now choose A > 2s0. By the representation
(1) given in Lemma 4 we have for zeSiß<], ßoe(0, (l/\/2)ß) and suitable c>()

||(H0(iß)-z)-1|| sup|((2-ß2g2(|(|)-/2ß|(|g(|(|)-z) '|

<csup|((2-ß2-2/ß|(|-A-IT)) -'|
ÉeR"
GS,

c sup[((2-ß2-A)2+(2ß|(|-T))2r
£eR"

Z--SiB„

-2 02<csup[((2-ß2-A)2+(2ß|(|-2ß0VA+ß2)2] ìrT

To estimate the term

F((,A):=[((2-ß2-A)2+(2ß|(| + 2ß0VÄTß2)2]-1'2

we consider two cases.

1. Case. Let (2-ß2-A >-^(A+ß2) then |(|>(1/>/2)Va + ß2 and we can
estimate

F((,A)<(v/2ßv/A+ß2-2ß0VA+ß2)-1

s[2^ß-ß0)vA+ß2]
<c,A-1/2

for Ci-. ±((llJ2)ß-ßX>Q-

2. Case. Let (2-ß2-A < -£(A + ß2)<0. Then |(2-ß2-A|>e(A +ß2) and
F((, A)<2(A+ß2)",<2A~1. Therefore we have

F((, A)<min{c,A~1/2, 2A"1}

<c,A-1/2

for A large enough which proves (2). D

Now we use this estimate to show an assertion on the location of resonances
for a special class of «^-analytic potentials.

Theorem 9. Let 0 iß, ß e (0, 0O). Let V Hx0'2-compact and assume that V(0)
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has a Hu2-bounded analytic continuation from (~0O, 0()) into G. Let

H(iß):=H{i(iß)+V(iß) and Slß

defined as above. Then for any ß0e (0, l/vvß) there is a A„>0 such that H has no
resonances in the set

S:=Sift,n{zeC |Rez>A()}.

Remark. Note that Vs fulfilling the conditions of Theorem 9 are «^-analytic
since H()/2-compact are also H0-compact.

Proof (of Theorem 9). Let ß, ß0 as above and z A - ir\ e Slß. Then we have
by the resolvent equation

(H(iß)-z)-' (H(iaß)-z) l[l-V(iß)(H0(iß)-z) >] ". (3)

The first factor on the RHS above is clearly analytic in z e Siß by the definition of
Si0. We will show that the second factor has a bounded inverse for z in the
desired region. By a similar estimate as in Lemma 8 we can see that

(H0+l)1/2(H0(iß)-z)-1 (4)

is a family of operators uniformly bounded in z e Sißa if Re z A > A t for suitable
A,X).

Considering the representation of (4) in momentum space we see that

((2-l)1/2((2-ß2g2(|(|)-2('ß|(|g(|(|)-z) l->0

as Rez A^>=c, zeSißo, pointwise for every (eR". Since the operator (4) is

bounded it follows by Lebesgue's dominated convergence theorem that

(Ho+l)1/2(Ho(iß)-z)"1^0 as Rez A-*x
in the strong sense uniformly for z e Sißii. Furthermore, since V(iß) is (H0+
Incompact we have that

||V(fß)(H0(iß)-z)-1||
||V(.ß)(H0+l) 1/2(Jf0+l)1/2(H0(iß)-z) l\\-*0 as Rez^x

as long as z e Sißv.

Therefore, for any ß()e (0, (I/v/2)ß) we can choose a A0> A, >s(l>0 such
that

||V(iß)(H0(iß)-z) 1||<50<L (S0 suitably)

for z e Slßiin{z e C | Re z a A0} : S. This implies that both factors in the RHS of
(3) have no singularities in S and this means that there are no resonances in this
region. D

Remark. (1) Note that the 'borderline' for the distance of the resonances to
the real axis (if Re z is large enough) is the lower branch of the parabola
aess(H(iß0)). This picture is in accordance with a one-dimensional result of
Nussenzveig [13, p. 219, ff].

(2) If we assume that VeC^(R") as in the remark after Lemma 7 we get
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some more detailed estimates since

||V(iß)||r£c1eR^R"||DNV|U
and

||(Hl)(/ß)-zr,||<c2A-1'2
we get

||V(.ß)(H„(.ß)-z) 1||<1

if and only if

icX"R" l|DNV||J2< A Re z. (5)

Thus the region where the resonances can occur grows at most like the L.H.S. of
(5) above.
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