
Zeitschrift: Helvetica Physica Acta

Band: 61 (1988)

Heft: 4

Artikel: On the optical properties of small metallic spheres

Autor: Giovannini, B. / Saniz, R.

DOI: https://doi.org/10.5169/seals-115961

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte
an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei
den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les

éditeurs ou les détenteurs de droits externes. Voir Informations légales.

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. See Legal notice.

Download PDF: 17.11.2024

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-115961
https://www.e-periodica.ch/digbib/about3?lang=de
https://www.e-periodica.ch/digbib/about3?lang=fr
https://www.e-periodica.ch/digbib/about3?lang=en


Helvetica Physica Acta, Vol. 61 (1988) 566-571 0018-0238/88/040566-06$1.50 + 0.20/0
© 1988 Birkhäuser Verlag, Basel
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In honor of Martin Peter's 60th birthday.

Abstract. We calculate the photoemission spectrum for a small metallic sphere within the
hydrodynamic approximation. For a diffuse surface this model predicts-besides the classical Mie
resonance-additional resonances below the bulk plasma frequency, which depend on the equilibrium
electron density profile and the depth of the surface region. These resonances are due to higher
resonant Mie modes which do not exist for a sphere with a sharp surface. This model would explain
observed resonances in the light-scattering intensity spectrum of small sodium particles.

1. Introduction

There has been much interest, in the past years, in improving the theoretical
description of small metallic particles [1-3] because of a certain number of
anomalous phenomena experimentally observed in these systems [4-6]. A better
understanding of their optical properties will certainly give a deeper insight in all
these phenomena. Here we focus on the photoemission spectrum. We consider a

small 'jellium' sphere and describe the bounded electron gas within the
hydrodynamic [7] approximation. This approximation has been considered earlier
to study this problem [3,8], but in our model we take into account the fact that
the equilibrium electron density, «0, is not discontinuous at the surface, but
varies continuously from zero to the bulk value over some distance r0. We
calculate the absorption density according to the expression derived from the

energy theorem by Forstmann et al. [9], and we integrate it over the sphere as a

measure of the photoemission intensity. To solve the equations we use the

multi-layer method, which we showed, in the case of a flat surface [10], to be

equivalent to numerical integration.

2. The model

The basic equations are the retarded Maxwell's equations for a nonmagnetic
material (p 1) and the hydrodynamic equation. We recall the latter equation
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can be written

|j=gE-rj-^Vp, (1)

where cop is the plasma frequency, y is the damping factor and ß the sound
velocity. All these latter quantities are space dependent through n0. Coupling all
these the equations we find (after Fourier transforming in time), with k co/c,

ß2
VxVXE-eÄ;2E-Ä.2(l-e)-^V(V-E), (2)

ivp

where e 1 — co2/(co2 + icoy). For n0 constant the solutions of this equation are
given by transverse and longitudinal spherical waves with wave vectors given by,
respectively,

œl/ e \ (3)
kX—£

ß2 \l-e
We divide the surface region in N layers-iV large-of thickness r0/N and we
take the unperturbed electronic density as constant in each one of them. Then in
each layer the fields are given by the solutions with constant «0, with the

corresponding local density. We consider the development of these fields in
spherical vector harmonics. Following the standard notation of Stratton [11], we
have in the /th layer (we don't write the time dependence factor exp(icot)).

V .„ 2« + l v

„ 1 «(« + 1)

k °° 2« + 1
H( - 7 2 Ì" } TTÌ [Kn^Cln + ia'vnKln], (4)

k „=1 «(« + 1)

_
-=, 2» + l

X-iv - 2aI l ~~t 7~r iavnhln-
n=1 «(« + 1)

The subscript v can take the values r and p. In the first case it is a transmitted
wave and we have to take spherical Bessel functions in the harmonics'
expressions; in the second case it is a reflected wave and we take the spherical
Hankel functions. Outside the sphere (vacuum) we have an electromagnetic wave
of frequency co coming along the z-direction, and we develop it also in spherical
vector harmonics. Now in this problem we consider spheres of radius R —

10 — 50 Â, and impinging beams of frequency co ~ cop. Then kR « 1, so that the
fields in the sphere are given by the first term in the development (4). This is the

dipolar or Rayleigh approximation. To obtain the amplitudes we set the boundary
conditions as follows. At the metal-vacuum interface we take the continuity of
E,,, H,, and Ex. At the interface between two layers we need one more condition
which we take as the continuity of ß2p/co2p [9].
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We introduce the following notation. At the «th layer, given by the interval
[r„_1; r„], we write the fields' wave vectors as k" and k". Then we put

janm=ii(kn0rm), h°nm hx(knarm), o t,l,

and introduce vectors a„ - (a"x, a"pX) and bn (b"x, bnpX, d"x, dpX). The continuity
conditions at each boundary can now be expressed in matrix notation very simply
by

1 n.rfln ~ 1 n + l,rfln + l>

A„,„o„ — A„+i„o„+i, v >

where the matrices T et A are given by

/' h'J nm "'nr,r .£-".'" knU"^^-tjnm r^t'-nn

and

**-n,m

f h' /' h'J nm .f, "-nm it, J nm nnm
,„ -Tjnm ,„ + n-nm _~ —''
*-t'm H-t'm 'm rm

kni' Wh' fl fl

V h' Ir" lc"Inm '-nm ^l_ ./, JW • I,
,n ,n ~TT]nm ~ TT "¦ nm
l^t'm Kl'm *¦ *¦

0 0 (klfj'nm (klfh

In this way we have the »-th amplitudes in terms of the preceeding ones. Iterating
this procedure we arrive to a system of equations in terms of the vacuum and bulk
amplitudes. With the solution of this system we can easily calculate the
amplitudes in all the layers iterating the procedure backwards.

3. Results

The electron gas parameters (bulk values) we use in our calculations are
<0p 1016s~\ ß 108cm-s-1 and y 0.03 cop. These correspond roughly to
those of sodium. The photoemission intensity, as we said in the introduction, is

given by

A(co) 4ji d'r-^lil2. (6)
sphere P

The main features of our results are the following:

(i) For a density n0 given by a 'step' function at the surface the spectrum
shows a blue shifted Mie mode (cop/y/3). The oscillations above the plasma
frequency are due to the longitudinal plasmon modes of the sphere. Ruppin [12]
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first found these modes using Lindhard dielectric functions in his calculations of
extinction cross sections. Their influence is also clearly seen in the work of
Doniach [8], who uses the field intensities in the z -direction at the surface to
estimate the photoemission strength. The blue shift in the Mie mode was also
stressed by Ruppin.

(ii) The most important feature of the non-constant n0 results is the

appearance of higher Mie modes below the plasma frequency. Their dependence
on the electronic density profile is twofold. In first place the intensity of these
modes is higher when the derivative of n0 at the surface is lower. The reason is

that these are electric type modes (like the classical Mie mode), due to transverse
fields, and in the low density tail the dielectric function approaches unity, so that
transverse fields move almost freely in this region. We can see this very clearly if
we compare Figs. 1 and 2. On the other hand, longitudinal modes are strongly
damped. The reason is again the low density at the surface, because the
longitudinal wave vector tends to infinity, and for spherical waves this always
means severe damping. We conclude, therefore, that a diffuse surface favors
tranverse modes against longitudinal ones. (In fact there are also longitudinal
modes below cop, but their influence is negligible as we just explained).

In second place the number of these modes depends on the diffuseness of the
surface, r0, i.e. for larger r0 more modes appear. We illustrate this in Fig. 3. We

may add here that the photoeffect resonances are stronger for a smaller sphere
radius (this is also true for a sharp surface).

(iii) In Fig. 1. the principal Mie mode is located at Q co/cop =0.55, which

O 2 0.6 1.0 1.4

Figure 1

Absorption curve of a sphere of radius R 20 Â with a linear density profile and surface diffuseness
r0 4Â. The broken curve gives the sharp surface results for comparison. Absorption is in arbitary
units and Q w/m
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Figure 2
Same as Fig. 1 but with a sin2 (rji/2r0) density profile to simulate a more realistic surface. We see that
the second mode is much stronger.

means that now it is red shifted. It corresponds to a wavelength A — 343 nm for
the plasma frequency we use. The secondary mode is at Q 0.9, which
corresponds to a wavelength A — 209 nm. In Fig. 4 we give the frequency-radius
dipersion relation of these resonances. If we consider now the experimental
results of Duthler et al [4], we see that we could qualitatively explain the second

-i 5

0.2 06 1.0 1.4 1.8

Figure 3

Same as Fig. 2, but with the diffuseness parameter set to 6Â. This gives rise to a third Mie mode.
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Figure 4
Frequency-radius dispersion relations of the Mie modes for a linear density profile and surface
diffuseness r„ 4 Â. The lower continuous line corresponds to the modified Mie mode and the upper
one to secondary Mie mode. R (radius) is given in Angstroms and Q co/cop.

maximum they observe as a resonance due to a secondary Mie mode -rather than
a longitudinal mode as suggested by Ruppin [13]-induced by surface diffuseness.
The exact location of the resonances will depend on the equilibrium electron
density and the electron gas parameters one uses, but at this point more
experimental data would be necessary before going further into quantitative
considerations.
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