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New approach to electron-positron
interaction in jellium

By H. Stachowiak

Institute for Low Temperature and Structure Research, Polish Academy of
Sciences, 50-950 Wroclaw, P. O. Box 937, Poland.

(18. XI. 1987)

In honor of Martin Peter's 60th birthday.

Abstract. A new formalism is proposed for the description of positron behaviour in jellium. It is
shown how to cope with the non-orthogonality of the wave functions overlooked in the Kahana
approach and poorly accounted for by Lowy and Jackson, including at the same time the positron
recoil neglected by these last authors. Also a form of the Pauli exclusion principle is proposed which
is free of the inaccuracies occuring in the Kahana formalism. It is shown that within this scheme its
application has no influence on the screening cloud distribution, unlike in the above mentioned
approaches.

1. Introduction

In order to study experimentally the electronic structure of metallic materials
by positron annihilation a reliable information about the effect of e+ - e~

interaction (EPI) is needed. Before entering into details let us refer to the article
of Arponen and Pajanne [1] (cf. also [2]) where a review of theories treating this

problem is presented.
Successive elaboration of spectrometers for two-dimensional correlation of

annihilation photons in the S. Berko group at Brandeis, the M. Peter group in
Geneva and the R. N. West group in Norwich provided the possibility to study
EPI in more detail. Comparison of theoretical and experimental results for EPI
[3, 4] shows marked discrepancies, though theoretical approaches basing on the
formalism proposed first by Kahana [5] seem to give the best agreement with
experiment. Among the most significant measurements let us mention the

Kingston and Geneva experiments for alkalis [6 to 8], the Brandeis studies of
copper [9] and the results from Norwich for zinc [10,11].

This shows that the theory of EPI needs further studies. In this article, using
the results of the theory of liquids [12,13], we will comment on the competing
approaches of Kahana on one side and Lowy and Jackson on the other [14 to 16],
proposing a new formalism going beyond the approximations forming the basis of
these theories. Some preliminary applications of this formalism will be presented.
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2. Basic assumptions

Following the results of the theory of liquids [12,13] Gondzik and Stachowiak

[17] assumed the wave function of the one positron-many electrons system
in the form

WL(rp, rj. tn) ft w(|r, - rp|) ri/(|r« - ry|)*(ri ...rN) (1)

where O is the Slater determinant for free electrons, rp denotes positron
coordinates. Note that the theory of liquids distinguishes between the trial
function w(r) used in equation (1) and the square root of the electron density
distribution.

This formalism can be generalized by assuming the wave function *F of the
system in the form of a Slater determinant built out of functions

Vk(i-e, rp) w(\re - ip\)cpk(re, rp). (2)

If w(r) in (2) is assumed constant we get back to the formalism of both Kahana
and Lowy and Jackson (cf. [18]).

Let us remark that the Jastrow type trial function (1) has been pretty
successful in describing the screening of the positron in an electron gas. This is an

argument for applying perturbation theory and assuming that the cpk function in
(2) differs little from a plane wave:

<Pk(r_, rp) -7-eikr< + vk(re, rp), (3)

where Q is the volume of the sample. Terms of higher order in vk will be

consequently neglected. This is the advantage of the present formalism over the
approaches of Kahana and Lowy and Jackson which use higher orders of
perturbation theory.

The function of equation (2) obeys generally the equation

-\Ve-\VP + V(\re-tp\)
2*

Vk yVk (4)

while w(r) can be assumed in different ways. E.g. we can make it satisfy the
equation for [p(\re -rp|)]1/2 from Ref. [17]. Let is satisfy the equation

[-V2+V0(s)]w(s) 0. (5)

We assume that

v(s) V(s)-V0(s) (6)

is small and terms involving it in higher order can be dropped.
Introducing (2) into (4) we get the equation for vk in the form

1_7 1_. k2A w' s 1
V2 - - V2 -L2[ 2 " 2 Vk=^sV^ike'k'r-\Mv(s)e'kIe- (7)
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The wave function V of the system can be simplified if one switches to the
variables (cf. [18,19])

s rc-rp, s, r,-rp. (8)

Then the wave function of the system xV(sx sN) is built out of the functions

1

^k(s) »v(5)^e*s + Uk(S)J. (9)

Equation (7) can be solved in Born approximation (cf. [20]) yielding

vJs) ___L V <S>i(q)kœse + <i>2(q)
s»kW Q^^(k + qf/2 + qy2-k2/2e

K }

where

4n f00 d
^>i(?) —î" ds — (In w(s))[sin qs - qs cos qs], (11)

q J0 ds

4n r^2(9) dssv(s) sin qs. (12)
Jo

0 is the angle between k and q.
The wave function of the system can now be written in the form

ip(sx sN) fl "(so*' (13)

where <!>' is a Slater determinant built out of functions

<Pk(s) ta^e'ks + uk(s) (14)

3. Electron density distribution and Pauli exclusion principle

In the approximation used in this paper one can replace vk(s) by vk(s):

öfsi _JL y <fr.(g)fccose-Ki>2(g) ,k+q)skW Q3/2 2, (k + q)2/2 + ^/2-fc2/2 l ;
|k+ql>/cf

since this leads to omitting in *P terms quadratic in the perturbation (cf. [18]). In
the case of constant w(s) (15) corresponds to applying the Pauli exclusion
principle. Unlike in the case of a proton the functions ipk of equation (9) are not
orthogonal, no matter whether we insert in (9) vk from equation (15) or vk from
equation (10) (this last because of positron recoil, cf. [14] and [18]). For a proton
applying the form vk given by equation (15) destroys the orthogonality of the ipk
functions. However in the present formalism, unlike in previous approaches, we
can operate relatively easily with nonorthogonal ipk functions. Indeed, applying
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the formula for the electron density distribution

p(sx) N where dt [[dsh drx=— (16)

/ m2!rfr ,_-, A,

one gets

p(s) 2Y Vk(8)Vk(s)-2 2 ^k'kV_.'(8)Vk(s) (IV)
|fc|<*F k#k'

where
occ

Ak.k Jrfs>ir(s')Vk-(s') (18)

if only terms linear in the non-orthogonality of the ipk functions are kept.
The formula (17) is derived in the following way: \W\2 can be written

formally in the form

m2 2 (-l)P'fl VkV'2)a,(P'2)(S.) riQ.p' t=i (ly)
X Vk,(i>'l)a1(P'l)(S,)

where a, indicates spin quantum numbers. In case of exact orthogonality of ipk
wave functions the only terms remaining after integration over dr are those with

k,(P'2) k,(P'l), o,(P'2) oi(P'l) (20)

for all values of i. The same concerns integration over dxx. In this way one gets
the usual formula for p(sx).

In case of weak non-orthogonality of the ipk functions, the non-orthogonal
terms in the denominator will be small to second order and can be neglected. In
the numerator terms in (19) containing a single permutation with regard to the
relations (20) will give a contribution linear in the non-orthogonality. This leads
to equation (17).

While performing actual computations using equation (17), we will consider
as small the factor w2(s) — 1, because it is limited in space and the term vk
following from perturbation. Neglecting consequently terms of higher order of
smallness we can write p(s) in the form

p(s) w2(s)p0 + ôp3(s) - ôp\s) - ôp2(s) (21)

where

ôp\s) 22 ^kk Vk'(s)Vk(s), (22)
k*k'
occ
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ôp2(s) 2 Y Alkipl(s)Ms). (23)
k^k',occ

ôp\s) 2-^ Y [vk(s)e-iks + v^y**], (24)
»¦ kocc

Ak,k Ak'k + Ak,k, (*••*)

Ai,k ~jds'[w2(s')-l]e^-k>', (26)

^•k ^5 | dS'[vk.(s')e-iks' + ««»'y*'']. (2V)

Performing calculations with üÄ (Equation (15)) instead of vk one gets for the
electron density distribution p(s) the formula

p(s) tv2(^)po + òp\s) - ôp\s) - ôp2(s). (28)

One obtains

ôp1(s) ôp1(s), ôp2(s) 0, ôp3(s) ôp3(s)-ôp'(s). (29)

Obvious calculations show that

ôp'(s) ôp2(s). (30)

Thus application of the Pauli exclusion principle in the form (15) has no influence
on the computed electron density distribution provided non-orthogonal terms are
included according to equation (17).

4. Conclusions

From the results presented above it appears that performing within the
formalism presented in this paper extensive calculations of EPI characteristics of
the kind of Lowy and Jackson [14 to 16] or Rubaszek and Stachowiak [18] (cf.
[3]) is quite feasible and should give additional insight in the still open problem of
e+ — e~ interaction in jellium.
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