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Wigner's theorem and the asymptotic
condition in scattering theory

By R. Purice

Department of Theoretical Physics, Central Institute of Physics, Bucharest, P.O.
Box MG 6

(27. IV. 1986)

Abstract. The object of this paper is two-fold: first to give an elementary, analytic proof of
Wigner's theorem by directly proving that the linear extension of an isometry between two projective
spaces to the algebras of finite rank operators is multiplicative or antimultiplicative, and then to give a

simpler proof of a theorem of Jauch, Misra and Gibson about the existence of wave operators and of
the modified free evolution.

1. Introduction

To each quantum system without superselection rules the standard formalism
of quantum mechanics ([8]) associates a complex Hilbert space X and an
isomorphism from the lattice of propositions of the system onto the lattice of all
orthogonal projections ££(X) in X. This isomorphism enables one to identify the
set of pure states of the physical system, with P>(X), the set of one-dimensional
orthogonal projections in X (or, equivalently, the set of rays in X).

As remarked by J. M. Jauch, B. Misra and A. G. Gibson [7], it is natural
from the physical point of view, to consider on P(X) the following metric (where,
p, q e P(X) and Tr is the usual trace function in X)

d(p,q)= sup |Tr(p£)-Tr(<7£)|. (1)
EeiClX)

In fact, Tr (pE) is the mean value of the proposition E in the state p, hence

d(p, q) small means that the difference between the mean values of any
proposition E in the states p and q is small, uniformly in E.

It is clear that V(X) can be identified with the projective space of X, i.e.
with the quotient of the unit sphere in X:

Sf(X) {cpeX\\\cp\\ 1} by the action of the group
£/(l) {AeC||A| l}.

For cp e if(X) we denote by cp its image in P(X) (i.e. the orthogonal projection
on the subspace generated by cp). It is easy to show that d is a metric on P(X),
which becomes a complete metric space, and that we have the following explicit
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expression for any cp, xp e îf(X)
d(cp, x),) \/l-\(cp,xp)\2. (2)

The following well-known theorem of Wigner completely describes the
structure of the isometries of the above metric space.

Theorem (Wigner). Let X and X be two complex Hilbert spaces and

S:P(X)^>P(X) an isometry. Then there is a (unique, up to multiplication by a

complex number of modulus one) linear or antilinear isometry: U:X-^>X such

that: Sep (Ucp) for any cp e if(X).

In this paper we shall give an elementary, 'analytic' proof of this result. See

V. Bargmann [2], G. Emch and C. Piron [4], U. Ulhorn [9], for other proofs, and
W. Hunziker [5] for a related theorem. We hope that the analytic methods we
shall use will provide deeper insights into the metric structure of the projective
space P(X). In fact, this will also give us the tools for proving a theorem of
Jauch, Misra and Gibson which is quite close to Wigner's theorem, as will be seen
later.

The topology defined by the metric (1) has been used in [7] in order to
formulate an asymptotic condition in the quantum theory of scattering with a

much stronger physical motivation than the usual one (cf. [6]). The price paid for
this naturality is that the existence of wave operators is no more evident. One can
also prove that the wave operators can still be defined by the usual strong limits if
one uses a modified free evolution. The proof of these results in [7] is quite
involved. In the last section of this paper we shall give a simple proof of the

following theorem which contains the main results of [7].

Theorem (Jauch-Misra-Gibson). Let X, X be two complex Hilbert spaces
and {VK},g0 a family of linear isometries VK, : X^ X. Let W, : P(X)-*P(X) be the
induced isometries (i.e. W.cp Wttp). Then the following statements are equivalent:

(1) For each p e P(X) the limit lim^o. W,p co(p) exists in P(X).
(2) There is a family: {§,},B0 of complex numbers of modulus one, i.e.:

§, e U(l), such that lim,.^ W,^,cp Wcp exists in the strong topology of X
for each cp e X.

Under the above conditions, W : $?—» X is a linear isometry which induces co,

i.e.: co(p) WpW* (or co(cp) W<p). Moreover, W is uniquely defined by this
relation, up to a multiplicative complex factor of modulus one.

Let us remark that the existence of a linear isometry W such that
co(p) WpW* is assured by Wigner's theorem (VK must be linear because the
linear extension of co to the algebra of finite-rank operators from X to X, is

multiplicative, see Lemma 4). However, a much simpler proof can be given in
this case (see Section 4). Also Theorem 3 of [7] follows from Wigner's Theorem
(see Lemma 7 for a simple proof).
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The paper is organized as follows: in Section 2 we make some general
remarks on P(X), which we consider of interest (even if they are not strictly
necessary for the rest of the paper), Section 3 will contain the proof of Wigner's
Theorem and Section 4 the proof of the Jauch-Misra-Gibson theorem.

2. Remarks on projective spaces

We first recall some facts about finite rank operators. Everything is

elementary because it can be reduced to the finite dimensional case. If X is a

complex Hilbert space we denote by &>(X) the *-algebra of finite rank operators
in X. It is clear that P(X), the set of all orthogonal one-dimensional projections
of X, is a subset of 2F(H), which generates it as a complex vector space (because
each self-adjoint operator in 3^(X) is a finite linear combination of elements in
P(X)). The following norms on &(X) will be of interest for us:

(a) operator norm: ||^||« supV6y(3r) ||Aç>||

(b) trace norm: \\A\\X Tr |_4| supBeSE(3(r) |Tr (AB)\

(c) Hilbert-Schmidt norm: ||_4||2 [Tr (^4*-4)]1/2.

(The second equality in (b) follows easily by taking B U* where A \A\ U is

the polar decomposition of A).
We denote ^(X), i », 1. 2, the space ®(X) provided with the norm ||-||,.

Remark that 3F2(X) is a prehilbert space, the scalar product being: (A, B)2
Tr(A*B). We shall need further the following lemma, which shows the physical
meaning of the trace norm (cf. the introduction):

Lemma 1. Let Ae3F(X) be self-adjoint. Then:

sup |Tr (A£)| è Tr Ul + è iTrAl
EeSetX)

where ££(X) is the lattice of orthogonal projections in X.

Proof. Let us denote F+, F_ei£(X) the orthogonal projections on the
subspaces generated by the eigenvectors of A associated to positive (resp.
negative) eigenvalues. Then: F+F_ F-F+ 0; A AF+ + AF_ \A\ F+ - \A\ F_;
\A\ AF+ - AF.. Then for all E e %(X):

|Tr (AE)\ |Tr (\A\ F+E) - Tr (\A\ F.E)\ ^ max [Tr (\A\ F+E), Tr (\A\ F.E)]
=S max [Tr (\A\ F+), Tr (|,4| F_)] l[Tr \A\ F+ + Tr \A\ F_

+ |Tr \A\ F+ - Tr |A| F_|] |[Tr \A\ + |Tr_4|].

In the third step we have used the inequality |Tr (BC)\ ë \\C\\X Tr \B\ and the fact
that ||£||oc l. The supremum is effectively reached by taking E F+, if
Tr (\A\ F+) =g Tr (|A| F_) or E F_ if the opposite inequality is true. Q.E.D.
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Now, besides the metric d defined by (1), we can consider on P(X) the
metrics induced by the embeddings: P(X) a ^(X), i 1, 2. The lemma below
will show the exact relation between them. On the other hand, as we said in the
introduction, P(X) can also be identified with the quotient of if(X) through the
equivalence relation induced by the action of U(l), i.e. cp ~ \p if and only if there
is A e C with |A| 1 such that cp Xxp. Hence we get naturally a quotient metric
on P(X), namely if cp, xp e ir°(X), then

d'(q>,xp)= inf \\kcp - pxp\\. (3)
...fiée

Lemma 2. For any cp, xp e if(X) and i 1, 2, °° we have

d(cp,{p) 2-"-\\cp-{p\\l [l-\(cp,xp)\2y2,
d'(cp,{p) [2(1-\(cp,xp)\)]l/2.

In particular:

7j^d'(cp, xp)^d(cp, {p)^d'(cp,{p).

Proof. If we take A cp - xp in Lemma 1 we get d(cp, xp) \ \\cp - xp\\x. The
equalities: ||<p - xp\\x 2 \\cp - xp\\x 2[1 - \(cp, xp)\2]V2 are proved in [7] by an
elementary calculation (the eignvalues of the operator cp - xp are 0 and

±[1- 1(9, ^)IT2- Then:

II4> - y>\\î Tr (cp - xp)2 2 - 2 Tr (cp ¦ xp)

2-2\(cp,xp)\2 2\\ç-xp\\l.
Finally:

(d'(cp, {p))2= inf \\cp-zxp\\2= inf (2-2Rez(<p, xp))
zeC zeC
kl=i 1*1-1

2(1-|(<p, 1/01). Q.E.D.

Corollary. // X and X are complex Hilbert spaces and S : P(X)-+ P(X), then
S is an isometry for d if and only if it is an isometry for d' and if and only if for
eachp, qeP(X):

Tr[(Sp)-(Sq)} Tr(p-q).
The relation between convergence in P(X) and that in y(X) is given by:

Lemma 3. Let cp„ cp e Sf(X), teU + Then lim,__.» tp, cp in P(X) if and only
if there is a sequence {^J^r, of numbers §, e U(l) such that: s-lim,.^ i,cp, cp.

Proof. Since: (%,%>,) cp, and the projection: ^(X)^-P(X) is continuous,
one implication is trivial. Reciprocally, let:

£, (<Pt, <P) • \(<P„ <p)\~l (with 0 • 0"1 1 by definition),
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then |, e U(l), and:

U,q>, - cp\\2 2 - 2 Re f,(<?„ cp) («/'($„ <p))2^0. Q.E.D.

We shall discuss now the problem of lifting an isometry between the
projective spaces of two Hilbert spaces to a linear or antilinear isometry between
the corresponding Hilbert spaces. The procedure will consist in passing first to the
finite rank operators and then proving that the isometric *-homomorphisms of
?F2(X) are induced by linear isometries on X.

Definition. We shall say that p: !F(X)—--2F(X) is a morphism (resp.
anamorphism) if it is linear, p(A*) p(A)* and p(A ¦ B) p(A)p(B) (resp.
p(A-B) p(B)p(A)).

Lemma 4. Suppose p : ^(X)—* &i(pC) is an isometric morphism (resp.
antimorphism), for i 1 or 2. Then p[P(X)] e P(X).

Proof. Let us take p e P(X). Then, with the above definition we have:

p(p) p(p*) p(p)*,
p(p) p(p2) p(p)2.

Hence p(p) is self-adjoint and idempotent, thus p(p) is an orthogonal projection
in X. Now if i l, we have Tr p(p) Tr \p(p)\ Tr |p| =Trp 1 and if
i 2Trp(p) TT(p(p)*p(p)) Tr(p*p) Trp l, hence in both cases p(p)
will be a one-dimensional orthogonal projection, and thus p(p) e P(X). Q.E.D.

Lemma 5 (Cf. Ulhorn [9]). Each isometry co: P(X)-+P(X) has a unique
extension to a linear isometry co: 3F2(X)^> &2(X) such that: co(A*) co(A)*.

Proof. Clearly:

n 2 n

S A,co(p,) 2 hh < oj(pi), co(p,) > 2
1 2 i,/=l

n n 2

2 Â,A;(p,.,pj)2= *2.XiPi
.,/ 1 1 1 2

Hence, if we denote:

<»(Ë A(p,) X kiCo(Pi),
V*i ' i=i

the above relation defines an isometry from 3F2(X) to 9>2(X). Q.E.D.

Notation. For any cp, xp e X we denote by \cp) (xp\ the linear opeator
\cp) {xp\ e &(X) given by: k~*(^>, %)<P- In particular \cp) (cp\ cp if cp e Sf(X).
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Lemma 6. Let Ae&'(X). If there are cp, xp e X such that A*A
IMI2 |V,)(V'I ar>d AA* \\xp\\2 \cp)(cp\, then there is XeU(l) such that: A
X\cp)(xp\.

Proof. We have for % e X: \A^f (§, A*AÇ) ||<p||2 \(xp, Ç)\2, so that
{£ e X | £ 1 xj.'} c Ker A, and similarly:

{§ e H I § 1 cp} c Ker _4* [Im_4]x.

Thus: _4§ A(|)<p, with A(§) A(V, g), |A| 1. Q.E.D.

Lemma 7. Suppose we have two Hilbert spaces X and X, and an isometric
morphism (resp. antimorphism) p:&j(X)—> 5F;(X) (i l or 2). Then there is a

linear (resp. antilinear) isometry U:X—>X, unique up to a multiplicative complex
factor of modulus one, such that p(cp) Ucp for each cp e if(X) (or, equivalently,
p(A) UAU* for all A e 9(X)).

Proof. We begin with a preliminary remark. Given two arbitrary vectors, cp,

xp e X, we may use Lemma 4 in order to find cp', xp' eX such that ||ç>'||#
\\<p\\x> IMIU- IMI* and:

K\<p)(<p\) \<p')(<p'\; .ttdvXvDHv'Xv'l
We show that there is A e U(l) such that p(\cp)(xp\) /\\cp')(xp'\ if p is a

morphism or p(\cp)(xp\) A MX<p'| if P is an antimorphism. In fact this follows
by an immediate application of Lemma 6 to the operator A p(\q>)(xp\).

Now let us pick two unit vectors e e if(X) and e' e if(X) such that p(è) ê'
(the existence of e' is assured by Lemma 4), which will be fixed from now on.
Then for any xp e X we have xp \xp)(e\e. Assuming p is a morphism, we define:

Uxp p(\xp){e\)e'. (4)

Thus we have defined a map U : X-* X, which is linear because

\axxpx + a2xp2)(e\ ax \xpx)(e\ + a2 MX^I-
That U is also isometric follows from the remark we made at the beginning of the
proof: we can choose xp' e Xsuch that ||i/''||^ IMI;*" and MCI1/')(el) IV'Xe'l>
hence:

\\Uxp\\x \\p(\xp)(e\)e'\\x \\\xp')(e'\e'\\x
\\XP'\\3(= IMI-taf-

If p is an antimorphism, we define:

Uxp p(\e)(xp\)e', (5)

which gives us an antilinear isometry U: X^-X, because:

\e)(axxpx + a2xp2\ âx \e){xp,\ + a2 \e){xp2\.

We prove now the essential uniqueness of U. Let Ux, U2 be two isometries
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X^X such that for all cp e P(X):p(tp) U~cp (i l,2). C/, can be linear or
antilinear. Remark that Ux and U2 will have the same range, namely the subspace
generated by the vectors xp e y(X) such that xp e p(P(X)). Hence V
U2XUX : X —* X is a bijective isometry (linear or antilinear) and clearly Vcp tp for
all cp e y(X). Hence for each cp e X there is X(cp) e U(l) such that Vcp X(cp)cp.

Let cp, xp be linearly independent, then:

X(cp + xp)(cp + xp) V(cp + xp) Vcp + Vxp X(cp)cp + X(xp)xp,

hence X(cp) X(xp) (being equal to X(tp + xp)), from which we get that X(cp) does
not depend on cp. Q.E.D.

The essential fact proved in Section 3 is that under the conditions of Lemma
5, p is either multiplicative or antimultiplicative, hence Wigner's theorem results
from an application of Lemma 7.

In the next two lemmas we give a description of projective subspaces. What
we want is a purely metric criterion for a subset of P(X) to be a projective
subspace. This will be used later on in order to show that the range of an isometry
is a projective subspace.

Notation. Suppose P, Q e ££(X). We denote by P v Q the orthogonal
projection on the closed subspace generated by PX and QX. We write P t= Q if
PXœQX and PiQ if PXlQX. Remark that for p, qeP(X) plq is

equivalent to d(p, q) 1, hence it is a purely metric notion.

Definition. Suppose p, q e P(X) are distinct. We define the complex
projective line through p and q :

L(p,q) {reP(X)\r^pvq}.

Lemma 8. Suppose p, q e P(X), plq and let us choose s e L(p, q) with
Tr (p • s) Tr (q • s) \. Consider the following subset ofU2

Qi{(x,y)eR2\(x-\)2+(yX.)2^\},
and the application ST:L(p, <?)-» IR2 given by ST(r) (Tr (p ¦ r), Tr (s ¦ r)). Then:

(i) \mïT=3-[L(p,q)\ Q.
(ii) The inverse image of each point in 3Q {x, y) e M2 \ (x - \)2 + (y - j)2

1} contains exactly one point and the inverse image of each point in the interior of
Q- Q-{(x, y)eR2\ (x-j)2 + (y -\)2<\) contains exactly two points in
L(p, q).

Proof. Let us choose cpe^(X) such that cp=p. Then there are two
uniquely defined vectors £, xp e £f(X) such that: f s, xp q and: (£, cp) 1/V2,
(k%, xp) I/V2. Remark that cp 1 xp. Then there is a one-to-one correspondence
between D {aeC \ \a\ <1 or ar l} and L(p, q) given by: a—>\acp +
Vl - \a\2xp)(acp + Vl - |<*|2Vl- 1° particular 5 corresponds to a l/y/2. Thus
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for any r e L(p, q), we can associate a unique a e D and we have: Tr (p • r)
\a\2, Tr (s ¦ r) \ \a + Vl - \X\2 ~ 2 + Vl |or|2 • Re a. Hence we shall consider
the application 3~:D^> U2 given by:

5(a) (|af, \ + Vl - kl2 • Re a) (x, y) e

Then jc e [0, 1] and for a fixed x, y e [2 - V*(l —x), \ + V*(l — x)] or
equivalently: \y - \\ V*(l —x). Thus the image of 9~ is the closed disc: {(x,y)e
R2 I (x - è)2 + (y - h)2 4} Ô- We see that 3Q is the image of D D R and that
Q is the image of D\U. The application 3~ depends only on |ar| and Re a so that
for Im a¥-0:5(a) ÏÏ(â). The conclusion of the lemma follows
easily. Q.E.D.

Remark. If we consider p, qeP(X) with plq, and seL(p,q) with
Tr (p • s) Tr (q • s) \, the inverse image of dQ defined in Lemma 8, may be

given a geometrical meaning as a kind of "real projective line" passing through p,
q and s. More precisely, we can define:

L? (p, q) {r e L(p, q) \ 3p, v, XeU such that r pp + vq + Xs).

Then one can prove by some tedious but straightforward calculations that:

(i) Lf(p, q) 3-\dQ).
(ii) L(p, q) is the set of projections r e P(X) such that there are p, v, X,

p eU satisfying r pp + vq + Xs + ip ¦ 2(psq - qsp) and (p - \)2 +
(v - |)2 R2; X 1 - p - v; p2 2(1 - 2R2); O^R^ 1/V2

(iii) Lf(p, q) is a subset of L(p, q) defined by the condition p 0.

Lemma 9. Let 2 c P(X) have the following three properties:

(i) 2 is closed in P(X).
(ii) For any p, q el,, with p^q, there are two orthogonal projections p0,

q0el. such that: p01 q0 andp0, qo=P v q.
(iii) For any p, q el with plq, if r eP(X) satisfies:

Tr(p ¦r)+Tr(q-r) l,
then rei.

Then there is a Hilbert subspace X0cXsuch that: 1 P(X0).

Proof. Let us define

xp e X\{0} iwHu<0)'
with the scalar product induced from X. Then (i) implies X0 is closed in X, the

projection: X\{0}—>P(X) being continuous. It remains to prove that X0 is
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invariant under linear combinations. Clearly we have:

(a) p lq^L(p, q) {r e P(X) | Tr(p • r) + Tr(q ¦ r) 1),
(b) p', q' eL(p,q), p'*q', p *q^>L(p, q) L(p', q').

Using now (ii) and (iii) the assertion of the lemma follows easily. Q.E.D.

3. Wigner's theorem

Suppose we have two Hilbert spaces X and X and an isometry S:P(X)—>
P(X) (with the metrics discussed in Sections 1 and 2). In order to lift the above
isometry to a linear or antilinear isometry from X to X we shall use Lemma 5 and
Lemma 7 and the fact that the linear isometry: S:'3'2(X)^>^2(X) induced by S

(as stated in Lemma 5) is either multiplicative or antimultiplicative. This last fact
will be the main result of this section.

Lemma 10. // 5:P(X)-+ P(l) is an isometry, then 1 S[P(X)] satisfies the
three requirements in Lemma 9.

Proof, (i) is clearly satisfied 5 being an isometry. In order to prove (ii) let
p', q'el with p'j=q'. Then there are p, q e P(X) with: p' S(p), q' S(q).
Now we can choose p0, q0eP(X) such that: p0, q0=p v q and p0lqQ. Now
defining: po S(q0), q'0 S(q0) and taking into account that 5 is an isometry, by
the corollary to Lemma 2 we have for any r, s e P(X): Tr (S(r) ¦ S(s)) Tr (r • s),
so that po 1 -70- We show p'0, q0=p' v q'. This is a consequence of the fact that
S(L(p, q)) ci L(po, qo), because this implies p', q' e L(p0, q'0) and p' ¥=q' gives
L(p',q') L(p'0,q'0). But:

S[L(p, q)] S[L(p0, q0)]

{r'eP(X)\3reP(X), r' S(r) and Tr(r -p0) + Tr(r ¦ q0) 1}

e {r' e P(X) | Tr (t' ¦ p0) + Tr (r' ¦ q0) 1} L(p'0, q'0).

Finally, let us prove (iii). Consider p', q' e S[P(X)] with p' 1 q', and r' e P(X)
such that: Tr (r' ¦ p') + Tr (r' ¦ q') 1. There are p, q e P(X) such that p' S(p),
q' S(q). Choose s e P(X) such that Tr (p ¦ s) Tr (q • s) \ and define s'
S(s). Then Tr (p' • s') Tr (q' ¦ s') \, in particular s' e L(p', q'). Clearly r' e

L(p', q') also. By Lemma 8, if (Tr (p' • r'), Tr (s' ¦ r')) e Q (resp. 3Q), there are
exactly two projectors ru r2eL(p,q) (resp. a unique reL(p,q)) such that
Tr (r, ¦ p) Tr (r' ¦ p') and Tr (r, ¦ s) Tr (r' ¦ s') for i l, 2 (resp. Tr (r-p)
Tr (r' • p') and Tr (r ¦ s) Tr (r' • s')). Hence by applying once more Lemma 8,

we conclude that either r' S(rx) or r' S(r2) (resp. that r' S(r)). Q.E.D.

The above lemma allows us to consider only surjective isometries by
restricting the image space X to X0 defined by P(3if0) 5[P(3if)].

The essential result in our proof of Wigner's theorem is the following lemma.
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Lemma 11. Let S : P(X)^> P(X) be a bijective isometry. Then there are only
two possibilities (depending only on S):

Either: Tr (S(p) • S(q) • S(r)) Ti(p-q-r), Vp, q, r e P(X).
Or: Tr (S(p) ¦ S(q) ¦ S(r)) Tr(p-q-r), Vp, q, r e P(X).

Remark. The main step in the proof of Lemma 11 is the fact that the domain
of a certain continuous function is connected. In order to prove this fact we shall

repeatedly use the following result (which is a special case of Proposition 3.7 of
Chapter 1, §11 of [3]; see the Appendix for a short proof).

Proposition. Let X, Y be topological spaces, f:X—>Y a continuous map.
Assume that Y is path-connected and:

(1) f has a continuous section; i.e. there is a continuous function o: Y^X,
with f o o(y) y for all y e Y.

(2) f~l(y) is path-connected for each y e Y.

Then X is path-connected.

Proof of Lemma 11. We shall suppose p=£q=£r¥=p, otherwise the lemma is

trivial.
(1) For any cp, xp, xe SZ'(X), one has: Tr (cp • xp ¦ % (cp, xp)(xp, %)(%, (p) so

that for any p, q, r e P(X), one has:

|Tr (p • q ¦ r)\2 Tr (p • q) ¦ Tr (q ¦ r) • Tr (r • p) |Tr (S(p) ¦ S(q) ¦ S(r))\2.

Now let us write:

Tr (p • q ¦ r) Re [Tr (p • q ¦ r)] + i Im [Tr (p • q ¦ r)]

Tr(p-q+J'PA+Tr(P'qyPr

(2) First we shall study the real part of Tr (p • q ¦ r). By taking the square
and the trace and using the relation p • q -p =p • Tr (p • q), one verifies
immediately that:

p+q-p-q-q-pPWq- l-Tr(p-q) ¦

Thus:

Re [Tr (p • q ¦ r)] Tr (p ¦ r) + Tr (q ¦ r) - (1 - Tr (p • q)) Tr ((p v q) ¦ r).

Choosing p0, qQeP(X) such that: p0lq0 and p0, q0^pvq. One has:

p v q=p0y <7o=Po + <?o. Then:

Tr ((pvq)-r) Tr (p0 • r) + Tr (q0 ¦ r) Tr (S(p0) ¦ S(r)) + Tr (S(q0) ¦ S(r))
Tr ((5(po) v S(q0)) ¦ S(r)) Tr ((S(p) v S(q)) ¦ S(r)).
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In the last equality we have used the fact that S(p0) 1 S(q0) and

Tr (S(p) ¦ S(p0)) + Tr (S(p) ¦ S(q0)) 1,

Tr (S(q) • 5(po)) + Tr (S(q) ¦ S(q0)) 1,

so that S(p), S(q) e L(S(p0), S(q0)) and thus: S(p0) v S(q0) S(p) v S(q). In
conclusion:

Re [Tr (p ¦ q • r)] Re [Tr (S(p) ¦ S(q) ¦ S(r)].

(3) Let us now study the imaginary part of Tr (p ¦ q • r). Taking into account
the above results, we have only two possibilities:

Im [Tr (p • q ¦ r)] ±Im [Tr (S(p) ¦ S(q) ¦ S(r))]. (6)

We must still prove that the sign does not depend on the triplet (p, q, r) e

[P(X)f but only on S. For that we define F-X^Uby:
% {(p, q, r) e [P(X)f1 Im [Tr (p • q ¦ r)] * 0},

Im [Tr (p ¦ q • r)]
F((P, q, r))

lm[Tr (S(p)-S(q)-S(r))]
First we remark that F is symmetric in any two arguments, both the numerator
and denominator changing their sign at any transposition of the variables. So it is

enough to study F on

<€ {(p, q, r) e [P(X)f | Im [Tr (p • q ¦ r)] > 0},

because if: Im [Tr (p • q ¦ r)] < 0 then Im [Tr (q ¦ p ¦ r)] > 0, so that (q, p,r)e<€
but F(p, q, r) F(q, p, r). Then we remark that because of (6) we have
F(p, q, r) ±1 and F is evidently continuous on ^. So if we prove that % is

connected, the conclusion of Lemma 11 will follow.
In order to prove that % is connected we shall first define a function

u:M-*P(X)by
se {(p,q)e[P(X)]2\0<Tr(p-q)<l},

M^?) 2,[Tr(pPJl-T4-?))r2+2/,V9
As one can easily verify (take the square and the trace), u(p, q) is a rank one
projection, i.e. belongs to P(X), and depends continuously on (p, q) e M.

Evidently Tr(u-p) Tv(u • q) \. Then u(p, q) e L(p, q) because u is

orthogonal to each projection which is orthogonal to p and q. We remark that
Im [Tr (p • q ¦ r)] > 0 is equivalent to: 0 < Tr (p • q) < 1 and \ Tr ((p v q) ¦ r) <
Tr(u(p,q)-r). In fact: Tr (p • <z) 0=>Tr (p • q • r) 0, and Tr (p • <?) 1 =j>

Tr(p-q-r)eU. Thus:

<€ {(p, q, r) e [P(X)f \0<Tr(p-q)<l
and \ Tr ((p v q) ¦ r) < Tr (u(p, q) • r)}.
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In order to prove that <€ is connected, we shall use the proposition stated
after the statement of Lemma 11, by taking X=<€, f n\% and y si, where
n:[P(X)f-*[P(X)]2 is defined by: n(p, q, r) (p, q). We show now that the
assumptions of the proposition are fulfilled.

(a) si is path-connected
In order to prove this fact we shall once more use the proposition, by taking:

X si, f(p, q) Tr (p ¦ q); Y (0, 1). We still have to prove two facts:
(i) The existence of a continuous section: Let us choose p(xeP(X) and

q0eP(X) such thatp0l<70, and cp, xpe&'(X) such that cp p0, xp q0. Let
§, tcp + (1 — t)xp with 0<f<l, then: o(t) (p0, |r) gives us a continuous
section o: (0, 1)—* si for the application (p, g)—»Tr (p • q).

(ii) The inverse image of each point is connected: Let us fix an arbitrary
te(0, 1), and two arbitrary points (p, q) and (p',q') in si, {(r, s) e

[P(X)]2\Tr(r -s) t}. Let us choose cp, cp', xp, xp'e^(X) such that q>=p,
<p'=p', x} q, V' q' and (cp, xp) \(cp, xp)\ VTr (p ¦ q) Vt
VTr (p' ¦ q') \(cp', xp')\ — (cp', xp'). There always exists a strongly continuous
one-parameter family {Us}seR of unitary operators in X such that: Uxcp cp'.
Thus:

[0, l]3s^(Û~c}, ÜAp)esi,

is a continuous path in si, from (p, q) to (p', qx), where qx Uxxp. Then we
consider the three vectors: cp', Uxxp xpx, xp'. Evidently: (cp',xpx)
(Uxcp, Uxxp) (cp, xp) (cp', xp')=£0. Thus there is a new one-parameter strongly
continuous family of unitary operators in X such that: Uscp' cp' for any s e IR,

and Uxxpx xp', (because xpx-p'xpx and xp'-p'xp' have equal norms and are
orthogonal to cp'). Now:

[0,l]3s^(p', UApx)es4t

is a continuous path, contained in si, (because Tr (p' • Usxpx) (cp', Usxpx)2

(Uscp', Usxpx)2 (cp', xpx)2 t) and joining (p\ qx) to (p',q').

(b) f:<io^>si has a continuous section
Indeed, we have: Tr (u(p, q) • u(p, q)) 1>\ lTr ((p v q) • u(p, q)), so

that (p, q)—> (p, q, u(p, q)) is a continuous section for /.

(c) The inverse image of each point from si is connected.
For any (p, q)e si let us define:

®(p, q) {r e P(X) \ Tr (u(p, q) ¦ r) > \ Tr (p v q) ¦ r)},
so that: /_1(p, q) {(p, q, r) e [P(X)]3 \ r e ®(p, q)} (p,q)-< %(p, q), and it is

enough to prove that S8(p, q) is connected for each (p, q) e si. Now (p, q)e si
implies p^q. Let us define: v(p, q) — (pvq) — u(p, q). From now on we shall
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simply write u and v, p and q being fixed. With these notations:

%(p, q) {re P(X) | Tr (u ¦ r) > Tr (v ¦ r)},
where u Iv and u, v <p v q.

Let us consider two arbitrary points r„ and r, in Sft(p, q). In order to construct
a continuous path in äö(p, q) joining them we shall choose: cp, £„, §,, xp e if(X)
such that:

cp u

fo ro and (cp, §„) |(cp, §„)| VTr (« • r„),

|,«r, and (y, g,) |(y, g,)| VTr (u • r,),
V» u and (V,lo) |(V,êo)| Vtr(uT„),

and we shall consider the path:

[0,l]3I-*r(4j|j:6P(«),
II->s||

where: g, =sgi + (1 — s)%0. Then this is a continuous path joining r0 to rx. We
shall verify now that rs e 3ß(p, q) for any s e [0, 1]. Indeed

Tr (u ¦ rs) |(ç), s£0 + (1 -s)Çx)\2 s2Tr (u ¦ r0) + (1- s)2Tr (u ¦ rx)

+ 2s(l - 5)VTr (u ¦ r0) Tr (u ¦ rx),

Tr (v ¦ rs) \(xp, s£0 + (1 -*)gi)|2 *2 Tr (v ¦ r0) + (1 - s)2 Tr (v ¦ rx)

+ 2s(l - 5)VTr (v ¦ r0) Re V, ^).
But:

Tr(wr0)>Tr(u-r0)iïO,
Tr(M-ri)>Tr(u-r1)^0;
Vtr(i-T1) > VTr(iwO |(v», §,). i= Re (V, §,),

so that: Tr (w • rs) > Tr (v • rs) for any s e [0, 1]. Q.E.D.

Lemma 12. Lef 5: P(X)-+P(X) be an isometry. Then the induced linear
isometry (cf. Lemma 5) 5: 3>2(X)-* ^-.(X) is either multiplicative or
antimultiplicative.

Proof. As stated after Lemma 10, we may consider only surjective (and
hence bijective) isometries 5: P(X)^>P(X). We have also seen that for any p, q,
r e P(X) we have: Tr (p • q • r) Tr (q ¦ p ¦ r). Now, as proved in Lemma 11, we
have only two alternatives:

(1) either: Tr (S(p) ¦ S(q) ¦ S(r)) Tx(p-q-r) for all p, q, r so that:

(S(p), S(q • r))2 (p, q • r)2 Tr (p • q ¦ r)
Tr (S(p) ¦ S(q) ¦ S(r)) (S(p), S(q) ¦ S(r))2,



1334 R. Purice H.P.A.

(2) or: Tr (S(p) ¦ S(q) ¦ S(r)) Tr(p-q-r) for ail p, q, r so that:

(S(p), S(q ¦ r))2 ={p,q-r)2 Tx(p ¦ q ¦ r)
Tr (S(p) ¦ S(r) ¦ S(q)) (S(p), S(r) ¦ S(q))2.

Taking now any p' e P(X) and any q, r e P(X), because of the surjectivity of 5

we can find a unique p e P(X) such that p' S(p), and with the above alternative
we have one of the two situations:

either: <p', S(q ¦ r))2= <p', S(q) ¦ S(r))2 for allp', q,r,
or: (p',S(q-r))2=(p',S(r)-S(q))2 for allp', q, r.

Because !W2(X) is linearly generated by P(X) (and similarly for X) we have:
either:

(X, S(A-B))2= <X, S(A)-S(B)>2 fora\\Xe^2(X) and

A, Be ®2(X),

or:

(X, S(A ¦ B))2 (X, S(B) ¦ S(A))2 for all X e &2(X) and

A, Be ®2(X),

so that 5 is either multiplicative or antimultiplicative. Q.E.D.

4. The Jauch-Misra-Gibson theorem

By applying the results of Section 2 we shall now give a simple proof of the
Jauch-Misra-Gibson theorem as stated in the Introduction.

The implication (2)-->(l) is obvious, so that we shall discuss the implication
(1) => (2). Thus suppose we are given a family of isometries W,: X—> X for t ^ 0,
we denote by vKr: P(X)-+ P(X) the induced isometries, i.e. W,cp W^cp W,cpW*
and we suppose that for each peP(X), the limit: lim,.^ vK-p co (p) e P(X)
exists. We shall denote by co: ^(X)^-?F2(X) tne unique linear isometric
extension of co given by Lemma 5. Then co has the following properties for all A,
Be®2(X):

(i) cd(A) \im,^WtAW*.
(ii) co(A*) cb(A)*.
(iii) cv(A ¦ B) cd(A) • œ(B).

Proof. Any A e &2(X) may be written as: ^4 E.=iA,p,, where A,-e C,

Pi e P(X) for each i^r. If A is self-adjoint we can choose A, e P. In particular
(ii) will clearly be true. Then:

r r

co(A) X A,co(p,) 2 A, lim W,PiW* lim W,AW*
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which proves (i). Finally (iii) follows from WtABW* W,AWfWtBWf and the
continuity of the multiplication in 3F2(X). Q.E.D.

By applying now Lemma 7 to the morphism co: 3>2(X)-* 3>2(X) we get the
existence of a unique (up to a multiplicative complex factor of modulus one)
linear isometry W : X—* X such that: co(cp) WcpW* Wcp. More precisely, in
the proof of Lemma 7 we have constructed VK in a quasi-explicit way: if cp e X

Wcp co(\cp)(e\)e',

where e e if(X) is an arbitrary fixed vector, and e' e Sf(X) is fixed, such that
ê' co(ê). Thus: ê' co(ê) lim,^» WtêW* lim,.^ W,e and applying Lemma 3,
we get the existence of a sequence {§,},B0 of complex numbers of modulus one
such that: e' s - lim,.^ §,VK-e. Then, if cp e X, we have:

W&cp \W£2q>)(W&e\W£te.

But:

\W&<p)(W&e\ VK, |<p><e| Wf-* &(\q>)(e\)

In 3*2(X) as we have remarked before. Clearly then;

lim W&tp co(\cp)(e\)e' =Wq>,
t—>=e

which finishes the proof of the theorem (the uniqueness was proved in Lemma 7).

Remarks. (1) In the above proof we used only Lemmas 5, 7 and 3 of Section
2. We think this provides a very simple proof for the results of [7]. Remark that
Theorem 3 of [7] is a particular case of our Lemma 7.

(2) Let us explain how the theorem of Jauch-Misra-Gibson is used in
scattering theory. Assume that in X are given two strongly continuous one-
parameter groups of unitary operators {V,}-€R and {U,},m. One says that {U,},eU
is a free evolution associated to {V,},€R at f—»+°o if for each (pure) state
cp e P(X) there is a state xp e P(X) such that:

lim d(Vxp, Û~cp) 0.
t—»-e

This is physically natural in view of the discussion at the beginning of the
introduction (see (1)). Using (2) for example, one sees that the above condition is

equivalent to condition (1) in the statement of the theorem of Jauch-Misra-
Gibson, where VK, V*Ut.

Appendix

We give here a proof of the proposition stated after Lemma 11. Let
x0,xxeX and set y0 /(*_), _yi=/(*i)> x'0= o(y0) and x'1 o(y1). Since Y is

path-connected, there exists a continuous path y:[0, 1]-+Y such that y(0)=>'o
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and y(l) =yx. Now

f(xo) y(, (f°o)(y0)=f(x0),
so that x0, Xoes~l(y0). Similarly we have xx, x[ef~l(yx). By assumption (2) of
the proposition there are two continuous paths

y(1):[0, lhf'WcI suchthat y(1>(0) =x0, y(1)(l) 4>
y(3):[0, ^/"'(yOcA- suchthat y(3)(0) .*;, y(3)(l) x1#

Let y(2) o°y. Then y<2) is a continuous path in X satisfying y(2)(0)=jco,
y(2)(l) x[. The composition of the three paths y(1), y<2), y(3) gives a continuous
path in X joining jc0 to jc,. Q.E.D.
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