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STOCHASTIC BEHAVIOR IN NCNBQUILIBRIÖM SYSTEMS

N.G. van Kämpen, Institute for Theoretical Physics of the University, Utrecht,
Netherlands

A system caught in a metastable state will ultimately escape as a result of
thermal fluctuations. The situation may be modelled by a Brownian particle
caught in a potential trough, obeying either a Smoluchowski diffusion
equation or a Kramers equation. The escape time can be identified with a mean

first passage time, which obeys the Dynkin equation. Unless this equation can

be solved exactly, it has to be treated by singular perturbation theory. The

calculation is daroistrated for the case of diffusion and for the
one-dimensional Kramers equation.

1. Introduction
Figure 1 shows half an ellipsoid of solid material resting on a table. A

marble is at rest in the unstable equilibrium position. The randcm collisions
of the air molecules will start it rolling down and we ask the probability
distribution of the point where it hits the table. It is easy to write the
stochastic equations of motion for the marble, but as there is no hope for an

explicit solution, we have to find an approximation method.

FIGURE 1

Ihe obvious idea is to select a small cap around the top in such a way

that: (a) inside the cap the equations of motion can be linearized, so that
they can be solved including the randcm force; (b) outside the cap the effect
of the randcm force is negligible and the nonlinear deterministic equations
suffice. Thus the linearized stochastic equations serve to find the probabili-
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ty distribution along the edge of the cap, which is then translated by the
subsequent deterministic motion into a distribution along the equator. The

result must be independent of the precise size of the cap.
Ihis is precisely what is done in singular perturbation theory [1], of

which the classic example is the calculation of Prandtl's boundary layer for
fluids with small viscosity [2]. We want to emphasize that singular perturbation

theory is the appropriate tool for dealing with fluctuations in
unstable situations. The many ad hoc approximation methods in the literature are

merely this method in various disguises. Admittedly, the method is less cut
and dry than regular perturbation theory; one still needs sane ingenuity in
applying it, but less than in reinventing it.

This lecture is confined to the problem of computing the decay time of a

metastable state. Other prcblans of interest are: the decay time of unstable

states; the probability distribution of their decay products, illustrated by

Fig. 1; the behavior near critical points where stable states became unstable;
and finally the evolution of the probability itself, vtfiich contains all other
information.

An apology: I am talking about mathematical methods applied to given
equations. The equations are suggested by physical systems and are often
used to describe them. Hcwever, they are customarily obtained by adding ad hoc

a fluctuating force with assumed properties, rather than by actually
describing the actual physical mechanisms that cause the fluctuations. I find
this approach unsatisfactory and it has caused many difficulties [3],
culminating in the grotesque Itô-Stratonovich controversy [4].

2. One-dimensional diffusion
Brownian particle in a field of force:

HiavË. J.u.(X)P + e^| (-~<x<oo). (i)
3t 3x 3X

U(x) is the force potential and 6 the absolute temperature; the nobility is
absorbed in t. This equation does not just apply to Brownian particles, but is
also used for chemical reactions, nuclear diffusion, nucleation and population
statistics. We are interested in potentials of the shape in Fig. 2. The

question is: when at t o the particle resides in the potential trough
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U(x)

W

ba

FIGURE 2

around a, how long does it take on the average to fluctuate across the barrier
W at b?

W/6
The average escape time x involves the Arrhenius factor e This was

first suggested by the transition state theory for chemical reactions [5],
according to which the process from a to c requires an excitation into the

W/8'activated ccmplex' b. Apart from e ' there is another factor; our aim is to
compute this factor on the basis of (1).

In order that x is well-defined it has to be much longer than the local
relaxation inside the trough, so that the precise initial location in the

trough is immaterial. Also the particle has clearly escaped only when it has

reached a location c frcm where the return probability (per unit time) is
negligible. These conditions require e to be large. The escape tine x is
defined only up to order 1, that is, relative order e

As a preliminary exercise
consider the potential in Fig. 3. (Ihe

letters a, c and b c-a have a

slightly different meaning than in
Fig. 2). Ihe equations are

FIGURE 3

U(x)
ap(x,t) _

3t
is
X for

and

o < x < a

a < x < c

C X P(a+o,t) e
W/e P(a-o,t)

Reflection at x o and absorption
at x c.

[P(x,t)/3x] P(c,t)
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The solution can be expressed as an eigenfunction expansion

P(x,t) =1 <-\ Px(x)e"Xt
X

where the eigenvalues X are given by

X 9k tan ka e ' cot kb

For W/6 » 1 there is one low lying eigenvalue, which is the transition
probability per unit time,

Xq (e/ab)e~W/6 1/x (2)

The factors a and b, being the widths of the trough and the thickness of the

barrier, will appear in every case.
Back to the potential of Fig. 2. Let T (x) denote the average time it

takes a particle starting at x to reach c for the first time. This mean first
passage time is a precisely defined quantity. Ihe escape time x may be identified

with T (a) within the margin of its definition. T (x) obeys the Dynkin

equation [6,7]

dT d2T

- U' (x) —- + e £ - 1 T (c) o (3)
dx dx

Ihus one can find the mean first passage time from an ordinary differential
equation withcut having to solve the partial differential equation (1) (as we

did in the previous example). The left-hand side of (3) is the adjoint of the
operator in (1).

The solution of (3) is
c x'

T^lje^'^dx' { e-U(x,,)/6 dx» (4)

X -co

If one takes x anywhere near a and approximates the integrals for small 6

x 2n[U"(a)|U"(b)|]"1/2 e"W/e

[U"(a)] is a measure for the width of the trough and |U"(b) |~ measures

the thickness of the barrier. Hi-^ier orders in 6 may be added to the pre-
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factor; they are not very interesting, but they are not inconsistent with the
-W/6inherent margin in the definition of x, which is of relative ordere ' It

would be inconsistent, however, to evaluate the integrals in (4) with more

precision than is provided by these expansions in 6.

3. Diffusion in more dimensions

The diffusion equation in a potential U(r) is

3P(r,t)/3t V. (VU)P + 6V P

We take two dimensions and assurte that U(x,y) is shaped as in Fig. 4, with a

minimum at a and a pass in the crater ridge at b, of height W. The trough

covers a region a in the x,y
plane and the projection of
the ridge is a closed curve
3s.. Let T(r) be the mean

b ^A-r— y \ tine for first arrival at
the ridge. The escape time

is x 2T(a), because on the

ridge the particle has a

fifty-fifty chance to return.
The Eynkin equation is

FIGURI 4

W

^ L2dn

VU(r).VT(r) + 9V T(r) =-1 (r£ß) T(r) =o (r € 3fi) (5)

An explicit solution is no longer possible and singular perturbation theory is
needed. I give a sirtplified version of the calculation of Schuss and

Matkowsky [8,7].
Inside n, away from the boundary, T(r) is nearly constant and contains

the factor e We suppose again W/6 » 1 and set

T(r) e ' w(r) w(r) o (r€3fi) w(r) C inside «

- VU(r).\Jw(r) + ev^wtr) e~W/S (6)

To determine C we have to study the vicinity of the pass at b.
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Introduce coordinates s,a as in Fig. 5, so that near b

U(r) u(s) - ^a2v(s) + ©(a3)

Equation (6) transforms into
s

FIGURE 5 ^

QJ^ ,,,3w± 3w^Q/32w^32w\ J -W/9\

3s 3a 3s 3a

For brevity we have emitted sate terms

which will disappear in the next step

2

w A(s) I e vvo'n /2e dn + B(s)

1/2
anyway. The next step consists in rescaling: a 6 Ç, so that to lewest order

2
> 3w _ 3w 3 w /-.s-u' (s) — + Çv(s) — + —j o (7)

3s 3Ç X
At the pass u'(s) o; as a consequence the first term may be omitted, as will
be verified presently. Then the solution, involving two integration constants

A(s), B(s), is

J e"v(s)n'

o

But B o since w must vanish an 3fi. For large Ç

w -> A(s)[n9/2v(s)]1/2

This must be the value C of w inside fl. Hence we have in the vicinity of b

or/Zë

T(8,o) =eW/0c/gS } e"**8»" dn

o
We have found how the function T(x,y), vvhich is constant inside fi, is

dented near the escape pass b. The constant C is still undetermined because
—TT/9

we have not yet utilized the right-hand side of (5). Multiply (5) with e

and integrate

| e"U/e f ds - { e"U/e dxdy
3fi fi

The main contribution to the integral on the left canes from the vicinity of b
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and with the usual approximations for the integrals one obtains

x 2eW/9 C 2eW/9 ^f j e~^ dxdy

fi
-1/2[u"(o)] ' neasures the width of the pass, v(o) the thickness of the barrier.

The integral can again be evaluated by ejqpanding around the minimum a. Notice
2that only values of s enter for which u" (o) s ~ 9, which a posteriori justifies

the emission of the first term of (7).
The method can be modified for other cases: more than one pass; ridge of

constant height; sharp arête as in Fig. 6. More serious is the case where the

deterministic part of the diffusion equation has no potential. This may occur

in physical systems that are kept far frcm equilibrium by sate external agency,
and also in nonphysical systems such as populations. Then the boundary 3fi is
the separatrix between two domains of attractiai [9]. Yet almost the sane

calculation can be perfanted.

4. The Kramers equation

If the Brcwnian particle is not overdanped the inertial term in its
equation of motion must be taken into account, so that the velocity or
momentum p enters as a variable in addition to x. The stochastic behavior is
described by the Kramers equation [10,11,12] for the probability density in
(x,p)-space

ESMiX _ p iE + u. (x) 1£ + Y(_L pP + e iff) - (8)
3t 3x 3p V3p 3p

'

It contains a second parameter, the friction coefficient y • We aie again interested

in the escape from the potentiell trough in Fig. 2.

(i) For large y (8) reduces to the one-variable Smoluchcwski case (1). To

show this [11,13,14,15] one eliminates the fast variable p by a singular
perturbation technique akin to the Chapman-Enskog method in kinetic gas theory.

(ii) For small y the zeroth approximation is the deterministic motion

x p, p -U' (x). For the motion inside the trough one transforms to action-
angle variables, or to energy and phase angle [11,16]. The terms with y are
averaged over the phase so as to obtain a single-variable Smoluchowsky

equation for the energy distribution. Hcarever, near b the motion is too slow



Vol. 59, 1986 Stochastic behavior in nonequilibrium systems 903

for phase averaging; hence this equation cannot be used to canpute the escape,
unless the potential maximum is peaked as in Fig. 6.

(iii) If y is fixed but 6 small the
U(X)l zeroth approximation is the damped motion

FIGURE 6 \ At.

>w x p p -U' (x) - yp
a b c^~

Let x ip(t), p t|)(t) be a solution. The

fluctuations are obtained by substituting in (8)

x cp(t) + 61/2Ç p Mt) + 91/2n

The result is an equation for the probability n(£,n,t), which can be solved by
1/2ordinary perturbation theory in powers of 6 ' Hence one finds the deterministic

behavior with snail fluctuations tagged on to it. Condition is that there

is a single point attractor, otherwise the fluctuations may grew to make the

approximation spurious. Limit cycles can be treated to a certain extent [17],
but not our escape problem.

Our problem is therefore to calculate the escape time without using these

limits, but how is the escape tine defined? Of course one must have again
W/9

e ' » 1, but when is a particle escaped? The position x alone does not

specify the state and one is not
sure vdiether particles 1 and 2 in
Fig. 7 aie escaped. One cannot

FIGURE 7 \ 2 _/^N. therefore identify the escape tine
with (twice) the mean time for
first arrival on top of the barrier.
Rather one should take the tine of

first arriving at sate c such that c-b is large cotpared to the mean free
1/2

path 9 y and the return probability per unit time is negligible (namely of
-W/6order e The corresponding Dynkin equation is

2
.— 31 TTI 3T 3T -.

3 T ,r»\p U' (x) yp — + y9 —j -1 (9)
3x 3p 3p 3p

T(c,p) o for p > o

We solve this equation in the same way as (5) by the Ansatz
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T(x,p) eW/e w(x,p) « eW/8 C

Near b we set x-b y and

U(x) W - %vy2 + 0(y3)

Hence
3w 3w 3w 3 w

p —- + vy yp — +yu —j
3y 3p 3p 3p

o

The equation has a traveling wave solution [11]

+v

(10)

(11)

w(y,p) f(p+oty) a %y

oo

f(z) A I exp - y\ z'2]dz' + B

z

At c the integral is practically zero, hence B o. For y -» - »

w(x,p) -* A[2TTy6/(a-y)]1//2 C

Finally to find C multiply (9) with exp[-p /26-U/9] and integrate over

- °° < x < b, -oo<p<oo After partial integration the only surviving terms

are

-U/e f -p2/29 -U(b)/6e ' dx pe ^ ' dp e ' x(b,p)

pe " ' dp A exp «-y „2
2y6

Z dz

v/ 2-n2ny9 c(-e)
-p2/26

e c exp [ 2H
L 2y9 dp

'1 + -J '—

4v 2-Jv-

This determines C and hence x. The curious combination of y and v | U"(b) I

exhibits the interplay of the rtean free path and the width of the potentiell
barrier.
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W/6
Apart frcm the condition e » 1 we have used the parabolic approximation

(10). Let V be a typical distance over which this holds; in most cases

J>b ~ |U"(b)/U'"(b)| or i= |U"(b)/U""(b) |1/2

On the other hand, we used the asymptotic expressions for the integral in (11);

hence the approximation is consistent provided that

[(a-y)/ye]5.2 » 1 or |U" (b) I <£ » 6y{y+|U" (b) I }

Thus we have shewn that, for the Kramers equation in a metastable
potential trough, the escape tine can be found by a rather straightforward
application of singular perturbatioi theory. In the seminal paper of Kramers

the problem was solved by ingenious calculations, but in principle it contains

all the ideas that went into our more formal methods.
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