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Vacuum decay in gauge theories

By P. Jetzer1) and R. Anishetty2)

Theoretical Physics, ETH-Hönggerberg, CH-8093 Zürich

(22.1. 1986)

Abstract. Using the semiclassical method of instantons, developed by Callan and Coleman, we
investigate the vacuum decay rate at zero temperature in theories containing scalar and gauge bosons.
In particular we analyse a t/(l) gauge theory with a complex scalar and an SU(N) gauge theory with
scalar fields in the adjoint representation. Some of the results we obtain are of general validity and

some are deduced in the thin-wall approximation.

1. Introduction

Grand unified [1] theories may describe the evolution of the early universe
[2]. These theories have, in general, several ground states in which the original
symmetry group is broken into various subgroups with different properties. It is

usually assumed that the universe began in a symmetric phase at high temperature

and cooled by expansion. At a certain temperature, a less symmetric ground
state became energetically more favorable, i.e. had a lower energy density.
However due to the inertia in the system, i.e. lack of instantaneous communications

the system remained in the symmetric phase. But locally, little bubbles of
less symmetric phase began to form; these grew to fill all of space [3]. At the
point when the first bubbles start to form, the energy density difference A
between their outside and inside (i.e. between the two corresponding minima of
the model) is small; this is the situation in which one can use the thin-wall
approximation to compute the bubble production rate.

Callan and Coleman [4] have developed a semiclassical approximation for
describing the density of bubbles of a certain radius R; the method closely
resembles the work of Langer [5]. The procedure simplifies in the thin-wall limit,
which could be of relevance in estimating the time for which the unbroken phase
underwent supercooling. In fact, if the nucleation rate for this phase transition
turns out to be low, one expects the universe, as it expands, to supercool in the
unbroken phase (high temperature phase). This is a crucial point for the
inflationary models to work [3].
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Switzerland.
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In the semiclassical approximation the decay rate per unit volume TIV of the
false vacuum (unbroken phase) is given by [4]:

L Ke-sBm (1

where K is the imaginary part of a ratio of determinants and 5fl is the classical
action of the bounce (classical instanten). As far as we know, this formula has
been computed taking into account only the scalar fields [7-9] of a grand unified
theory. Already in this case, computing K and SB is a difficult task, feasible often
only numerically. In estimates, K is usually approximated by MA, where M is a

typical mass involved in the problem, for instance the grand unification mass.
In Ref. [6] the factor K has been studied in detail for pure scalar theory in

thin-wall approximation. It was realized that in this approximation there are

many zero mode fluctuations about the equilibrium bubble configuration which
give an important contribution to K.

In the present paper we extend the analysis of the factor K to theories
containing scalar and gauge bosons. One might expect that, due to the inclusion
of the vector bosons, there are additional zero modes, such as the Goldstone
mode in global theories. Our analysis shows however that these zero modes are
eliminated by the Higgs mechanism. It turns out that there are also negative and

positive modes, which are unphysical, because, due to gauge fixing, they do not
contribute to the factor K. The analysis we undertook is in Lorentz gauge but it is

expected to hold in other gauges as well. Due to the complexity of the bounce

equations, we solve them by making an ansatz, which turns out to be the solution
with lowest action.

We consider two different cases: one with an U(l) gauge theory with a

complex scalar and one with an SU(N) gauge theory with the scalar fields in the

adjoint representation. The paper is organized in the following way: in section
two we discuss the local U(l) theory and in section three the global U(l) case. In
section four we treat the local SU(N) gauge theory. In five appendices we explain
in detail some results used in the main text.

2. Local U(l) gauge theory

The Lagrangian, in Euclidean space, has the form:

^E iF,vF"v + (%cp)(*3''cpr + V(cp, cp*) (2.1)

It includes a gauge boson A., (with F^ dllAv - dvAf,) and a complex scalar field
cp. We take the Lorentz gauge 3MM =0. The scalar potential V(tp, cp*) is such
that it has two minima, a local one at cp 0 and a global one at \cp\ </>_ with:

K(|</>| 0) 0
(2 2Ì

V(\cp\ cp_) -A, A>0
(see Fig. 1)
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Figure 1

Typical shape of the potential K(|(/>|).

For a U(l) invariant potential V to have such a form requires the inclusion of
nonrenormalizable terms or two or more scalar fields. For our purpose here we
shall ignore this deficiency. The semiclassical analysis that we perform up to one
loop, can be done for general potentials.

We consider the case where initially the system is in a U(l) invariant
metastable vacuum (cp 0). We expect that after some time, due to quantum
fluctuations, it decays into the vacuum with lower energy density which breaks
the U(l) symmetry.

For the following computations it is more convenient to introduce two real
scalar fields instead of one complex scalar field. We have then:

cp

cp*

(Pl + J<t>2

V2

01 - -4>2
(2.3a)

V2
and

2E ÌF,.VF»V + x2(d,cpx)2 + i(a„</>2)2 + \e2A^(4>\ + 4>\)

+ eA^cp-, d'fa - cp, 3"02) + V(cp\ + 4,\) (2.3b)

We want to compute the decay rate, per unit space volume, of the metastable
vacuum, which is given, following Coleman's semiclassical method [4], by

:=Ke -ta.s/ft (2.4)

where SB is the classical action of the bounce. The factor K is the imaginary part
of a ratio of two determinants, which are obtained by evaluating the functional
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integral

z \a,Afl)4>x®4>2 n ô(d^x1"4*^ (2.5)
J X

in the steepest-descent approximation, once with the bounce as background field
and once without background field (corresponding to the false vacuum).

2.1. The bounce equations

The bounce satisfies the Euler-Lagrange equations:

f gy
-A4>x - 2eAu 3"</>2 + e2A2cpx + 0

dcpx

dV (2.6)
-Acp2 + 2eA,ldßcpx + e2A24>2 + 0

dcp2

>. ~A^M e((p2 dn<P\ - 4>i 3A,</>2) + e2A^(4>2x + 4>22)

(A is the Laplace-operator in 4 dimensions) with boundary conditions:

lim 4>i(x, x4) 0 i' l,2
xr-*±* (2.7)

lim A., (x, jc4) 0.
Xf-r±x

In order for the bounce action to be finite we require:

lim 4>i(x, x4) 0 i 1, 2
1*1—* i.z-8J

lim ^ (f, *4) 0

A typical bounce in this theory can in general involve non-trivial cp, (' 1> 2)
and A., fields. However not all such bounces are relevant in computing the decay
rate of the metastable vacuum. Some of these bounces may not give any
contribution to the factor K. In fact by scaling argument (Appendix A) we can
demonstrate that there may exist bounces (or background fields) such that
A., =?=0, which are completely stable. In other words, in gauge theories we may
have stable solitons in any dimensions. For our purpose here we shall be

considering the following ansatz:

^(jc,^4)-0, 4>2(x,x4) 0 (2.9)

This renders our bubbles chargeless. Consequently we do not expect long range
forces between bubbles. For such configurations, the scaling argument of
Appendix A demonstrates the existence of a negative mode. Furthermore the
ansatz is the solution to the Euler-Lagrange equations of motion with minimum
action [15].



Vol. 59, 1986 Vacuum decay in gauge theories 1341

Then equation (2.6) reduces to:

dv
-A0!+—- 0

301

with boundary conditions:

lim cpi(x. x-) 0

lim 4>ì(x, x4) 0
.1*1—*

(2.10)

(2.11)

Note that dV/dcp2\<t>,=o 0 is automatically satisfied, since V is a function of

4>\+4>\
y <p<p* ^^~ (2.12)

alone. In fact y is the only U(l) invariant quantity one can form. Then:

av
9<p2 02 0

dvjy)
dy

4>7 0.
4,2=0

Equation (2.10) with the boundary conditions (2.11) is the same as one would get
in the case of a Lagrangian with only one real scalar field. It is known that in this
latter case the solution of equation (2.10), which leads to the minimal action, is

0(4) invariant [10]. The solution of equation (2.10), cpB. can tnus be taken as a
function of r (the radial distance in 4 dimensions) alone. The boundary
conditions, equation (2.11), are then:

¦dcpB

dr
0

lim 4>B(r) 0

2.2. The fluctuation operator

The functional integral (2.5) is approximated by the Gaussian fluctuations
around the bounce (cpx cpB, </>2 0, _4M =0). The fluctuation operator !£"B is

given by (see appendix B):

CP« 1

\-L + e\4>B)2)ò^

2e(d,cpB)

0

2e(3vcpB)

32V
-A +

3cp2 <t>t=<t>"
<*>2=0

-A +

0

0

32V

dcpi <t>s <t>"

«2=0

(2.13)
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We see from equation (2.13) that ££"B factorizes into two pieces:

A l * 3VAB=-( -A + ;B 2 \ dcp2

and

01 0'
02=0

(2.14)

BB
1

(-A + e2(</>fl)2)<V

2e(9,4>B) -A +

2e(dvcbB)

d2v

gtp\ 01 0*
02=0

(2.15)

The operator AB has 4 zero modes, because the system is translationally
invariant [4]. Differentiating equation (2.10) with respect to xM one gets:

« a2v - 32V

?i:-?'3"* +
3^302 «,_*» 3^02 O

02=0

The last term vanishes. I In fact, 3M</>2 vanishes and also

a2v

30J gd)2

Thus:

ay
dy 2 0102 01 0

02=0
B o

-A + -

a2y

30? (,,=0'
i2=0

3,0* 0 (2.16)

which means that AB has 4 eigenfunctions with zero eigenvalue. Due to the fact
that 4>B depends only on r also

d2V

30? Ulf
is a spherically symmetric function. One can therefore decompose the operator
AB and its eigenfunctions into radial and angular pieces. It is then clear that the
eigenfunctions 3M0B (xtl/r)(dr4>B) have angular momentum j 1. This implies
that AB has at least one eigenfunction with ; 0 and negative eigenvalue, which
contributes then to the imaginary part of the path integral (2.5).

Moreover, since A., =0, cp2 0, the remaining Euler-Lagrange equation
(equation (2.10)) is the same as one would obtain in the case of a Lagrangian with
one single real scalar field. For this case it has been shown [10] that there is only
one negative eigenvalue.

Thus the operator AB has one negative eigenvalue. With the bounce as

background field, the functional integral equation (2.5) is:

(2.17)
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where SB is the classical action of the bounce, and </>,, cp2, A., are fluctuations
around it.

Before we continue to evaluate equation (2.17) further, we discuss the
functional integral equation (2.15) in the false vacuum (</>fl 0), in order to
compute then the quantity K defined in equation (2.4). In the false vacuum the
functional integral equation (2.5) is approximated by the Gaussian fluctuations
around tpi — 0» 02 0» A* 0- The fluctuation operator T-\ is given by:

Cpn
=Z0 —

with

co\

co\

1

2

32V

301

d2v

30?

-Aô„
0

0

01=02=0

0

-A + col

0

0

-A + co2x_

(2.18)

01=02=0

co\ and co\ are positive quantities, since the false vacuum is a minimum of V; co2

and col are the values of the curvature of the potential at 0, 02 0.

i?o also factorizes; we write the factors in the following way:

A0 k(-A + coi)

and

B0 :

-A «5,

0

0

-A + ft>2

The corresponding functional integral Z0 becomes:

Z0 \Qs4>le-idix^A^\0iAll334)2Y{ô(dtlA'i)i

We have:

^3)^-1 d^x^AoKPi) jv(det A0)-1/2

-J-rfM(-V02)+Bo(-4,,,02)]

J<

(2.19)

(2.20)

(2.21)

(2.22)

and in the presence of the bounce (equation (2.17)):

ls0ie-'d4*<*"^"> /VV II (lpT{d"f)2)m(fet'AB)-m (2.23)
J ^=0 VJ 2nn 4 /

where det' means that the zero modes must be omitted. Since AB has one
negative eigenvalue, (det'-4s)1/2 is purely imaginary. N is a constant, which
depends on the normalization one chooses. The factor

d4xvjl(ltx^
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in (2.23) is due to the normalization of the eigenfunctions with zero eigenvalue,
and V is the volume of the system.

With equations (2.17), (2.21), (2.22) and (2.23) we obtain for the decay rate

per unit volume:

HM^i det ,40

det A,
-sBmK

with

\aiA^3icp2U ô(dflA")e-s"ix[(-A'- ^+B"<A- *>1

¦ _ x

g~~f
2Afl3)4>2 II ô(3^A")e-id x[(A- ^*^A>- *>1

We will not analyse in detail the factor:

det-40

det'_4s

det (-A +to?)

det' -A +
32V

30? 01 0"
02=0

(2.24)

(2.25)

(2.26)

It is the same as one would obtain considering a scalar theory with one real scalar
field. It has been investigated and computed numerically by some authors [4, 11].
It has also been pointed out that it may have infrared problems if one tries to
evaluate it in the thin-wall approximation [6].

2.3. The factor Kg

We turn now to the factor Kg (equation (2.25)). Using

û 0(3^») Urn Yl^L=e-(y2a)5d4x^Anl
x a—o x \2na

we get:

[@A^02 û ô(3>iAll)e~id,x[(A'" ^*"04'" +-)]

lim \'3)Au<3)4>2Y\-r=

(2.27)

(1/2-r) icd-,x(3"A,,y-!d4xl(A,, 4>2)+BB(A„, 02)]

ma
(2.28)

The same applies when the operator BB (equation (2.15)) is replaced by the

operator B0 (equation (2.20)). In the following we denote (A,,, cpz) by %•

Since BB and B0 are hermitean operators, they possess a complete set of
eigenfunctions. We consider first the operator BB and expand (A^, cpz) X m i*s

eigenfunctions %n (%^n, XsJ- We denote by xf the eigenfunctions for which
dVti, ~ O- The corresponding eigenvalues are Xf. %) are the remaining eigenfunctions,

with eigenvalue Aj. Then we get:

* 2c«xf+2fy;f. (2.29)
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The measure

^"^nvâbta
is then

X exp

with

Inserting equation (2.29) into equation (2.28) and using the orthogonality of the
eigenfunctions, we obtain:

«-o./ Vv2ä j \l2ncx

-r2 &A f^(3%;)(3Yv,) - E M2 Af - E IM2 a/1 (2.31)

ta II (tf)-/n^«P ("2 SA-Ì(%¦ + «AJ«) (2.33)

Finally we get, up to some overall constant, which cancels when computing Kg:

-1/2

(2.34)

The factor 1/ar can be taken out of the determinant, and cancels with the term
(II, 1/Vâ).

We may thus perform the lim a—->0 and the final result is:

n(AfT1/2-[Det(%)r'2 (2.35)
i

One can evaluate in the same way the functional integral with the operator
B0. One expands then (A^, cp2) x according to the eigenfunctions of B0. We
denote them with xpf and xp'm and the corresponding eigenvalues with A£„ and
VA0m-

Instead of equation (2.32) we get:

2a°mm, - jd*x(3»fcm)(3vxp'vJ (2.36)

The factor Kg is then given by:

n(Ag„)1/2(Detfl^m.)1/2

Ks=
n(A?)1/2(Det%)1/2

(2-37)
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In appendix C we show that the eigenvalues Ao„ and Af are positive. We
notice further that det (%) and det (a°mm) are positive quantities. ajr is an
hermitean matrix and can thus be diagonalized by a suitable unitary matrix U:

Uifljy Uyk ¦¦
¦ ài òik

wd4xf.fk

or, with (2.32):

a, ôlk \ jd'xUi^x'^Ü.AdY.r):

f,= Ui}.(3%})

We see clearly that the elements a, are positive and thus deta;>- and similarly
deta^m.. We conclude therefore that the factor Kg is positive.

If the dimension of the spaces spanned by the eigenfunctions x) ancl 0m are
the same, then there is a unitary transformation, which allows to write the x) in
terms of the xp'm. The matrix ajr can then be obtained from the matrix a°mm, by a

unitary transformation; the determinants are then the same, and thus cancel in
the factor Kg. In appendix D we give an estimate of the ratio:

n(A0p„)1/2

imo1

With equations (2.24), (2.26) and (2.37) the decay rate per unit volume is:

HU d\ n 1/2

irrX^ det (-A +to?)

det' -A + -

32V

30? Ps=<f
62 0

IKAQ^DetaL..)1

n(Af)1/2(Deta^) 1/2
-SB/h (2.38)

Computation of equation (2.38) is a rather difficult task, feasible only numerically
with computers. From the above analysis we see that the ansatz we made in order
to solve the bounce equations (2.6), (2.7), is consistent. Only the operator AB
(equation (2.14)) has a negative eigenvalue, so that (det'AB)1/2 is a purely
imaginary quantity. All the remaining pieces are real and positive. Thus the decay
rate, which is proportional to the imaginary part of the functional integral
equation (2.5), is nonvanishing.

3. Global U(l) theory

This case is obtained from the previous one dropping the terms coming from
the gauge sector. The bounce ansatz is the same (0i 0s, 02 0). The
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fluctuation operator ££"B (equation (2.13)) is then

32V
-A +

3022 01 0"
02=0

-A +

0

32V

30? 01 0"
02=0 -I

(3.1)

The operator

AR -A+-
32V

9<PÌ 01 0"'
02=0

as we know from section 2.2, has 4 zero modes and one negative mode. The

operator

32V
C -A +

dtp2 01 0"
02=0

(3.2)

has a zero mode. In fact by making a choice of a bounce, as given by the
Euler-Lagrange equations, we break the global U(l) symmetry. Consequently,
from Goldstone's theorem we expect a zero mode [12]. Using equation (2.12)

32V

dtp2

and with

01 0"
02=0

32V
02 +

3V\
dy21'"

'

3y) 01 0S
02=0

3V

3y 01 0"
02=0

(3.3)

3V
301 01 0'

02=0

3V
— cp1
dy* (3.4)

: 0 of the operator C. In

(3.5)

one sees that 4>b is an eigenfunction with eigenvalue A

fact the eigenvalue equation

3V
-AcpB + ~4>B 0

3y

corresponds, due to equation (3.4), to the bounce equation (2.10).
We expect the eigenvalue A 0 to be the lowest one of the operator C, since

the bounce (cpx cpB, 02 0) corresponds to the solution of minimum action [15],
and thus there is only one negative eigenvalue. We know that the opeator AB has

a negative eigenvalue, thus the operator C can have only positive ones.
In computing the functional integral equation (2.5) in the global U(l) case

one has to take care of the zero mode of the operator C [12]. One has to integrate
over all possible phases of the bounce, like for the translational zero-modes
where one had to integrate over all locations of the bounce (collective
coordinates). The decay rate per unit volume in the global U(l) case is then given
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by:

r
v-ûaâ^n/â«^)" -Sg/h

det (-A +to?)

det' -A +
32V

30? 01 0'
02=0

det (-A + coj)

det' -A +
3ZV

301 01 0'
02=0

(3.6)

where det' means that one has to omit the zero modes.
We evaluate equation (3.6) in the thin-wall approximation [4], i.e. when the

energy density difference A between metastable and stable vacuum is small. We
follow the analysis of Ref. [6], where using Rayleigh-Ritz approximation the first
term of the ratio of determinants has been estimated

det (-A +to?)

det' -A +
32V

30? 01 0'
02=0

1/2

,+(m,R)V9 (3.7)

where mx is a typical eigenvalue of the operator (—A + co2x). In the same way we
can estimate the other ratio of determinants by Rayleigh-Ritz approximation. In
detail, we decompose the operator C (equation (3.2)) into radial components,
yielding the following eigenvalue problem for each angular momentum j

1

: dS 3r + j(j + 2) 32V(r)
dcp 0l=0B

02 0 J
xp(r) Xixp(r) (3.8)

Furthermore for j 0, we know one exact eigenfunction tpB, whose eigenvalue is

zero. Using this as trial function we can estimate the lowest eigenvalue A,- for any
j, namely

0<X,--£/(/ +2)

0<Â, *£;(/+ 2)

jdrr^2(X)2

\drr\4>B)2

[ dn
Jq

(3.9)

2j(j + 2)
R r>2

drr3
R

(3.10)

In (3.10) we used the fact that X in thin-wall approximation is nonvanishing and
approximately constant in the region between (0, R) and vanishes beyond. (This
qualitative feature is explained in Ref. [4].)
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The ratio of interest is then given to be

m2R rrt
/=i

2/0 + 2)

mlR2

-0 + l)2/2

exp
rmiR ..O' + i)2

ln
2/0'+ 2)

mlR2

M-^XXl))-
m2 is a typical eigenvalue of the operator (-A + toi). Thus

det (-A + coj)

det' -A +
3ZV

301 01 0'
02=0

1/2
-(m2R)3(ln 2/6-1/9)

Putting it all together, and using the fact that

jiSltx^
1/2

[4]
(2nh)2

and in thin-wall approximation

(3.6) is given by

at /?2Ç2

' <5;r3/2ft5/2

(3.11)

(3.12)

(3.13)

4. Local SU(N) gauge theory

In this section we consider an SU(N) invariant Lagrangian, in Euclidean

space, of the form:

2E lFßVF^ + \%cp\2 + V(cp) (4.1)

which includes gauge bosons _4£ (a 1, N2 — 1). F^ is the field strength
tensor for the nonabelian case. We take the scalar field 0 in the adjoint
representation. This choice is motivated by the fact that in grand unified theories
one often breaks the symmetry of the gauge group with a scalar field in the

adjoint representation.
We write cp as a vector cpa (a 1, N2 - 1) with N2 - 1 real components.

For each epa there is a generator Xa of the group. (2^0) is then a vector:

(%<P)a 3ßcpa + gfabcA^4>c (4-2)

where summation over repeated indices is understood. fabc is a totally anti-
symmetic tensor defined by the commutation relations between the N2 — 1

generators Xa of the group:

[A,, A;] - 2ifijnXn (4-3)
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The Xa are normalized as follows

tr(A,-A/) 2ô0.

They satisfy also the anticommutation relation:

{Xi,Xi)=^ô^+2diimXm (4.4)

dijm is a totally symmetric tensor. We choose the Lorentz-gauge:

3^ 0 a l,...,N2-l. (4.5)

Then, in the Lagrangian we also have to add a ghost term

USX'Urib (4-6)

where r\a (a 1, N2 - 1) is the ghost field. Like in the U(l) case the scalar

potential V(cp) is taken to have minima for 0O 0 (a 1, /V2 - 1) with V 0

and for cpN2_x 0_, cp,¦ 0 i 1, N2 - 2 with V -A, A > 0.

With the adjoint representation one can achieve the following symmetry
breaking patterns [13], which are global minima:

SU(N)^SU(N-l)xU(l)
or

SU(N)-*SU(N - [-JJ x Sf/^-J j x U(l) (4.7)

where [ ] means the integer part.
The generator corresponding to the component 0^-1 is XN2_V If we write cp

as a matrix (cp cpaXa)> then the vacuum expectation value of cp is: (cp)
cp-XN2_l((cpN2_x) cp_). For instance for SU(5) breaking to SU(4) x U(l) A24

would be the diagonal generator:

'1

1

Vïo| i

and for the breaking to SU(3) x SU(2) x U(l):

n

(4.8)

M
1

i i (4-9)
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4.1. The bounce equations

We proceed in the same way as we did for the U(l) case. We compute first
the bounce which satisfies the Euler-Lagrange equations. Like in the U(l) case,
in order to simplify the problem we make the ansatz for the bounce: A£(xv) 0

(a 1, N2 - 1). Then the Euler-Lagrange equations for the scalar fields epa

become:

3V
-A4>a + — 0 a l,

30„
.V2-l (4.10)

with the boundary conditions

lim 4>a(x, x4) 0 a 1,
Xf-*±x

and

lim cpa(x, x4) 0 a 1,
1*1—*

,N2-1

N2-l

in order for the bounce action to be finite.
We can simplify further the problem taking 0, O for 1 1,.

then equation (4.10) becomes:

-A0/V2-1 +
3V

dep /V2-1
0

(4.11)

(4.12)

N2-2,

(4.13)
0i=O

We expect that the solution of equation (4.13), cpN2_1 cpB, has an 0(4)
invariance and thus is a function of r alone. cpB has then to satisfy the boundary
conditions: dcpBldr(r 0) 0, cpB(r—><x>) 0. The above ansatz is consistent if

3V
34>i 0 (i l, N —2) vanishes.

0N2_Î 0"

The now renormalizable potential V(cp) is a function of the quantities:
tr (0A)2, tr (cpaXaf and tr (0A)4- We have

3

34>i

_3_

30.

tr (0aAa)2

tr (0A)3

01 0N2-2'
0n2-, 0b

=o 40s àiiN2-X

— tx(cPaK)4
30,-

^1=...=^2_2=o 6(0B)2 di,N2-i,N2-i
0N2_, 0B

01 "- 0)V2-2 O

0/v2tal 0S

4(0S)3
4 1

t; ö/.iV2-! + 2 2j di,N2-i,k dk,N2_1N2_x

(4.14)

(4.15)

(4.16)

Since A^tataj is a diagonal generator of a form as in equation (4.8) or equation
(4.9), dN2_x<N2_ltk vanishes for k¥=N2-l, which can be easily checked using
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equation (4.4). Inserting this result into (4.14), (4.15) and (4.16), one sees that in
fact

3V
30, 0,=O

0,v2ta.,0«
(i 1, N2 — 2) vanishes.

4.2. The fluctuation operator

To compute the decay rate per unit volume we have to determine the factor
K, defined in equation (2.4). As in the U(l) case we obtain the determinants by
evaluating the functional integral in the steepest-descent approximation;

r N'-l
Z=\ n [2Afê4>aYlc.(df'Aatl)]DetMe-!dix^ (4.17)

J a l x

once with the bounce as background field and once in the false vacuum. Det M is

the ghost determinant, which depends also on _4£. In our approximation we insert
for AI its "bounce" value: ;4£ 0. The ghost determinant can thus be taken out
of the integral. In the expression for K it cancels, since in this approximation
we have then the same determinant in the denominator and in the numerator.
The functional integral (4.17) is then approximated by the Gaussian fluctuations

around the bounce (Aaß 0, a 1, N2 - 1; cp,¦ 0, i 1, N2 - 2;
0/v2-i 0B).

The fluctuation operator T'B is

iV2-l -i

-A òbb + g2 2 fabNi-lfabN>-l(4>B)2 <V 2gf'N2_lbc3„0
a \ -I

T'B -B 2

.£

32V
2gfN!-ibcdvcp -Aôcd +

dcpc 3cpc

(4.18)

The indices b, b, c, c run from 1 to N2 — 1.

As a next step we will analyse the structure of the operator 5£"B and see that
det T'B factorizes into pieces which have the same structure as the one we found
in the U(l) case. The fluctuation operator i?ö» which one gets when the
functional integral is evaluated in the false vacuum, can be obtained from the
above one by setting cpB 0.

32V
4.3. The matrix-

30c- 30f 0S

We first study the structure of the matrix 32V/3cpc 30c|^B, which appears in
equation (4.18). We will see that it is diagonal; only the terms 32V/3<^2|^fl are
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nonvanishing. We have:

32

3tpc 3cpe

32

3cpc 3cpe

32

3cpc dcpe

tr(Aa0a)2

tr(Aa0a)3

tr(Aa0fl)4

¦A ôr
0fl

- 120B dciN2_x
l

0l|t;[4 ôce + 8 ÔC:N2_X ö^jKfi-i]

+ 8 2j dc5e deN2_lN2_1
€

+ 16 2j dcN2_le dëN2_le \
e J

(4.19)

(4.20)

(4.21)

d2V/34>cd4>e\<t,B contains terms like those of equation (4.14), (4.15), (4.16),
(4.19), (4.20) and (4.21). In particular we see that it is a function only of the
totally symmetric tensor dabN2_,\ one of the three indices being N2 — 1. dabN2_x is

a symmetric matrix in the indices a and b. By an appropriate choice of the

generators A, (i¥=N2 — l)dabN2_l can be brought into diagonal form such that
dabN2-Xi=0 only for a b. If a (or b) N2 — l then we know already that
d-N2-i,b,N2-i vanishes for b (or a) ¥- N2 - 1. With dabN2_x in diagonal form one can
easily check that the above equations (4.19), (4.20), (4.21) are nonvanishing only
if c c. Thus:

32V

9<Pc d<Pc 0B

32V

!302 0S

With the fact that fN2_lN2_XN2_, 0 we see that the operator

32V

0S
^„ -A + -

30^2-1

(4.22)

(4-23)

factorizes from det ££%.

The operator AB has four zero modes, since the system is translationally
invariant [4]. Differentiating the bounce equation (4.13) with respect to xß, one
obtains (using equation (4.22)):

9J-A0B
3V

30 /V2-l 0S
-A + -

32V

30N2-1 0B
3^0B O (4-24)

AB has thus four eigenfunctions with zero eigenvalue. For the same reasons we
discussed in the U(l) case (see section 2.2), we expect that the operator AB has
also one negative eigenvalue.
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A.A. The SU(N) symmetry of the matrix
32V

30c 30f 0»

We will now exploit the SU(N) symmetry of the potential to show that some
of the elements of the matrix ôcl(32V/3cpT)\<pB are related to dV/dcpN2-\\<t,B-

Under an SU(N) transformation the potential V remains invariant, that
means:

/V2-l 3V

with

2 X-acpn=0
™ i 30«

N2-l
Òtpn 2Ì 2 fnjk*ìj<t>k

/./- ]

(4-25)

(4.26)

where £, is an arbitrary parameter.
Inserting (4.26) into (4.25) and differentiating once more with respect to cpn

we obtain (summation over repeated indices is understood):

32V 3V 1"
§, 0 V£, (4.27)

30« 30«

3V
fn,k<t>k + -T—

0B 30„
Ini

with equation (4.22) and 0,t O, 3Vld4»k\4>B Q for k¥=N2-l, equation (4.27)
becomes:

32VI3cp2n
3V

fnjN2-l<pB —
-,

0S OCpN2_x
fmjN2- (4-28)

0fl

We notice that fnjN2^x is an antisymmetric matrix in the indices n, j
(n, j 1, N2 — 2). Thus it can be brought into the following block-diagonal
form by a suitable choice of the generators A,- (i 1, N2 — 2):

0 1

-1 0
0

0 1

-1 0

oJ

(4-29)

Not all elements in the diagonal are filled with blocks of the form
0 1

-1 0
but

some vanish, since the corresponding a, are zero. The one that vanish are related
to the unbroken generators of the group, whose gauge bosons remain massless.
The number of unbroken generators depends on the symmetry breaking pattern.
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With the above result we can also analyse the structure of the operator:
/V2-l N

-A Ôbb+g2 2 fabffi-ifaBN'-ltâ) (4-30)

which occurs in T'B equation (4.18). Due to equation (4.29) it follows that (4.30)
vanishes for b =*= b. For b b we have

(-A + g2Ë/ta.O-v2-,0iW- (4.31)

For a given value of b :fttbN2_x is nonvanishing only for a b - 1 or a b + 1. If
the generators Aa, Xb are unbroken ones, the corresponding gauge bosons have to
be massless, which implies \haXfabN2_x vanishes in that case. '

With equation (4.29) one sees that for the nonvanishing (broken generators)
fabN2-i equation (4.28) becomes 0 is fixed and n is then equal to m):

32V 3V
(4.32)

0S30„ 0fl 3<pN2_x

We consider now the operators -A + (32V130?)!^ (c 1, yV2 - 1) which

appear in ££"B equation (4.18). We can easily verify that for the operators, whose
index c corresponds to that of a broken generator Xc, cpn is an eigenfunction with
zero eigenvalue. In fact —AcpB + (32V/3cp2)\^B4>B is, using equation (4.32), equal
to the bounce equation (4.13):

5V
-AcpB + -

dtpN2-l
0.

0S

These zero eigenvalues are the Goldstone modes, which are present if the SU(N)
symmetry is global.

In the local SU(N) symmetry case, however, the operators -A + (32VI
d<pl)\<i>B> related to the broken generators, do not factorize out of AQtT'B. This is
like in the U(l) case, where -A + (d2V/3cp2)\4,B did not factorize out of detBB
(equation 2.15). For the above analysis we used the fact that we could
"diagonalize" the matrices dabN2_x and fabN2-i- However for consistency we have
to check that they commute, because only then we can diagonalize both matrices
simultaneously. This can be easily proven using the Jacobian identities for the
generators [14].

4.5. The factorization of the determinant of the fluctuation operator

Let us denote by n l, a the broken generators Xn and by n
a + 1, N2 — 1 the unbroken ones. Notice that the generator XN2_X is an
unbroken one. With the previous results we see that the determinant of !£"B
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factorizes into the following pieces:

(-a+g2f%2-\,„,„+10!) <V 2gfN2_Xnn+x g^cpB

2gf N2-\,n,n + \

for n 1, a

dvcpi -A + -

d2V

3<pl 0B _

(4.33)

-A + -

32V

302„ 0B

for n a + l, N2 - 1

and

(-AÔ,JV) for n a+l N2 - 1

(4-34)

(4.35)

Equation (4.33) is the same as the operator BB (equation (2.15)) in the U(l)
case. Therefore we can apply to each operator (n 1, a) the same analysis
we did for BB, and also the results of the appendices C and D hold. Each of these

operators will give a contribution to the decay rate per unit volume similar to the
factor Kg of equation (2.37), which is real and positive.

The fluctuation operator i£'-\ around the false vacuum does also factorize, and

can be obtained from the above equation (4.33), (4.34) and (4.35) by setting
4>B 0. One sees then that the terms (-A<5.,v) (equation (4.35)) cancel when
computing the decay rate, since they are present in the numerator and in the
denominator. The operator -A + (32Vldcp2N2-\)\<t>B of equation (4.34) contains
four zero modes and one negative mode; thus det' (-A + (32V134>2N2-\)\-bB)V2 is

imaginary and therefore the quantity K (equation (2.4)) is nonvanishing.
We expect that the other operators of equation (4.34):

-A + -

32V

302
with n a + 1, N2-2

have only positive eigenvalues, and their determinants to be real. This is clearly
the case if our ansatz for the bounce corresponds to the solution with lowest
action. Although we have no proof, we believe that this is the case. Nevertheless
in the thin-wall approximation we can give an argument which shows that the
above operators are indeed positive. We discuss this in appendix E.

Finally, the decay rate per unit volume is:

HM d4x

2nfi

N2-2

x n
n a+i

with

4-(3„0B):

det (-A +to2)

det (-A + co2N2_X)

det' -A + -

32V

d(pX

1/2

det -A +
32V

3<Pl <t>B' -

xYl(Kg)n (4.36)

co2
32V

302 0fl=O
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and

n(A^,„)1/2(Det(fl°„)mm01/2

(*,)» -'
n(Ar„)1/2(Det(fln);r)x

We see that essentially the SU(N) case with the scalar fields in the adjoint
representation can be reduced to a set of U(l) cases, one for each broken
generator.

5. Conclusions

Using the semiclassical method of instantons we computed the vacuum decay
rate in models with scalar and gauge bosons. All the computations we have done
are valid at zero temperature. In particular we considered a U(l) gauge theory
with a complex scalar field and an SU(N) gauge theory with the scalar fields in
the adjoint representation. Although the U(l) case has no direct applications for
realistic models, the analysis of it is important, since it contains all the new
features which arise due to the inclusion of gauge bosons. The SU(N) case can in
fact essentially be reduced to a set of U(l) cases, one for each broken generator.
We made an ansatz for the solution of the bounce equations, which is consistent
in the sense that it satisfies the scaling argument and the fluctuation operator has

only one negative eigenvalue, thus the decay rate per unit volume is nonvanishing.

The final formula for the decay rate (equation (2.38)) is computable only
numerically. In the thin-wall limit there are no additional infrared problems to
the one which have already been pointed out in the scalar case [6].

For the SU(N) case, using the symmetry of the potential and the properties
of the structure constants dabc andfabc, we could show that det T'B, the fluctuation
operator, factorizes. For each broken generator we get a factor similar to Kg
(equation (2.37)) of the U(l) case. The unbroken generators do not contribute to
the decay rate. From our analysis we can also compute the decay rate in the case
of a scalar theory with a global U(l) or SU(N) symmetry.

In the previous chapters we did not consider the factor exp (-SB) which
enters in the formula for the decay rate. With our solution for the bounce it is the
same as for a pure scalar theory. One can either compute it numerically or
estimate it in the thin-wall approximation. In the latter case it is given by [4]:

3S
SB 21n2S\l2A\ and — R

A

where R is the critical radius of the bubble, and A is the energy density difference
between the two minima of the potential.

We would like to thank D. Wyler for many useful discussions. We have also
benefited from discussions with A. Bovier, W. Hunziker, C. A. Pillet and N.
Straumann.
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Appendix A

Consider the action of a non-abelian gauge boson coupled to a scalar, given
by the Euclidean action (in d dimensions)

SE jddx{lF2+\%cp\2 + V(cp)} (A.l)

In this appendix we would like to investigate the existence of negative modes
when fluctuations about a non-trivial bounce are considered.

Construct 5A which is gotten by replacing cp(x)^> cp(xlX) and AX)~^^ß(xl
X) in (A.l). By trivial rescaling the integration variable x, we have

SE(X) [ddx{Xd-2[\F2(eX) + \%(eX)4>\2} + XdV(4>)} (A.2)

where e is the gauge coupling constant. Since we are interested in the bounce
(AB, cpB) which minimizes the action, we have

Q
dSE(X)

dX
lddxl((d - 2) + ef-)[ÏF2 + \%4>B\2] + dV(cpB)} (A.3)

where the partial derivative 313e acts only on the explicit e dependence (not on
the implicit dependence coming through the bounce fields). Evaluating the scaling
fluctuations and using (A.3), we obtain

d2SE(X)

dX2
\ddx[[ej^\(d-3)eje-2(d-2)][\F2+\%4>B\2] (A.4)

From (A.4) we notice that the right hand side is not always negative. However, if
e 0 or AB 0, then it is certainly negative for d > 2, thus justifying that the
ansatz in consideration in sections 2 and 4 does possess the required negative
mode.

Appendix B

To compute the fluctuation operator !£"B we consider the Euclidean action
given in equation (2.3b) and make the following substitution

Ap—-- Af. + oAp

4>x^4>f + ô4>x (B.l)
02—»0f + <502

With our ansatz for the bounce we have AB 0 and 0f 0. We expand and
consider only terms which are quadratic in the fluctuations (ÒA,,, ôcpi, <502).
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After some partial integration and with d^A*1 0 also 3ß ôA* 0 we get:

AS, \dAx 1 32V

2 dtp] 3tp2
ÒCp\ «502 +

\32V
2 34>\

(b4>,)2 +
\32V
2 34>\

(ôep2)2
0B

+ 2e ôA„ ôcp2 d^cpB - 5Ô0, A(ôcp{) - {ôtp2 A(ôcp2)

+| (4>B)2 ÔA, ÔA" - \ÒA» A(ÔA„)

We can write (B.2) also in matrix form (32V/3cp\ 34>2\<p„ vanishes):

(B.2)

ASE ^jd4x[OAß, ôcp2,ôcpx

X-A + e24>2B)òliV 2edvcpB 0

2e 3„cpB

0

-A +
32V

301 0s

-A +

0

32V

30? <prt

ÔAV

ôcp2

à4>.

(B.3)

The fluctuation operator !£"B (equation (2.13)) is just the aoove matrix. In the
same way we obtain the fluctuation operator in the SU(N) case (equation (4.18)).

Appendix C

In this appendix we show that the eigenvalues Af and A& are positive. The
eigenvalues A£ of the operator

So- 2
-AÔ,

0

0

-A + tol (Cl)

are clearly positive, since the essential spectrum of the Laplace operator -A is

[0, oc). For the Af we have to show that the operator

B,
1

(-A + e2cp2B)öl.v 2edvtpB
32V

2e3VLtpB -A + —-2
3cp2 0S-

(C.2)

has positive eigenvalues for the eigenfunctions xf (X^,, Xst) which satisfy the
condition 3**/£, 0. Since -AcpB + (32VI34>2)\<t,B4>B 0 (equation (3.5)), we can
write 32V/34)2\<t,B as AcpBl4>B.

The eigenfunctions xf satisfy the equation:

(-A + e2cp2B)ô!ÀV 2edvcpB

2e 3ll4>t -A + A0J
0s

[x-*, Lip Xfi,
(C.3)
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or
i„2 j.2 .,/»-i*X* + X4>bX;, + e(dft4>B)Xs, Kx» (CA)

e(3v4>s)xf, - \\*xl+ \^rzl Af*£ (C.5)

Differentiating (C.4) with respect to jcm and using the fact that d^Xm ~ ® we obtain

2-e2(9tt(<t>D)xi:, + e 3,((a„0B^£) 0

or
e4>B(dAB)xi -(A0s)x.C - (3,10ß)(3^.C) (C.6)

Multiplying (C.5) with 4>b and using (C.6) we get:

-(AcpB)xï, - (3,0B)(3^.C) - 0S iA*£ + è(Afc,)*£ Aftó (C.7)

with vf 0bX.C (C.7) becomes:

-Axpf 2Xfxpf (C.8)

Multiplying (C.8) with 0f and after a partial integration, we obtain for Xf:

f|3„V,T^
Af ~ (C.9)

\xpf\2d4x
2

which shows clearly that Af is positive.
The case Aq 0 can be excluded, because this would imply: xp$ constant or

Xso~ 1/0B but 0B—»0 for r—»oc, thus xfo is not in the Hilbert-space.
The above is an example of Higgs mechanism. Namely by breaking the

continuous U(l) symmetry we expect Goldstone massless modes but these modes
do not persist in the physical sector. Furthermore naively in four dimension x%,

has four degrees of freedom but the gauge condition freezes one and yet another
is frozen because of the condition (C.6) thus resulting in really two degrees of
freedom. We notice that among the unphysical eigenvalues X) there are also

negative ones.

Appendix D

In this appendix we estimate the ratio

rc (A°-)1/2
(D.i)

n (Af)i/2
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which appears in the factor Kg (equation (2.37)). To do that we have to take a

suitable basis for the space spanned by the functions xf (xft, Xsd with d**xfi — 0.

We choose the normalized eigenfunctions xpf of the operator B0. For this
choice we have to assume that the dimension of the spaces spanned by the
eigenfunctions xf and xpf are the same.

We do first the computations in a finite volume V, and we let then V go to °°.

Since:

V\d*x{pfB0xpf XEn

we get:

ri(AoP„) Det(Jd4xVfSo0^

For n, (Xf) we obtain in this approximation:

ri(Af)==DetJtta4taï0fBB^

(D.2)

(D.3)

Since we know that all the eigenvalues Af of the operator BB are positive (see

Appendix C), we can use the following inequality:

Det (^x}fBBxpf d'x) _§ Det (jxpfBBxpf d'

and thus consider only the diagonal elements. We get:

(D.4)

or

n(Ds

n(Ds

Det (ixpfBBxpf d'x

Det(J0f_3ovft.4x)

jxpfBBxpfSl"

Det

d'x

jxpfBBxpf d'x

r,PA0.

(D.5)

(D.6)

We notice that J" d4xxpfBBxpf can be written in the following way, using equations
(2.15), (2.20) and 0f=«,V£)

jxpfBBxpf d'x jxpfBoX d'x + e^fXsXm d'x

+ 2e^f.(3„4>B)xp? d'x + 2ejxp^(3IÀcpB)X,i d'x

M 32V

301 0S
»!m d'x (D.7)

with j xpfBoXpf d'x X&.
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Since the operator B0 (equation (2.20)) factorizes, we can take for the

eigenfunctions xpf the following functions:

(i e (ix, i2, i3, i4, ,5)(v 1, 2, 3, 4))
ik'ix"'

1

Vv

i
Vv

i
Vv

i
Vv

i
Vv

€"¦ '*

0

0

0

_ 0 _
" 0 "
AjkÏx"

0

0

_
0 _

" 0 "

0

ea';*»

0

_ 0 _
" 0

0

0

e**«-

_ 0 _
" 0 "

0

0

0

gik'$xv

with k\* 0, such that S"V>£ o,
and AS, (Art!)2;

with k'i 0, and Xph (k'X

with k'i 0, and Xph (k'j)2;

with k4* 0, and Xpu (k'X

with A&5 (k'j)2 + col (D.8)

With (D.8) we obtain for (D.7):

(1

jx}fBBxpfd'x Xf0 + <

jd'xcpl for ie(ix,i2, i3, i4)

\\* \3cpl 0B

col) for i e «5-

(D.9)
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Equation (D.6) becomes:

exp' 2Z-ii\l +
^cpld'x
V Xp

+ 5>\l + p

3ZVJd"x — CO

\34> 0s

We make the following approximation:

i
e2jd'x4>ì\

1
e2jd'xcp2B

(D.10)

lnl 1 +

and
V A£,

V

V xp

{ d'k ô(k„)t (2*)4

For the last term we write:

'32V-wxp,+ — co
dip 0B

ln
\-\d*xe-*X(-A +^ )elk^

A0i5
-inl

Âdi,

(D.ll)

Equation (D.10) becomes:

We evaluate (D.ll) further in the thin-wall approximation. To give a meaning to
equation (D.ll) one has to regularize the integral $ d'k ô(k„)/k2, which is
otherwise ultraviolet divergent.

Using the dimensional regularization technique, one finds that after
renormalization the integral gives zero contribution.

The last term in equation (D.ll) corresponds to the ratio:

det (-A +to|)

det' -A +
32V

301 01 0"
02=0

putting it all together, and using equation (3.11) we find

n(A0p„)1/2
-(m2R)3(ln 2/6-1/9) (D.12)

n(Af)1
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Appendix E

In this appendix we give an argument which shows that in thin-wall
approximation the operators

32V
-A+ r30^

(u a + l, N2-2)
0fl

corresponding to the unbroken generators, have only positive eigenvalues. In this

approximation the bounce has the form

4>B(r) 4>_d(R-r) (E.l)

with

6(R - r)
1 r^R
0 r>R

Then 32V/34>2„\4,B, which is a polynomial in cpB can be written as

32V

3<Pl
a + bd(R-r) (E.2)

0S

since powers of 6(R - r) are still equal to 6(R - r). We know that 32VI

302L(>- 0) > 0 and 32V/depilar^^)>0 since for 0B 0_(r O) and for
0B O (r—»°c) V has minima (a global and a local one). These two conditions
imply that a + b>0 and a>0. Therefore with equation (E.2) it follows that
32Vld4>2n\<t,B >0 Vr, and thus the operators -A + 32V/3cpl\^B have only positive
eigenvalues.
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