
Constructive quantum field theory : goals,
methods, results

Autor(en): Osterwalder, K.

Objekttyp: Article

Zeitschrift: Helvetica Physica Acta

Band (Jahr): 59 (1986)

Heft 2

Persistenter Link: https://doi.org/10.5169/seals-115691

PDF erstellt am: 13.09.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-115691


Helvetica Physica Acta, Vol. 59 (1986) 220-228 0018-0238/86/020220-09S1.50 + 0.20/0

© 1986 Birkhäuser Verlag, Basel

Constructive quantum field theory:
goals, methods, results

By K. Osterwalder

Mathematik Eidg. Technische Hochschule, Zürich

(3. XII. 1985)

I. Introduction

The successes of quantum electrodynamics and more recently the enormous
progress in the attempts to unify all the four fundamental forces in one theory
give hope to the belief that a relativistic, non-abelian quantum field theory will
eventually lead to a satisfactory description of elementary particle physics.
Clearly, the correct Lagrangian has yet to be found, the full symmetry has to be
established - maybe it is even super! - and it is conceivable that fields have to be

replaced by strings. But no matter what the theory will finally look like, it has
become abundantly clear that we have to understand the details of its mathematical

structure and that we have to be able to prove its logical consistency. It is well
known that we are still far from such a goal. Not even in the case of quantum
electrodynamics have we been able to reach it. In fact, nowadays most people
believe that QED is inconsistent, that is does not exist as a mathematical model
beyond formal perturbation theory.

The main goal of constructive quantum field theory is to provide a sound
mathematical foundation for elementary particle theories. The program can be
summarized as follows:

1. Starting from a formal Langrangian density construct a relativistic
quantum field theory satisfying some system of axioms (e.g. the Wight-
man axioms or their Euclidean counterpart). The dynamics of the theory
thus obtained is determined by the Lagrangian in a well-defined manner.

2. Determine whether the model constructed in 1 describes nontrivial
scattering and whether the scattering matrix is unitary (asymptotic
completeness).

3. Study the rôle of the formal power series expansion: is it asymptotic, is it
Borel summable; for which values of the expansion parameters does it
make precise predictions?

4. Investigate the rôle of symmetries: broken symmetries, Goldstone bos¬

ons, phase transitions etc.
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5. In models containing gauge fields study all the mechanismus predicted by
formal arguments: Faddeev-Popov formalism, Gribov ambiguities, Higgs
mechanism, confinement etc.

6. Check the validity and reliability of computer calculations.

Up to now all realistic models have resisted the attempts to deal with them
according to these ideas. However, many simplified models have been
constructed successfully and some of them have been analysed in great details. The
simplifications have been

to simplify the interactions
to simplify the symmetries
to reduce the number of space time dimensions,

the latter being the most serious one. Right now the situation looks quite
promising: recent progress seems to justify the hope that the construction of a

four dimensional quantum field theory model, satisfying all the axioms, is within
reach.

The purpose of this talk is to describe the major developments and results of
constructive quantum field theory and then to focus on some of the most recently
proposed methods.

Quantum field theory was one of the major areas in Ernst Stueckelberg's
research and he has made many contributions of lasting value to this fundamental
area of theoretical physics. Some of the ideas that will be discussed here have
their roots in the deep work of Stueckelberg and I would like to dedicate this talk
to his memory.

II. Major developments

1. Hamiltonian approach

The origins of constructive quantum field theory can be traced to early,
seminal work of A. Jaffe [1] and of O. Lanford [2]. In his 1965 thesis Jaffe
studied a self-coupled scalar field with an interaction term A J: <p(x)4:d3x except
that he introduced a space cutoff function g e C0(IR3) and a high momentum cutoff
k to define a Hamiltonian

Hg,K H0 + A j g(x) : <pK (xf : d3x

where H0 is the Hamiltonian of a free field. He showed that HgK is a self-adjoint
operator with unique vacuum state. Similar results were obtained by Lanford for
a model coupling bosons and fermions via a Yukawa interaction.

Now the problem was to remove the cutoffs and to prove that the limiting
theory defined the correct dynamics and satisfied all the Wightman axioms. This
problem could be solved after another simplification had been introduced: a
reduction of the number of space-time dimensions d to d 2 and later to d 3.
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The model with the least technical difficulties is the (A<£4)2 model, described by
the Hamiltonian introduced above but with space dimension 1, instead of 3. In
perturbation theory this model has no ultra-violet divergences and does not call
for any infinite renormalization. By 1972 this model had been shown to exist
without any cutoff and to satisfy all the Haag-Kastler axioms and most of the

Wightman axioms [3]. These results had also been extended to technically more
difficult models, such as

P(cp)2 where Xcp4 is replaced by an arbitrary polynomial bounded below
Y2 where a boson and a fermion interact via a Yukawa interaction (in

space time dimension d 2)
(A<p4)3 the selfinteracting boson model with cp4 coupling in d - 3 dimensions.

For a more complete description of these early developments and for references

see e.g. [3], [4].

2. The Euclidean formulation

In 1972/73 several new ideas were introduced which made old results much
easier to derive and opened the road to the solution of many problems that had
been out of reach before. Most of these 'new' ideas were actually a mathematically

rigorous formulation of a program formulated by K. Symanzik in the mid
sixties [5]. The first one of these was the connection of boson quantum field
theories with probability theory via Markoff processes [6]. The second one was a

more general connection between an arbitrary (Wightman-) quantum field theory
in Minkowski space and Euclidean Green's functions in Euclidean space [7]. The
third discovery was the close connection between Euclidean quantum field theory
and classical statistical mechanics [8].

The direct construction of a relativistic quantum field theory through its
Hamiltonian was now abandoned. Instead the goal became to prove the existence
of Schwinger functions (Euclidean Green's functions) and then to make use of an
axiomatic result that guarantees that the relativistic theory can be reconstructed
in a unique fashion.

On a formal level the Schwinger function of a single scalar boson particle are
given as expectation values of a Euclidean field <fr(x),

S(xy, ...,xn) ^{Q, 4>(xy)- • ¦*(*„)e-'JW*w>Äa>

Here 3> is a free field, determined by

[<P(x), <D(y)] 0, for all x, y in U4,

and

<Q, *(*)*O0Q> (2jz)-2j^—2e'^-^ d4p

(-A + m2)-1(x,y).
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J£/(<b(x)) is the interaction Lagrangian such as: O(x)4: and Z is a normalization

constant. For models with several fields and with fermions the formulas are
similar.

Notice that the Euclidean boson fields, unlike their relativistic counterparts
are abelian. As a consequence the Schwinger functions can also be defined by
functional integrals as the moments of a probability measure n on function space

S(xy, ...,xn) ~ j<t>(xy) • • • ^xX-^f^* dvG(cp)

Jcp(xy)- ¦ ¦ cj)(xn) dß((p)

Still on the formal level d/u, is a Gaussian measure dvG with mean zero and
covariance G (—A + m2)-1 multiplied by the factor exp (—J ^(cp(x)) dx).

For a rigorous construction of the Schwinger functions one has to start from
a regularized theory, just as in the Hamiltonian approach. To get rid of the
volume divergences one restricts integration in J" ^(cp(x)) d4x to a finite volume
A or one puts the whole theory on a torus. The high momentum divergences are
taken care of by an ultra-violet cutoff jc. Thus the doubly cutoff Schwinger
functions

^A,k\X1> • ¦ ¦ xn)

are well defined and the problem is then to prove that the limit

exists and that the limiting quantities S have all the properties which are required
for them to define a relativistic quantum field theory. In general the no cutoff
limit will not exist or be trivial unless some «r-dependent modification of the
coefficients appearing in 5£, have been performed: this is the renormalization
problem. We remark that one particular method to cutoff the large momenta is to
put the whole theory on a lattice, i.e. to allow the variable x only to take values in
a lattice such as a • I4, where a ~ k~1 is called the lattice spacing. The Laplacian
that appears in the formal definition of S{xx, xn) is then replaced by the
finite difference Laplacian. One can easily see that the approximate Schwinger
functions thus obtained, are the correlation functions of a classical lattice spin
system, with a single spin distribution essentially determined by exp [—Ü?7(0(jt))].
The non local part of the finite difference Laplacian generates a nearest
neighbour ferromagnetic interaction. This establishes the mathematical
equivalence of Euclidean quantum field theory and classical statistical mechanics.

3. Superrenormalizable models : methods and results

With the Euclidean setup at hand the problem of studying limits of
regularized operators HgK had now been replaced by the problem of constructing
limits of measures or of their moments SA>K. Two basic sets of methods proved to
be extremely powerful:
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a) Correlation inequalities: some of them were already known from statistical

mechanics [9], many others were found in the seventies and proved to be

very helpful tools both in field theory and in statistical mechanics [8], [10], [11].
Existence of limits and some information on the models constructed could be
obtained by these methods. The strength of the correlation inequality methods is

their elegance and the fact that they usually hold without restrictions on the
absolute values of the coupling parameters in !£,. Their weakness is that they put
otherwise unnecessary restrictions on the signs of the coupling parameters
and - more seriously - that they do not hold for models with fermions.

b) Expansion methods: if we replace 5£t by Ai?/ and formally expand the
Schwinger functions S in powers of A then we obtain the standard Feynman
diagram expansion which in most models is known or believed to be divergent.
This difficulty can be overcome if one treats different regions in space separately
and uses asymptotic expansions only. This leads to the so called cluster expansion
(or high temperature expansion, as it is called in statistical mechanics) which

converges whenever the theory is far from a critical point, i.e. if the measure dß
is close to a Gaussian. The expansion method is in general more complicated than
the correlation inequality method and its range is limited in the sense just
explained. However, as a tool, it is more powerful: in addition to the proof of the
existence of the limit of SAk it gives detailed information about the spectrum of
the model: multiplicity of the ground state, the existence of isolated particle
spectrum, the existence or absence of bound states, asymptotic completeness at
low energies etc. It also allows for the study of such things as analyticity in the
coupling parameters, Borel summability of the formal power series and the
problem of phase transitions and multiphase regions.

By the beginning of the eighties these methods had been brought to such a

perfection that a large class of models was completely under control: the
superrenormalizable models. They are characterized by the fact that the
/c-dependent adjustments of the parameters in i£t, which are necessary for the
k—»co limit to exist (i.e. the renormalization) can be written down explicitly as a

polynomial in the overall coupling parameter A. They include the following
models:

For d space-time dimension 2

if, P(<i>(x)) P: a polynomial, bounded from below

sin £<fr(x) Sine-Gordon model

e °*(x) Höegh-Krohn model

Wix^^cpix) Yukawa Model (Y2)

and Abelian Higgs models.

For d 3:

X, (®(x))4 ($% model

W(x)W(x)tp(x) Y3 model

(and QED).
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For all these models the following results have been obtained (or could be
obtained with a large but finite amount of additional work):

- the no cutoff limits of the Schwinger functions exist and define a relativistic
quantum field theory.

- non triviality of the scattering matrix,
- analysis of the particle spectrum,
- equation of motion,
- symmetry breaking, phase transitions, multiple phase diagram,
- the meaning of formal power series expansion: Borel summability.

Unfortunately, no model in 4 space-time dimensions is superrenormalizable
and it became clear in the mid-seventies that the methods described so far would
not be sufficient for the construction of a nontrivial, four dimensional model.

4. Beyond superrenormalizability: renormalization group and asymptotic freedom

To make the difference between superrenormalizable and merely renor-
malizable models more transparent let us look at a concrete example: the (<3>4)rf

model. Formally the measure dp(cp) is given by

dp(Q) N"1 exp (- ftaS?7(<I>(jO) ddx) dvc(<S>)

where dvG is Gaussian measure with mean 0 and covariance G (—A + m2) 1

and taS?7(«D(je)) X(j>4(x).

To regularize the model we restrict the integration in J" i?7($(x)) ddx to a
finite volume A c Ud and replace the inverse free propagator (—A + m2) by some
cutoff version GZ1, e.g. by G"1 (-A + m2)e(_A+m2)/*2. The crucial point is that
in GK(p) values of p with p2^-K are strongly suppressed and GK(p)—>(p2 +
m2)-1 for *_•-» °o. We will say that in GK momenta larger than k have been cut off.
Formal power series expansion in powers of A indicates that before passing to the
limit k —» oo we have to renormalize the regularized measure by setting

dpTW) N;1 exp (-J ^(Z^ix)) dxd) dvcJZ]!2cp)

where

^i,l{Zx^) y ôml<S>(x)2 + Z\K$>(x)4

and NK is an appropriate normalization constant to make the total weight of dp™n

equal to 1.

We thus have to admit jc-dependent wave function renormalization ZK, a

mass correction ôm2 and coupling constant renormalization ôAK AK — A and
these quantities may become singular as k—»oo. in two and three space-time
dimensions we may choose ZK to be 1 and ôm2 and AK to be polynomials in A,
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with jc-dependent coefficients that can be calculated explicitly: these models are
superrenormalizable.

In four space-time dimensions, however, these quantities are only given as

formal power series in A which are most likely to be divergent (even at finite
values of k). Such models are renormalizable but not superrenormalizable. In
order to procede with a nonperturbative construction of the model we have to
find alternative methods of determining the renormalization quantities ZK, ôm2K

and AK. They have to be defined implicitly. The new technique to implement this

program was found in the renormalization group approach [12]. In constructive
quantum field theory this approach was pioneered in 1978 in a study of the
(superrenormalizable!) (04)3 model in [13] and it has since been applied
successfully to various models which are just renormalizable [14]. Even for the
construction of gauge theories this method appears to be the key ingredient [15].
On a more pedagogical level it has led to a completely new understanding of
perturbative renormalization, reducing the original BPHZ schemes to very
transparent and (almost!) utterly simple procedures [16].

The basic idea of this new technique is to carry out the integration over
function space with respect to the measure dfx^n((P) as a sequence of fixed
momentum scale integrals. More precisely we split the covariance GK of dvGic as

follows

GK GK, + T, k'<k,
where in GK. the momenta are cutoff at tc', while in T they are basically localized
in the range k' <p2<K. This allows us to split the field $ into high and low
momentum parts

<3> o' + ip

and to write

dvGXZxl2<5>) as dvGK(Z^') x dvr(Z"2W)

Substituting this into dfi™n and integrating over W we define the effective action
VKXJ.2<b') by setting the result equal to

expi-VAZiZ&Vdva^Z1»®')
(up to normalization).

It is an easy calculation to determine the low order (in AK) contributions to
VK-. With an appropriate choice of ZK. we find that VK, is of the same form as
Cprcn.

VAZÏ2, <&.») ^f ôm2K.<S>'(x)2 + Z2K.kK.V(x)4

+ 'small terms'

and we calculate

AK., ZK,, ômK' as functions of kK, ZK, òmK.
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These are the so called flow equations of the renormalization group transformation.

In order for the 'small terms' to be really small we have to choose jc'
sufficiently close to jc and AK has to be small. Thus, in order to end up with a

small value of jc', starting from a large value of jc, we have to proceed in many
small steps; i.e. we write jc' jc0 and introduce intermediate values jc0 < ict < jc2 <
¦ ¦ • < kn jc. Then we proceed from VKN to VKNl all the way to VKo.

The crucial problem is the choice of kK. The flow equation gives us kKo as a

function of kKN kK (disregarding the other parameters). Assume this relation is

invertible. Then we may fix kKo and choose kKN accordingly for every value of N.

If, for .V—»oo; XKn tends to zero, then our procedure should work, because for
small AKo all AKj are small and we should be able to control the 'small terms'
above. If this happens we say the theory is asymptotically free in the ultraviolet.
On the other hand, if for N^^>, kKN tends to infinity then, no matter how small
we choose the low momentum coupling constant AKo, the kKi will eventually grow
large and the nonperturbative control of the renormalization group transformation

steps get out of hand. The only way to keep kKN finite would be to choose kKa

'arbitrarily small', i.e. equal to zero. We would thus end up with a free theory.
We conclude that the renormalization group method can work only if the theory
is asymptotically free.

The example discussed so far, the (kcp4)4 model is not asymptotically free. In
fact, many people believe that no matter how one regularizes and renormalizes
this model, in the limit jc^oo it will always end up being trivial [17].

The flow equation for A„ AKn, with jc„ 2", looks like this

Xy~kn-ß2k2n-ß3k3n, With ß2>0.
This shows that for A„ small, kn_y is smaller than kn, contrary to what we need for
asymptotic freedom.

However, this flow equation suggests another interesting alternative: if kn is

small and negative then AM_1 is still negative and |A„_i| > |A„|.
A (cp4)4 theory with negative coupling is asymptotically free. This fact had

been discovered in 1973 already [18]. In 1984 the renormalization group methods
were finally used to give a rigorous construction of a (04)4 theory with negative
coupling [19].

Though the formal power series expansion in powers of A of this model

agrees with the standard Feynman diagram expansion, it is unlikely to define
a physical model: it seems to lack the most crucial property which is needed

to go back from the Euclidean description to a Minkowski theory (physical
positivity, [7]).

The renormalization group method has been used successfully to study
several other renormalizable models:

- in d 2 dimensions the model with quartic fermion interaction and more than
one flavour: £, (E„ Wai¥a)2, (the Gross-Neveu Model), [20].

- the infrared limits of several massless models which are asymptotically free in
the infrared, see e.g. [21].

- gauge theories in d 3 dimensions [15], see also [22] for results in d 4.
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The developments along these lines are far from being complete at this point
but many people are confident that within a reasonable amount of time they will
allow for a rigorous construction of a d 4 gauge theory with (not too many)
fermions.

Maybe by the time this goal has been reached all of high energy physics has
been explained by string theories and field theories are of no interest anymore.
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