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UNIVERSALITY IN THE KINETICS OF FIRST-ORDER PHASE TRANSITIONS

M. Droz, Département de Physitjue Théoricjue, Université de Genève,

CH-1211 GENEVE 4, Switzerland

Sumnary : The pr<±>lem of the existence of universality classes in the kinetics
of first order phase transitions is considered in view of the latest theoretical

and experimental results.

1. Intreaductiean

The kinetics of first order phase transitions studies the dynamical
evolution induced by a sudden change of external therrtodynamic parameters in a

system which exhibits a first order phase transition. Let us illustrate the

problem on a simple example, the binary alloy A-B. The phase diagram of
this system is drawn on Fig. 1. The states above the coexistence curve are

horrogeneous. Below the coexistence «curve, the spinodale line divides the states

into metastable and unstable ones.

One considers the following process. An alloy of a given (concentration c

prepared in a homogeneous state (i.e. at temperature T.) is suddently
cjuenched at a temperature T_ below the coexistence curve in a far from

equilibrium state. This system will evolve to reach eventually a new eejuilib-
rium state in which it is formed of two phases, one rich in A (concentration

c the other rich in B (concentration c_). What is the dynamical evolution

between the initial and final etjuilibrium states is the ejuestion one would

like to answer.

Transmission electron microscope experiments show that two different
situations occur. A netastable system phase separates via the birth and growth of
droplets and one speaks of nucleation process.An unstable system phase separates

via the formation of a finely dispersed precipitate which gradually
coarsens. One speaks of spinodal decomposition. In both cases, it is suitable
to distinguish two distinct regimes : the early and late tine regimes. The main
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features of the dynamical evolution for all cases is sunniarized in Table 1,
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Figure 1 : Phase diagram temperature-concentration for a binary alloy. C

is the coexistence curve, S the spinodale line. M and U

are respectively the netastable and unstable states.

Note that the homogeneous nucleation and the spinodal decomposition are

just toro asymptotic limits of a same pheneamenon. Indeed, the spinodale line is
a mean-field concept and thus one should observe a smooth crossover between

the toro limit cases when one varies continuously the concentration of the alloy.
Note also that the hamiltonian describing the static properties of the binary
alloy ecan be mapped onto the one of an Ising system. Working at fixed concentration

means in Ising terms working at fixed magnetization.
A very inportant ejuantity accessible to experiment is the nonequilibrium

structure factor S(q,t). Experimentally one finds that after a transient
time t following the cjuench, S(q,t) scales according to [1,2] :

S(q,t) -=-Lu(t)F[x(t)] (1)

where x(t) qL(t) and d is the dimensionality of the system. Thus the
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Table 1

HOMOGENEOUS NUCLEATION SPINODALE DECOMPOSITION

(dynamiecal evolution of a metastable (dynamical evolution of an unstable
state) state)

EARLY TIME

- localized droplets with finite size, - Spontaneous formation of a finely
needed to initiate the phase dispersed precipitate (intisr
conseparation. nected pattern).

- Instability towards large localized - Instability towards small and long
fluctuations. wave-length fluctuations.

- Finite activation energy. - No activation energy.
- Critical droplet radius R

Droplets with R < R shrink and
c

with R > R grow.

LATE TIME

- Growth of the droplets of the - Growth of the interconnected
patminority phase. tern.

- Well defined dreaplet interface. - Formation of well defined inter¬
faces

problem is characterized by one lenght L(t). Eq. (1) expresses the self-
similarity observed in the coarsening of the pattern. Moreover, L(t) behaves

for large times as

L(t) « A + Btn[1 + t m
+ ...] (2)

The exponent n is called the growth exponent and characterizes the long tine
behaviour of L(t).

In view of what we know from the theory of critical phenomena, it is a

natural cjuestion to ask if there exist or not some universality classes for these
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far from equilibrium phenomena. If universality holds what are the parameters
which define an universality class. The theoretical problem one has to face

is to compute from first principles the structure factor. This is a difficult
problem. The main approaches will be briefly reviewed in the next section.

Theoretical Approaches

Three types of approaches have been used for this problem [1] :

2a. The semi-microscejpic approach

The microscopic degrees of freedom (i.e. the local concentrations c. or
the local spins s.) interact with the heat bath. The evolution is given in
terms of a master equation for the probability P{c,t} that the configuration
c {c.} is realized at time t, namely

d P{c,t} -^a)(c,c')P(c,t) + £ io(c',c)P(c,t) (3)

Most of the physics is contained in the transition rate (jj(c,c') ¦ This rate
can be chosen in such a way that the order parameter (i.e. the concentration

or the magnetization) is conserved or not conserved. This leads respectively
to the well known Kawasaki [3] or Glauber [4] dynamics. The structure factor
is given by

S (t) Tr{(Ci - <Ci>)(c. - <o)P(c,t)} (4)
c

The ecquation of motion for S. (t) follows from (3). It turns out that,
except for a special choice of to in the one dimensional case with non

conserved order parameter [4], the equation of motion for S. (t) is not closed.

Higher order correlations are involved and one has to face an infinite
hierarchy of equations. Accordingly, there is no analytical solution to this problem.

Different approximations have been proposed. In two dimensions, an ad hoc

real space renormalization .group method leads to reasonable results for the

Ising model [5] but its applicability to other models is questionable [6]. The
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most widely used technique to conpute the structure factor in this semi-microscopic

framework is the Monte Carlo method [7]. However, this technique is not

free of diff ieculties. Different values of the growth exponent can be obtained

by using different spin updating in the Monte Carlo simulation [8,9].

2b. Phenomenological cluster dynamics

In this less microscopic approach, one considers the tine evolution of

n(l,t), the average number of clusters of size l. This is a generalization
of the celebrated Becker-Döring theory of nucleation [10]. We shall not discuss

this phenomenological approach in details here (see for example [11]).

2c. Semi-macroscopic approach ; field theory for coarse-grained variables

Instead of looking to the problem on a microsccopic scale, one considers

coarse-grained variables c(x,t). The c(x,t) are obtained by averaging

the microscopic variables c. over domains of size D of the order of the

correlation length ç of the system. The description is thus semi-macroscopic.

The coarse-grained free energy functional F{c(x)}, describing the equilibrium

properties of the system, could in principle be computed frcm the microscopic

hamiltonian [2], but one seldom is able to perform explicitly this
procedure. One rather assumes a phenomenological Ginzburg-Landau form for
F{c(x)} such as to reflect the physical properties of the microscopic model,

i.e. the presence of a phase transition at T Accordingly,

F{c(x)} Jddx[|(Vc)2 + f(c)] (5)

where f(c) is an one well potential for T > T and a two well potential for
T < T

c
Through the coarse-graining process, the dynamics of the field c(x,t)

is new given by a non linear Langevin equation [2]. Here again, the various
conservation laws should be taken into account. Two particularly simple models,

corresponding respectively to a non conserved or conserved order parameter,
and called "moeäel A" and "model B" in the literature [12], are characterized

by the following Langevin ecjuations :
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8 c(x,t) -M —— + Ç(x,t) (6)
C " 6c(x,t)

vfere <ç(x,t)> 0,

Ç(x,t)Ç(x',t,)> -2kBTMoiô(x-x,)eS(t-t') (7)

M' for model A

and M
a

(8)
2

MV for model B

The binary alleoy is thus described by ircdel B. In this case, the etquation of
motion for the structure factor is [2] :

2 2 (2) 2
dtS(q,t) -2Mq [Kq + fv ']S(q,t) + 2^-0*3 +

+ ns3 iX loX«
Vidiere S (q,t) is the Fourier transform of <óc (x,t) ôc(0,t) > withn
6c(x,t) c(x,t) - <c(x,t)> and f[n> (3nf/3cn)

o eq
Again, the equatieon of motion for S(q,t) is not closed. Higher order

correlation functions appear. A general solution is not possible and one has

recourse to approximations. 1\k> regimes should be distinguished : the early
time and late time regime.

Nòte that a description of the dynamics in terms of non linear Langevin

equatieons has been widely used in the framework of the critical dynamics wheal

appreoaching T frcm above. It turns out that in this case, the universality
classes are characterized by [12] :

- the dimensionality of the system d

- the nuttiber of components of the order parameter n

- the symmetry of the mcx3el

- the conservation laws

- the "hydrodynamic modes".

This could give seme clues about the universality classes for the first order
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phase transitions.

3. Early and Late Stage Approximations

Let us return to the simple case of the binary alloy, or the Ising model,

and discuss seme important approximations.

3a. Early stage approximations
The siltplest apprcaximation consists in neglecting the non linear terms in

the equation of motion (9) for S(q,t), keeping [13] or not [14] the noise

term. The main feature is that the structure factor initially grows esxponen-

tially with time for all q smaller than a critical value q Such an

exponential growth is only correct for very early times. The only reasonably
successful early time theory of spinodal decomposition which treats the non

linear dynamical effects is due to Langer, Bar-on and Miller [15]. Their theory
is a particular truncation of the exact equation of motion (9) which is plausible

but not systematic. The higher order correlation-functions S are

approximatively expressed in terms of S and of the moments of the one point
distribution functional P {c,t}. With the ansatz that P is the sum of two

Gaussians, the calculation of S(q,t) is carried out numerically. It turns
out that this approach quite satisfactorily explains the main ejualitative
features of the early time development. However, focusing on long wave-length

instabilities, this theory is not able to describe nucleation and growth.

3b. Late stage approximations

For late stages, the interfaces between phases are well defined and

gently .curved. Accordingly, it is natural to look for a description in terms

of dynamics of interfaces. At great deal of effort has been recently devoted

to the dynamics of interfaces for a system whose order parameter is non

conserved (model A) These works are based on the so-called kinetic drumhead

model. A deterministic version of this model was first derived by Allen and

Cahn [16]. They showed that the normal component of the interface velocity is
simply given by :

v KMT (10)
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where r is the mean local curvature of the interfacce, whiech is acting as a
1/2driving force. The average domain size is L(t) ~ t and thus the growth

exponent is :

n 1/2 (11)

in good agreement with experimental results for 2 and 3 dimensions.

A non deterministic version of this problem has been worked out by

Kawasaki and Otha [17]. Several developments of these works have been performed.

Otha, Jasnow and Kawasaki [18] obtained an approximate solution of the

Allen-Cahn eejuation in d-dimensions. They derived an explicit form for the

structure factor in 2 and 3 dimensions which is in reaseonable agreement with
Monte Carlo studies of the kinetic antiferromagnetic Ising model. The scaling
function F depends explicitly on the dimension d. The role of the thermal

fluctuations eon the interface dynamics has been considered by Grant and Gunton

[19]. There is competition between the flattening of the interface due to the

driving force associated with the ecurvature and the roughening of the interface

due to thermal fluctuations. This leads to a slowing down of the growth

process. However, this slowing down does not show up in the growth exponent but

only in the amplitudes. Note also that all the above works do not treat properly

the non linear aspect of the problem.

In the case of a conserved order parameter (model B), one has one of
the few reasonably well established theoretical result. The late stage growth

of droplets in the case of a small initial supersaturation has been solved by

Lifshitz and Slyozov [20]. The growth exponent in this case is :

n 1/3 (12)

This value is in good agreement with seme experiments in 2 and 3 dimensions.
The above results show how the conservation laws and the dimensionality

enter into the determination of the growth exponent. However, only the case

of an one component order parameter was considered until now. Many «questions

remain unanswered such as : what is the role played by the number of components

of the order parameter (i.e. the degeneracy of the ground state), the
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depth of the «quench, the presence of disorder in the system

4. Recent Developments

We briefly review what is the present situation concerning the above

.questions.

4a. Degeneraecy of the ground state and depth of the quench

An old pheraomenological argument due to Lifshitz [21] and rederived more

recently by Safran [22] claims that if the degeneraccy p of the ground state
is too large, there is a slowing etown of the growth mechanism due to the
pinning of the vertices farmed by the intersections of interfaces. More .quanti¬

tatively, it is predicted that if p > d + 1, then L(t) ~ tot. This prediction

has been tested by Monte Carlo simulations in two dimensions. For q-state
Potts model on a triangular lattice no pinning has been observed and the
«growth exponent vary smoothly from n 1/2 for q 2 to n ^ 0.42 for
q > 26 [23]. For the same system on a sequare lattice, the results are similar
to the triangular ecase for a quench at a temperature T > 0.5T For
T < 0.5T pinning is observed [24]. The situatieon is seomehow similar for the

N-state deck moctol [25]. However, it is yet not clear if there is pinning or
not at low temperature.

Recent studies on classical xy model with anisotropy (for which p 4)

lead to the introduction of the concepts of "soft wall" or "hard wall" between

phases [26]. This would lead to two different universality classes related to
the rigidity of the interfaces. The situation is thus still very unclear.

4b. Quenched disorder in the system

Recent Monte Carlo simulations for 2 dimensional Potts models with quen-
cchtaSd disorder [27] have shown that the characteristic lenght L(t) was growing

for intermediate times similarly to the pure case. However, for large time,
the interfaces get pinned by the (quenched impurities and the growth mechanisms

stops.

In conclusion, we see that many questions about the universality classes

in kinetics of first order transition are unanswered. The reason is that we do
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not have yet a good and complete theory to explain the (real or numerical)

experimental results. Only asymptotic predictions (early or late stage) are
known. All theories assume that for late stage the growth is finally dominated

by one mechanism. However, a worse situation «could happen. Recently, Fukurawa

speculatively suggested a possible chaotic conpetitiion between various growth
mechanisms [28]. It results corrections to the growth exponent similarly as

intermitenecy does in turbulent flow.
Even in the sittplest case in which one mechanism finally dominates, it

would be crucial to know when one has reached this asymptotic regime. Thus, it
would be of great interest to know how one crosses over frcm the early stage

to the late stage.
At lot of work remains to be done but progress is slow due to both the

non linear and non equilibrium character of the problem.
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