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Abstract. We introduce the concept of 'KMS one-particle structure', in terms of which the
construction of a class of thermal states for linear Bose systems may be reduced to second
quantization. For such structures, we prove a uniqueness result which strengthens earlier work of
Rocca, Sirugue and Testard. We elucidate these structures further by introducing a certain doubling
procedure. The results here together with those in a companion paper on the purification of KMS
states are preparatory for a third paper about constructing linear quantum fields on black holes.

§1. Introduction

This paper settles some mathematical questions concerning thermal equilibrium

(i.e. KMS [1-4]) states on linear (i.e. 'quasi-free') Bose systems. While such
matters were much studied in the early '70's ([5-7], see also the early paper [8]),
it seems that some important things were left unsaid and the purpose of the
present work is to fill some of the gaps.

Our discussion centres around the concept, which we introduce, of 'KMS
one-particle structure' in terms of which the construction of a class of KMS states
for a large family of linear Bose systems may essentially be reduced to second
quantization. Our main result is a uniqueness result for these structures. This
strengthens (at the technical level) a part of some earlier work of Rocca, Sirugue
and Testard [7]). Finally, we explain how the structure of our quasi-free KMS
states is more fully revealed by a certain doubling procedure. This doubling
procedure will be discussed further in a more general context in a companion
paper [9]. Essential use will be made of both these papers in a third paper [10]
which concerns some aspects of quantum field theory in curved space-time related
to the Hawking effect, and which constituted the immediate motivation for the
present work.

* Research supported by the Schweizerischer Nationalfonds and by the Italian CNR-Gnafa
t Permanent address
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§2. Preliminaries

In this section, we establish our notation and also recall some basic facts
about the quantization of linear systems, emphasizing the structure of the ground
state representation. We also review some basic facts about the second quantization

process.

§2.1

A general linear dynamical system (D, a, ST(t)) consists of a linear phase-
space D equipped with a linear symplectic form a - together with a one-
parameter group 5"(t) of linear symplectic transformations on (D, a) describing
time evolution:

a(3-(t)®y,3-(t)<S>2) a(<i>y,<i>2) V<S>u<i>2eD (2.1)

In the algebraic approach to quantum field theory on such linear systems (see e.g.
[11]), one constructs the Weyl algebra W over (D, rx) generated by Weyl
operators W(<1>) satisfying

W(*1)W(*2) exp(-iff(*i,*2)/2)W(*1 + *2) (2.2)

(for further details, which we shall not however require here, see e.g. [12]) and
describes the quantum time-evolution bv an automorphism group a(t) fixed by

*(0W(*)=W(3"(t)*) (2.3)

Recall that to define a state on the Weyl algebra, it suffices to specify its
expectation values on the W(<ï>)'s.

§2.2.

We now discuss the construction of a ground state for such systems:
In the case that D were given as a complex Hilbert space Dt, ai-,-) arose as

2 Im (• | •). and Hit) arose as e~"h for some strictly positive1) one-particle Hamiltonian

h, a ground state would be defined by

«o(W(*)) exp(-è||*|&) (2.4)

and the corresponding ground state representation by the Fock representation,
(see §2.3 below). One may extend this procedure to systems which admit a

'ground one-particle structure' (K, %C, e"h).

Definition la. A ground one-particle structure (K, %€, e~"h) over (D, a, -7(f))
consists of a complex Hilbert space W, a map K:D —*%( and a strongly continuous

unitary group e~"h on "X s.t.

(i) K is real-linear and symplectic, i.e. satisfies

2 Im (K<Py | K<&2) ai<i>y, $2)

(ii) KD is dense in $f

i.e. positive, self-adjoint and with no zero eigenvalue.



Vol. 58, 1985 A uniqueness result for quasi-free KMS states 1019

(iii) K3~(t) e~uh K where h is strictly positive.

One then obtains a ground state2) via:

«o(W(®)) exp(-à||K*|&) (2.5)

(corresponding to the representation W(O) >-> W9(K<t>) -see §2.3 below).
Moreover, it is known that when such a ground one-particle structure exists, it is

unique up to unitary equivalence in the following sense ([14], re-proved here in
§4).

Theorem la. Given two ground one-particle structures (Kt, Dt{, exp (-ith^))
i=l,2, over a given linear dynamical system (D, 3~(t)), then there exists a unique
unitary U : Dtx -*¦ Dt2 s.t.

(i) UKy K2on D
(ii) U exp (-ithy) exp (-ith2) U on Dty.

As we shall explain in the next chapter, one of our main aims here will be to
prove an analogue theorem to Theorem la (Theorem lb of §3) for the concept
(which we shall introduce) of KMS one-particle structure.

§2.3. Second quantization

We briefly recall for completeness some basic facts about the Fock representation

W(x) i-> W35(x) (In the discussion above, x .K<I>) of the Weyl algebra over
(Dt, 2 Im (• | •)) for some one-particle Hilbert space Dt. (i.e. about Segal's 'abstract
free Bose field' [15, 16]) The representation space S*(Dt) may be realized as

£.@Dt®(Dt®,Dt)®- •• W(x) exp[a+(x)-a+(x)*] with a+(x), xePt the usual
creation operators satisfying [a+(x)*, a+(x)\ (x | y>, a+(x)*0 0, etc. Here fl is
the cyclic vector 1©0©0©- • • and we have

(n|w9f(x)n)=expHllx|||;)
justifying the remarks after equations (2.4) (2.5) above. Corresponding to J~(t)
and e~"h in the discussion above, the second quantized time-evolution is given by
r(e~ith) where for an arbitrary operator A on Dt, T(A) on &(Dt) is 1©A©
(A(8>A)©- • • We have

Ws-(e~-i'hx) T(e-ith)W9i(x)T(e'"X"

(and such a formula holds more generally for unitary or anti-unitary operators U
on Dt). We may also write T(e~"h) exp (-itdT(h)) and dT(h) is then the second
quantized Hamiltonian. More properties of the Fock representation will be taken
up in [9].

§3. KMS one-particle structures

Our main aim is to give an account of the structure of Gibbs states on linear
systems in the same spirit as the account we gave in §2.2 for the structure of

not necessarily unique because of the possibility of replacing «)0 by <o(t with <oó(W(4>))
«„(WtO))«'"'*' where x is a linear functional on D satisfying

x(&M<t>) x(<t» (see [13])
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ground states. We shall also make precise the relationship between these two
types of state.

§3.1

As our starting point, we take the standard heuristic expression (in the
notation of §2) for a Gibbs state with inverse temperature ß (kT)~1:

wß(W(*)) Z-1tr(e mWi<i>)) (3.1)

Here Z tre~ßH, and, if we assume a ground one-particle structure exists, we
may set H dTih) and Wi<t>) W*(K<I>). As is well-known, we cannot expect to
give this expression any rigorous mathematical sense as a trace in the vacuum
sector. Nevertheless, one can argue convincingly for it being assigned the value
(see §A1)

o)0(W(<l>)) exp coth (fW, (3.2)

If we now assume that a ground one-particle structure exists satisfying the
'regularity condition' KDc9(fi-"2), then the formula (3.2) makes good
mathematical sense, with coth (ßh/2) interpreted in the sense of quadratic forms
[17] (see §A2 for details) and defines a well-defined state on the Weyl algebra.
(One may also easily check that it satisfied the KMS condition [1-4].) The
question arises as to what extent w0 is unique.3) As in the case of the ground state
<_o0, we shall establish a uniqueness result at the one-particle level, and our first
task is to isolate a suitable version of the one-particle structure concept in the case
of finite temperature. To motivate our definition, let us continue to assume the
condition KD<--£è(h~112) and let us also assume the existence of a preferred
complex conjugation C on Dt satisfying

Ce',h ei,hC (3.3)

Then, observe that the w0 of (3.2) may be written as

o)3(W(<D)) exp H \\Kß<P\\a) (3.4)

where we define Dt=Dt@Dt and K3 by

Kß:D-*Dt®Dt
$ >-» CshZßK<i>®chZßK<i>

where Z3 is defined implicitly through

tanh Z3 exp (-ßfi/2) (3.5)

It is clearly not always unique amongst the set of all KMS states with the same ß because of the
possibility (related to Bose condensation) of replacing u-, by ui'e with u>û(W(<t>))

(og( W(<t>))e'*""] where x is a linear functional on D satisfying x(5"(t.<_?) x(^) (cf. footnote 2).
See also [7].
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The formula (3.4) generalizes a construction used by Araki and Woods [8] in their
treatment of the non-relativistic free Bose gas (cf. their case of 'No macroscopic
occupation of the ground state'). Now, define exp (—ith) on Dt Dt®Dt to be

/(exp (ith) 0

\ 0 exp (-ith)

We shall call the triple (K3, Dt, exp (-ith)) the standard KMS one-particle structure
over (D, a, ST(t)) (with inverse temperature ß). We now isolate what we claim are
the essential features (see §A2) in the following definition.

Definition lb. A KMS one-particle structure (Kß, Dt, exp (-ith)) over a linear
dynamical system (D, a, ST(t)) consists of a complex Hilbert space_ Dt, a map
Kß :D —* H and a strongly continuous unitary group exp (-ith) on Dt s.t.

(i) Kß is real-linear and symplectic-i.e. 2lm(Kß<i>y\ Kß<t>2) a(<fr1,<i>2)

(ii) KßD + iKßD is dense in ft
(iii) (a) K3ST(t) exp(-ith)K3 on D

(b) h has no zero eigenvalues
(c) exp (-ith) satisfies the 'one-particle KMS condition' namely Vx, y g

KßD,VteU:

(exp (-itii)x | y)^ (exp (-ßh/2)y | exp (-ith) exp (-ßh/2)x).x

Note that the concept of KMS one-particle structure differs essentially from that
of ground one-particle structure in that the Hilbert space Dt is 'twice as big' as Dt.

This is reflected both in condition (ii) where - in the KMS case - KßD + iKßD is

dense, while in the_ ground case, KD alone is dense, and in condition (iii) where,
in the KMS case, h has symmetric spectrum, in contrast to the positive spectrum
of the ground case. We shall return to this point in §4. At the second quantized
level, it is of course related to the fact that GNS representations of KMS states
are only cyclic, while those of ground states are (often) irreducible (see [9]).

That this is a suitable definition is justified by the uniqueness theorem (which
we prove in §4):

Theorem lb. Given two KMS one particle structures (Kf, Dth exp (—ititi))
i 1, 2 (for the same ß) for some given linear dynamical system, then there exists a
unique unitary U : Dt, —* Dt2 s.t.

(i) UKß=K^on D
(ii) U exp (-ithy) exp (-ith2) U on Dty

Theorem lb corresponds to a result which is already known for quasi-free
Fermion fields (where in fact there is the stronger result of uniqueness of KMS
states-see Rocca, Sirugue and Testard [18] and Araki [19]). For Bosons, a
similar result to ours may be extracted from the work of Rocca, Sirugue and
Testard [7] who essentially prove uniqueness of KMS states over linear systems
up to the freedom mentioned in footnote 3. (See also Araki and Shiraishi [5] and
Araki [6] which are closely related although they do not appear to consider the
uniqueness question.) However, rather strong technical conditions are required in
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[7] and our approach appears capable of settling uniqueness problems which arise
in applications (such as [10]), which cannot be settled with the methods and
results of [7].4)

§4. Uniqueness of ground and KMS one-particle structures

The aim of this section is to prove Theorem lb. Since it appears to require
almost no extra space, we begin by recalling the proof of Theorem la ([14], see
also [13]) in a form suitable for generalization.

Proof of Theorem la. Consider the map T=K2°K\X between the (dense)
subspaces KXD and K2D in Dty and Dt2 respectively. Since K. and K2 are each
symplectic, we have

Im(Tx|Ty)3,2 Im(x|y)3,i Vx,yeK,D (4.1)

Now, for fixed x,y e KtD, consider the function

fx_y : t •-> (exp (-ith2)Tx | Ty)^2-(exp (-ithy)x \ y)^,

Since hy, h2 are positive, this extends by a standard argument (see e.g. [2]) to a
function of complex t which is bounded and continuous in the region Im t =s 0 and
holomorphic in Im t<0. Furthermore, for t real, we calculate

ImfxJt) lm[(TKyST(t)Kyix | Ty)x-{KyJ(t)K^x \ y)*J
0 (by (4.1) above)

Hence, by the Schwarz reflection principle, fXy>(t) extends to a bounded
holomorphic function in the entire complex plane and it thus has a constant value
by Liouville's theorem. Finally, the fact that hy, h2 have no zero eigenvalues
guarantees that this constant value is zero. A proof of this which will generalize to
the KMS case is to look at lim,.^, 1/t JÓ (exp (-it'hy)x \ y) dt' (and similarly for h2)
for real t, and notice that by von-Neumann's ergodic theorem [17] this tends to
zero. In particular we get for f 0

(Tx|Ty)^ (x|y)^ Vx,yeKyD
It results by the following lemma that T extends to a unique unitary U.

Lemma 5.1. Given two complex Hilbert spaces Dty, Dt2 with real-linear
subspaces My, M2 s.t. My + iMy is dense in Dty, M2+ iM2 is dense in Dt2 and given a
(one-one) onto real-linear map T : My —» M2 s.t. (Tx | Ty)^2 (x | y)Xi Vx, y e My.
Then T extends to a unique unitary.

Proof. Define U on the dense complex-linear set My + iMy by U(x + iy)
Tx + iTy. With this definition, U is complex-linear. We must still check it is

4) One difficulty with [7] is its assumption 'E3\ For the problem in [10], it is difficult to check this
assumption and in fact it is presumably false. (The connection between the present paper and [7]
may be made only in a restricted class of cases for which the exponent <K<t> | coth (ßh/2)K<J>) in
expressions such as (3.2) may be written as cr(<t>, X<J>) for some X (in the notation of [7],
X-1 DB) which maps D —> D. This appears for example to be untrue in our application in [10].
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well-defined. We clearly need to show Tx + iTy 0^>x y 0. This follows since
||T(x + iy)||2 ||(x + iy)||2. In fact: Given xa, ya, xh, ybeMx, we have

(Txa + iTya | Txh + iTyb> (Txa\ Txb) + (iTya | Txb>

+ (TxJiTyb) + (iTyJiTyb)
(xa |xb)-i(ya |xb)+i(xa |yb) + (ya | yb)

(xa + iya Ub + iyb)

which also shows U is inner-product preserving. Finally, since it has dense range,
it must extend to a unitary. For uniqueness note that any U' which extends T
must have Vx, yeM,,

U'(x + iy)= U'x + iU'y Tx + iTy

and so coincides with U on a dense set.

Note that this lemma does not require KD to be dense and that we have
nowhere used this assumption in the proof of Theorem la. The above proof is

thus easily adaptable to the proof of Theorem lb. (See definitions and statements
in §2.)

Proof of Theorem lb. We proceed exactly as in Theorem la, defining
T= K2°Ky1 (we drop the superscript ß) between KyD and K2D in Dty and H2 (of
course KtD are not assumed dense now). Again we have

Im (Tx | Ty>#2 Im (x | y)^2 Vx, y e KyD

As before, define a function

/x.y : ' <-*¦ (exp (-itrT2)Tx | Ty)^2-(exp (~ithy)x | y>^

Now, by the one-particle KMS condition, fx,y(t) extends by a standard argument
(see e.g. [2]) to a function of complex t which is bounded and continuous on the
strip -f'/3=slm (SO and holomorphic in ~iß<lm f<0. Furthermore,

fx,y(t- iß) (Ty | exp (-ith2)Tx)^2-(y | exp (-ithy)x)%ki

fX).
Again, for t real, we find lm/xy(t) 0 so that we actually have fx.y(t-iß) fx.y(t)
and also by the Schwarz reflection principle, we can extend fxy to the region
-ißsslmfssiß (bounded, continuous in the full region and analytic in the
interior). It will also clearly satisfy fx,y(t + iß) fx,y(t) fxy(t-iß) and have zero
imaginary part on Im t ±iß. We can thus extend it again etc. getting finally a
bounded holomorphic function (periodic in iß) in the entire complex plane.
Again, by Liouville's theorem, this will be a constant function, and again, since hy,
i\2 have no zero eigenvalues we conclude by von-Neumann's ergodic theorem that
fx.y(t) 0. Taking t 0, we see that

(Tx | Ty>#2 (x | y)*, Vx, y e D

The theorem then follows by Lemma 4.1.
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§5. Double dynamical systems and double KMS one-particle structures

As mentioned in §3, the one-particle Hilbert space Dt is 'twice as big' in the
KMS case as in the ground case. This suggests that the structure of Kß would be

more fully revealed if we extended its domain by 'doubling things up' at the
classical level. This is indeed the case as we now show:

§5.1. Standard example of a double linear dynamical system

Let (D, a, 3~(t)) be a linear dynamical system as in §§2, 3 and suppose it
admits an antisymplectic involution T which reverses the sense of time-evolution:

T.D^D, T2=\
a(T<ì>, TV) -a(<i>,V) V*,^eD (5.1)

T9~(t) 3~(-t)T

Let DR, Dl each be a copy of D and let D be the vector sum DL(&DR. D
inherits a symplectic form â according to

â(<i>y<$Vy,<&2<£,V2) a(<Î>l,<i>2) + a(-Vy,y2) V<t>„<l>2eDL; ^„f2eDR
Define the doubled time-evolution ÏÏ(t) by

taj(t)($©^) (3-(-m®3~(m)
and define the doubled involution

¦?(<!>©¥) (T^© TO)

Before continuing, we summarize the essential features in the

Definition 2. A double (classical) linear dynamical system (D, <x, Sf(t), 3)
consists of a linear dynamical system (D, â, ST(t)) and an antisymplectic involution
S s.t.

'(a) [§-(t),J] 0
(b) D consists of the sum of two independent subspaces:

D DL + DR s.t.

(i) o-(<DL, 4>R) 0 V<D'eDL, <DReDR
(ii) ST(t):DL^DL, DR^DR
(iii) ßDL DR (and 3>DR DL)

We shall say such a double system extends a (D, a, 3~(t)), whenever we can
(and do!) identify (DR,â \ D*, &{t) \D*) with (D, a, 5"(t)).

§5.2. Standard example of a double KMS one-particle structure

Suppose that the (D,a,g~(t)) of §5.1 admits a regular ground one-particle
structure (K, Dt, e~"h) (i.e. one satisfying KD <= 3)(h'll2)) and suppose further that
the classical symmetry T is implemented at the one-particle level by a complex
conjugation C s.t. CK KT on D. We then automatically have Ce~"h ei,hC.

Writing <Ï)©^'g.D as a column vector, and defining H= Dt®Dt we may now fill
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<H
out the definition of Kß as promised by defining

chZß shZßC\/-K<t>\
\shZßC chZß Ì\K9Ì

(cf. definition after equation (3.4), see §3 and §A2 for definition of Z3 and
well-definedness.)

If we now recall from §3 the definition
leih' 0 \

exp(-iht)=^ 0 e ihtj

and define the anti-unitary involution j on Dt by

/0 -C\
\-c 0 /

then one may_ easily check (see again §A2 for property 2 below) that
(Kß, H, exp (-iht), j) satisfies the

Definition 3. Given some ß>0, a double KMS one-particle structure
(Kß, Dt,_exp (-ith},j) over some (D, ä, 2T(t), 3) consists of a complex Hilbert
space Dt, a map Kß :D —* Dt, a strongly continuous unitary group exp (-ith) on ft
and a complex conjugation /. s.t.

(1) Kß :D —» ft, is real-linear, symplectic
(2) KßDR + iKßDR is dense in ft

(and similarly for L++R)
(3) Kß3-(t) exp(-ith)Kß
(4) h has no zero eigenvalues
(5) KßJ ikß
(6) K3DR + iKßDR a 2)(exp (-ßfi/2)), K3DL + iK3DL cz 2)(exp (+ßh/2)) and

exp (-ßhl2)x -jx Vx € ,K3DR, exp (ßÄ/2)y -/y Vy e K3DL

Note that the (K3, ^, exp (-ith)) of such a definition - when restricted to
(DR, <t, 5"(f)) is a KMS one-particle structure in the sense of §3. To check the
'one-particle KMS condition', we note that it easily follows from our definitions
that [exp(-ifh),y] 0 on KßD, and calculate \/x,yeKßDR

(exp (-ith)x | y)= (/'y | / exp (-ith)x)
(jy |exp(-i(h)|y'x)
(exp (-ßh/2) y | exp (-ith) exp (-ßh/2)x)

§5.3.

Finally, our uniqueness theorem extends to give

Theorem 2. Given a double linear dynamical system (D, â, 3~(t), 3) for which
are given two double KMS one-particle structures (kf, ftLexp (-ithi), /f) i 1, 2, for
some given ß>0, then there exists a unique unitary U:Dty—-' Dt2 s.t.

A) UK% Kf on D
B) Uexp(-ithy) exp(-ith2)U on fty
C) Ujy j2U on fty.
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Proof. By Theorem lb, we conclude the existence of some UR : Dty —» Dt2
which satisfies A) restricted to DR and B) on all of ftx. (Similarly, we could
conclude the existence of a L/L with corresponding properties for DL. We shall
see below that UL UR.) From B), we conclude

UR : 3 (exp (~ßhyl2)) -» 3(exp (-ßh2/2))
and

UR exp (-ßhy/2) exp (-ßh2/2)UR
on

2>iexp(-ßhyl2))

In particular, this is true on kßDR which, by construction, is mapped by UR onto
KfDR. Applying Property (6), we recover L/R/, j2UR on KßDR and hence on
the dense set KßDR + iKßDR and hence on all of Dty since UR, i\, j2 are bounded.
This gives C). It remains to show that A) holds on D'. For this, we use the
following argument: URjyKß jyURKß on DR => URKß3 =y',Kf K\3 on
DR. I.e. URKßy Kß on DL since J*gDr DL. D

One can show quite generally a number of properties which justify the
naturalness oj the above developments. Forexample, it follows from Definitions 2
and 3 that KßD is necessarily densein_ft (and thus that U in Theorem 2 is

actually the closure of K%°ikß)~l on KßD.) Rather than prove these things here,
we postpone discussion of such things to the companion paper [9] where we shall
emphasize the meaning of doubling in the wider context of KMS states on general
(i.e. not necessarily linear) quantum systems.

Appendices

§A1. Heuristic derivation of a class of KMS states for linear systems5)

We sketch a heuristic derivation for the formula (3.2). We proceed as if the
one-particle Hamiltonian h has discrete spectrum hip{ h^, and write (adopting
Dirac notation)

h Ih.|ifc><ihl on Dt=@Dti
i i

(with each %t**C).
It is convenient to realize our representation space for the second quantized

theory (Fock s ace) in infinite tensor product form adapted to the spectrum of
h :&(%,) =&,&(%,) where each &(Dt,)^e2). Here, one may think of the
incomplete tensor product [20] associated with the vacuum vector fì ®iui. The
Weyl operator is represented by W*(KO) (see §2) which in this version of Fock
space clearly becomes

exp(l«ihl**>ar-<fc*l«h>o,))

s) This appendix is a mild generalization of Appendix 1 in [8]. We include it here for the sake of
completeness.
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where at, ai are the creation and annihilation operators on ^(Dt,), so that
[ah a?]= 1, affli =0. Finally, the second quantized Hamiltonian is clearly given by
dT(h) Y.i hiütai.

By the usual Gibbs prescription

<o0(W(<D)) Z-' tr (e-0drai)W(K^r))

Z_1 tr(exp|-ßX M ra,] exp
I £ oc,a!-J, o.a. lì

where

a, (^ | KO), â, (Kc&|ta>,)

and

Z tr e-0dnhl tr (exp | -ß X M,+a, )¦

Here the trace is to be taken over all vectors 0; |n,) in Fock space. Ignoring
mathematical rigour, we may rearrange this formula to give an infinite product of
terms - each of which corresponds to a Gibbs state on a single degree of freedom:

w0(W(<D)) nZr1tr(exp[-ßrijara,]exp[ajar-aia,])
î

with Z, tr(exp[ßhiara,]). Z, is of course just X^=0 e~"eh'= (l-e^T1. The
other trace (using the cyclicity of the trace and the Baker-Hausdorff formula) is

equal to

exp (-|ai|2/2) £ exp (-nßhi)(n\ exp (ata+) exp (-afa) |n)
n=0

which, on using at \n)= nxl2 \n - 1) and a straightforward calculation
°° I |2m "=

exp(-k|2/2 I Xtj^ 1 n(n-\)---(n-m + l)e-'ßh
m=0 im ¦) n=m

The sum over k is evaluated by
00 Id \m °°

1 n(n-l)---(n-m + l)x" (— I x"
n=m \aX/ n=0

xmm!(l-x)"m-1
So our trace becomes

Cancelling the first term with Zj"1, summing the series over m and taking the
infinite product, we get finally

,(W(0)) exp [-l!a£ coth (f)]
On recalling hipi h.ip, and |a,|2 (KO | iftX'/'. | K3>) we see this is equal to (3.2)
which we now take to be the correct formula even in the case of non-discrete
spectrum.
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§A2. Some details omitted from §§3, 5

In §3, the operators

sriZ3 exp(-ßh/2)(l-exp(-ßh)r1/2 and chZß (1 -exp (-ßh))"1/2,

are each defined by the spectral theorem and, using the simple estimates on
positive numbers x

exp (-ßx/2)(l -exp (-ßx)r1/2«C(max (1, x"l/2)
(1 -exp (-ßx))~1/2 *£ C(max (1, x~1/2)

we see that 2)(fr1/2)c: 3(shZß), 3(chZß).
Similarly, one can check, regarding equation (3.2) that 3(h~112) is contained

in the quadratic form domain â(coth (ßh/2)) (use coth (ßri/2) ch2Zß+ sh2Zß).
The regularity condition KD cS)(h_1'2) thus suffices as claimed in the text.

In checking that the standard KMS one-particle structure (Kß, ft, exp (-ith))
satisfies Definition lb, (i) and (iii) are easily checked by straightforward calculations.

We now check (ii) that KßD + iKßD is dense in Dt®Dt. Using the relation
shZß exp (-ßh/2)chZß it suffices by the following argument to prove chZfKßD
is a (real-linear) dense set in Dt. For, given a©ß in the sense set 2!(exp (ßrü/2))©
Dt, we may then find sequences <!>;, ^ e D s.t.

criZ3K3<I)i -» i(exp (ßh/2)Ca + ß)

and

chZßKßV, -+ ^(exp (ßh/2)Ca - ß),

so that

(srtZ3CK3(D1©chZ3K3<I)I)+i(shZ3CK3^JechZ3K3^i)-^a©ß-

To prove that chZßKßD is dense, note that ran (chZß) on its full domain is dense
since cfiZ3 clearly has no zero eigenvalues. The result now follows on showing
that KßD is a core for chZß. For this, one may use the convenient

Lemma (Rigotti [21]). Let K be a self-adjoint operator on a Hilbert space Dt.

Let f be a real Borel function bounded on the compacts. J/ A<= D(f(K)) is a dense
subspace invariant for the group e~"K, then A is a core for f(K).

(We shall need this lemma again in [9]. For the proof, see Theorem 4 of
[21].)_ In applying this lemma here to A=K3D, take f(x) (l-e"3x)"1/2, and
K= h; and use the fact that KßD is invariant for exp 1-ith).

Acknowledgments

The bulk of this work was done during a visit to the Istituto Matematico 'G.
Castelnuovo', Università di Roma, Italy, in autumn-winter 1982-3. I thank S.

Doplicher for his kind invitation and the CNR-Gnafa for financial support.
Support was also provided by the Schweizerischer Nationalfonds in Bern and



Vol. 58, 1985 A uniqueness result for quasi-free KMS states 1029

Zürich. I thank S. Doplicher, S. A. Fulling, and R. Longo for useful discussions
and correspondence. Thanks also go to H. Leutwyler and to G. Scharf for aid and
encouragement.

REFERENCES

[1] R. Haag, N. M. Hugenholtz and M. Winnick, Commun. Math. Phys. 5 215-236 (1967).
[2] N. M. Hugenholtz, In: Mathematics of contemporary physics (ed. Streater), New York-London:

Academic Press 1972.
[3] M. Takesaki, Springer Lecture Notes in Mathematics No. 128 (1970).
[4] O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics. Vols. I

and II. New York: Springer Verlag 1979, 1981.
[51 H. Araki and M. Shiraishi, Pubi. RIMS Kyoto 7, 105-120 (1971/72).
[6] H. Araki, Pubi. RIMS Kyoto 7, 121-152 (1971/72).
|7| F. Rocca, M. Sirugue and D. Testard, Commun. Math. Phys. 19 119-141 (1970).
[8| H. Araki and E. J. Woods, J. Math. Phys. 4, 637-662 (1963).
[9] B. S. Kay, Purification of KMS States. Helvetica Physica Acta (to appear immediately after this

paper).
[10] B. S. Kay. The Double Wedge Algebra for Quantum Fields on Schwarzschild and Minkowski

Spacetimes. Commun. Math. Phys. 100. 57-81 (1985) and Erratum (to appear).
[11] I. E. Segal, Representations of the canonical commutation relations. In: Cargèse Lectures on

Theoretical Physics. (Ed. F. Lurçat), New York: Gordon and Breach 1967.
[12] J. Slawny, Commun. Math. Phys. 24, 151-170 (1972).
[13] M. Weinless, J. Funct. Anal. 4, 350-379 (1969).
[14] B. S. Kay, J. Math. Phys. 20, 1712-1713 (1979).
[15] I. E. Segal, in Topics in Functional Analysis. Advances in Mathematics, Supplementary Series,

Vol. 3 New York-London. Academic Press 1978.
[16] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. II: Fourier Analysis and

Self Adjointness. New York-London: Academic Press 1975.
[17] M. Reed and B. Simon, Methods of Modem Mathematical Physics, Vol. I: Functional Analysis.

New York-London: Academic Press 1972.
[18] F. Rocca, M. Sirugue and D. Testard, Commun. Math. Phys. 13, 317-334 (1969).
[19] H. Araki, Pubi. RIMS Kyoto 6, 385-442 (1970/71).
[20] J. von Neumann, On Infinite Direct Products: Compositio Mathematica 6, 1-77 (1938).
[21] C. Rigotti, In: Algèbres d'opérateurs et leur aplications en physique mathématique. Colloques

Internationaux du C.N.R.S. No. 274, p. 307-320. Marseille 1977.


	A uniqueness result for quasi-free KMS states

