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Schwinger model on S:

By Camillus Jayewardena

Institute for Theoretical Physics, University of Berne, Switzerland.

(8. II. 1988)

Introduction

The Schwinger model [1] is quantum electrodynamics with a single massless

fermion in two-dimensional space-time. Since it was shown to be exactly solvable
by Schwinger in 1962, there has been a lot of interest investigating various aspects
of the model. The model has been shown to illustrate several phenomena which
are vital to an understanding of particle physics. Spontaneous breakdown of local

gauge symmetry, breakdown of global chiral symmetry through the U(l)-
anomaly, charge shielding and 'quark' trapping are among these. For a discussion
of these aspects see [1, 2, 15, 16].

Various generalizations of the model have been considered. Thus Coleman
et al. [15] have investigated a massive theory by giving the fermion a small mass
and then doing mass perturbation theory. Order parameter estimates for a

massive model are given in [18]. The case when one has non-Abelian gauge fields
has also been studied [17,10]. In neither of these two cases is the model exactly
solvable.

On the other hand, the model has also become a tool for testing various
techniques of quantum field theory. The earlier investigations were based on
Green's function methods [1,16]. Operator methods were then successfully
employed to study various aspects of the model. See [2, 4] for an account of the
results. The vacuum structure of the Schwinger model has been investigated in
[3, 6] using operator techniques. In the recent years, functional integral methods
have been used to solve the model [5,7,8,9,11,13]. Using Fujikawa's ideas
about fermionic path integrals [14], the Schwinger model has been re-considered
by a few authors [9,12,19]. In [19], an extension to the curved space has been
used to suggest that the main features of the model persist even in the presence of
a background gravitational field.

Although the best insight to the solution is probably provided by using the
functional integral methods, no complete, satisfactory account seems to exist in
the literature. It is known that naive calculations using the path integral in the flat
space produce incorrect results [7, 8]. The reason becomes clear when one uses a

compact manifold: The Dirac operator which has a discrete spectrum on a
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compact manifold, is found to possess zero modes for certain gauge field
configurations. The result of the Grassmann integration in this case is not the
same as when there are no zero modes. As we show here, when one takes the

necessary modifications into account, one does indeed get the correct results.
And one should also keep in mind that the fermion path integrals have no
meaning unless defined using a discrete basis [14, 7].

In this work we present a rigorous calculation to reproduce the known results
of the Schwinger model using the functional integral method, and illustrate the
role of zero modes and gauge field configurations with non-trivial topology. More
precisely, we consider quantum electrodynamics on S2, i.e., the surface of a

sphere, which in the limit of the radius R going to infinity becomes QED in
Euclidean two dimensions. One may say that the Euclidean two dimensional
plane is compactified to S2. This kind of compactification is desirable for studying
the above mentioned aspects. Technically speaking, this is equivalent to
introducing an infrared cutoff. In addition, the choice of the sphere as the

compact manifold has the great advantage that it does not destroy the solvability
of the model. The symmetry of the sphere permits the application of a wealth of
familiar mathematical tools enabling one to obtain exact results.

Because of the non-trivial topology of S2, the gauge fields fall into classes

characterized by the winding number k, defined by

2jt J.s
d xF0X

s2

which is an integer. Here q is the electron charge and F^ dliAv - dvA,, is the
field strength of the gauge field A^. The number of zero modes of the Dirac
operator then turns out to be equal to \k\. Thus neglecting the zero modes is

equivalent to neglecting all the non-trivial topological sectors and so leads to
incorrect results even in the limit _R-»oo. In particular, this leads to (-/>-/>) =0.

The presentation that follows is divided into three main parts. The first part
contains the definition of the model in the general formalism and in an
5C/(2)-invariant formalism. The two formalisms are equivalent though the latter is

more suitable for explicit calculation since it incorporates the symmetry of the
sphere. The importance of the fermionic determinant for calculating various
expectation values is emphasized in Section 4. After regularizing the theory using
Pauli-Villars regulator fields, a closed expression for the fermionic determinant is
obtained in Section 6. This is the main result of Part I.

Objects with physical significance, i.e., the expectation values of various
operators, is the subject of Part II. The contributions to the expectation values
from each topological sector are calculated separately. All the results are
obtained for finite R. At the end, the flat-space limit is taken. The properties of
two- and four-point functions establish the cluster property. Considering the
R—A-co limit of the two-point function of the field strength FMV, one verifies that
the theory is equivalent to that of a free scalar particle. This is in agreement with
the interpretation that the theory describes a scalar meson consisting of a

quark-antiquark pair.
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Finally, in Part III, details of essential mathematical results used in the main
calculation are presented. They are organized in four appendices. After considering

the general properties of the Dirac operator, its complete spectrum for a

special case is constructed in Appendix A. This is essential for obtaining a closed

expression for the fermionic determinant. The method used there also gives the
explicit expressions for the zero modes. How to evaluate fermionic path integrals
in the presence of zero modes, is shown in Appendix B using first principles. As
examples, several special cases, which are relevant to the main calculation are
also illustrated. Appendix C shows the equivalence of the two formalisms
mentioned above. Thereafter, the Green's function of the Dirac operator for an

arbitrary gauge field is obtained. That this can be found explicitly lies at the heart
of the solvability of the Schwinger model on the sphere. An infinite series which
repeatedly occurs in the calculations of Part II is summed in Appendix D.

Part I

1. General formalism

Consider an orientable d-dimensional manifold M with positive definite
metric gßV. In this section we describe how to define quantum electrodynamics on
such a manifold.

1.1. Euclidean y-matrices

The d-dimensional Euclidean Dirac-algebra is

{ya,yb} 2oah (1.1)

fa=Ya (1-2)

where the indices a, b, run from 1 to d. Without proof we state the following
theorem:

Theorem 1. Every representation of the Dirac-algebra is an orthogonal sum
of irreducible representations. Up to unitary equivalence, there is exactly 1

irreducible representation if d is even, and exactly 2 if d is odd. The dimension of
the representation is 2|d/2', where [d/2] is the largest integer <d/2. If d is odd, the

two irreducible representations are distinguished by the sign in the relation

n
Y\Y2- • -yd ±expi--d(d-l)

1.2. Fields on a patch

In order to describe the manifold M we need in general more than one
coordinate patch. A Dirac field on the patch U cM covered by the coordinates
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x*, n 1, d is a (complex) spinor field xpa(x), a 1, 2[d/2'. Under a

change x—»*'(*) of coordinates in U, xpa transforms as a scalar field, i.e.,

^'a(x') xpa(x) (1.3)

if jc and x ' are the old and new coordinates of the same point p eM.
A gauge field on M is a vector field A., taking values in the Lie algebra of the

gauge group G. Under the above coordinate transformation it transforms like1)

dxv

^')=^^vW (1.4)

1.3. Dirac operator

The Dirac operator on M can be given by

D yli(d,+iyvyX (1-5)

Here yß g^yv satisfies

{yM, yv} 2gMV (1.6)

and yv.p is the (Riemann) covariant derivative of the vector field yv:

YV;u 3M7v - rjWy;. (1.7)

Itv kAp{3,gvP + dvgpp - 3pg,v) (1.8)

In terms of a fixed set ya of (constant) y-matrices we have

y" ea/.yflta (1.9)

where eaju depends on x and satisfies

ea^vg"V=ôû6. (1.11)

For any fixed a, the coefficients eail may be considered components of a vector
ea. From (1.11) it follows that these vectors are orthonormal. Thus we have a

moving frame which can be chosen to have the same orientation at each point
since M is an orientable manifold.

The Dirac operator described above has the following properties:

• It is a first order differential operator acting on Dirac fields.
• It is invariant under general coordinates transformations.
• It reduces to the ordinary Dirac operator in local normal coordinates.
• Under frame rotations êai, Aabebp where A e SO(d) and ^-dependent, it

transforms as D uDu~l where « is a unitary matrix of determinant 1 and
is related to A by uyau~x Aabyb.

') The Greek indices ii, v, run from X, d. We also adopt the summation convention that
all repeated indices are summed over.
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If we also transform Dirac fields tp under frame rotations according to

ip' uip (1.12)

the action of the Dirac operator becomes frame independent.
In the presence of a gauge field, the Dirac fields may carry a further index

corresponding to some representation R(g) of the gauge group G. In this case,
the Dirac operator may be written as

D y%3p+R(All) + XyX (1.13)

1.4. Global aspects

Suppose that M is covered by a set of coordinate patches £/w. A point
p e U(,) then has coordinates x0),i in f/(,). Suppose now that in each patch t/w we
have chosen a moving frame e^. A collection of Dirac fields ip'iKX) is then said
to be a Dirac field on M, if on the overlap of any two patches £7W and t/w the
fields X> <?i!) and t/W\ eJW are related by a 'gauge transformation'. Let us first
consider the case when there are no gauge fields. Thus for x(,) hti(x®) we have,

ip^(xw) uvxp(/)(x(J)) (1.14)

3-*(/)v
egi(*<0) A-KVM^ (1.15)

where un depends on x®, and is related to A by uyau~l Aabyb.
Consistency requires that

l u!i(x^)u,,(x^)ì lì peU U

hik(xw) h,)(hjk(x^))
uik(xw) Uii(x^)uik(x^)

A manifold M for which a set of transition matrices utj with the above properties
exists is called a spin manifold. Spin manifolds are thus the manifolds which admit
globally defined non-zero Dirac fields. All d-dimensional spheres and tori are spin
manifolds.

A similar transition rule holds also for a gauge field Aß : For a point on the
overlap U(l) n f/ü) we have

f 3 3x(i)v
Af(x") (fcAWOfc-i + g,7^^g,71J^ (L16)

where g,, e G depends on jW and satisfies the conditions analogous to the ones
above.

In the presence of a gauge field, the transition rule for the Dirac field becomes

X)(X) R(g„)ullXX)) (1.17)

where R(g) is the corresponding representation of G.

<*>. ,,.r.o)w.M*).f if Peu^nu^nu^
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On a spin manifold the Dirac operator D defined above maps a globally
defined Dirac field onto a new one. The eigenvalue equation

iDip Eip (1.18)

therefore has a well defined global meaning with all eigenvalues E being invariant
under gauge transformations and local frame rotations.

1.5. The action for QED on the manifold M

The Euclidean action for a massless Dirac particle, represented by the Dirac
field ip interacting with an Abelian gauge field A., on the manifold M can be given
by

S f ddxVg VDxp + ] { ddxVg F»vFpv (1.19)
Jm 4 1M

where

g dat(gßV), (1.20)

D y\dll + iqAli+\yvy^,v), (1.21)

and the field strength tensor FMV is defined as

Fpv=3ßAv-3vA,,. (1.22)

q is the charge of the particle, which is described by the field tp. We assume that
q>0.

Then S is invariant under

• general coordinate transformations x—>x'
• frame rotations eaß —» Aabebll and

• local gauge transformations
1. xp—A-h(x)tp

2. Atl^hAilh-x + -h3llh^ where h(x) e 1/(1)
iq

On conformally flat spaces, like the d-sphere, coordinates may be chosen such
that

gßv(x) Q(x)OßV Q>0 (1.23)

A natural choice for the moving frame is then,

eap Q-y2óm (1.24)

and the Dirac operator reduces to

D Q-^-^4{Q-mya(da + iqAa)}Q«-1)/4 (1.25)
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1.6. Schwinger model on S2

By setting d 2'm (1.19) we obtain the action for the Schwinger model on a

curved 2-dimensional space. We choose the 2-sphere S2 to be this space. On S2,

the stereographic coordinates provide a system of conformai coordinates: we have
for reS2

rx 2R2x1(R2 + x2yi (1.26)

r2 2R2x2(R2 + x2y1 (1.27)

r3 R(R2-\2)(R2 + x2yi (1.28)

g„v 3„r • 3vr (1.29)

4fl4

where R is the radius of the sphere.
For the ya-matrices we may choose two of the Pauli matrices:

Y\ ox y-i o2 (1.31)

so the Dirac operator becomes

D Q-W{aa(3a + iqAa)}Ql/4 (1.32)

There is an alternative way to formulate the whole theory, which incorporates the

symmetry of the manifold where the fields live. In the next section this
5'f/(2)-invariant formalism is described. It proves to be more convenient for the

explicit calculation.

2. 5t/(2)-invariant formalism

In the 5f/(2)-invariant formalism, we require the rotations of S2 to be
symmetries of the model. In the limit /? —*• =>= it should also reduce to the ordinary
Schwinger model in flat space. To fulfill the first of these properties, we need
rotation invariant Dirac matrices.

2.1. The r-matrices

Suppose r r(x) is any (local) coordinatization of 52 by coordinates x'';
|U 0, 1. (The orientation is always taken to be such that r-(-90rX3.r) is

positive). Define

g^v=3,r-avr g"vgvp=ô£ (2.1)

r,=-o-(rX3,r) (2.2)



Ti- YiA + o{¦x
kR

7o <?2 y'l
so that

lim r„: Yß

at fixed x.
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Here, o, are the Pauli matrices. Then

{r„rv} 2g,v (2.3)

r* r„ Trr, o (2.4)

With this definition for T-matrices it can easily be shown that

rii\r^Sr=UTt,U~l (2.5)

where u e SU(2) and 5 e SO(3) are related by uo,u~x o,Su. Thus, a rotation of
the sphere is equivalent to a unitary transformation in the spinor space.

Furthermore, under a change of coordinates, _W transforms like a vector
field, i.e., rildx>' is invariant. In normal coordinates around r (0, 0, R), we have

(2.6)

7X (2.7)

(2.8)

2.2. Fields on S2

In local coordinates, the electron field ip is a two-component spinor:

V riW) (2-9)

The gauge field is just a vector field A,,. Under a gauge transformation,

xp' hxp (2.10)

A'=A,.--hduh-x (2.11)
q

where h(x) e'A(x) (A is defined mod 2n), belongs to U(l).
Under a coordinate transformation, xp and Ap transform as scalar and vector

fields. Since one needs at least two coordinate patches to cover the sphere, one
has the following transformation rules when one goes from one coordinate patch
to another (cf. 1.16, 1.17):

ìp'(y) h(x)u(x)xp(x) (2.12)

Adx
A,ll(y) \Av(x)--hdvh-1 —; (2.13)

q J 3y

where unprimed and primed quantities are the fields on coordinate patches
characterized by the coordinates x and y respectively. Furthermore, since the
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gamma matrices are specified through equation (2.2), there is no need to consider
frame rotations as before.

2.3. The action

We take the action to be

S
-A

jd2xVgg»vgp°Ft.pFva + j2d2xVg Tp(®+^)tp (2.14)

where

F,.v=dpAv-dvAß (2.15)

2>=g<"Tv% (2.16)

9ll dl. + iqAlt (2.17)

Note that xp is a spinor field independent of xp as we are in Euclidean space.
S has been so constructed that it is invariant under general coordinate

transformations, gauge transformations and rotations of S2.

The extra term (i/R)xpxp is included to make 5 also chiral invariant (see

below). We also note that the operator D (S> + i/R) here is, in fact, unitarily
equivalent to the operator D introduced in the general formalism (see equation
(1.21)). That is, there is a unitary matrix u such that

uDu~l D

See Appendix C for the proof. Thus we are indeed dealing with the same theory.

3. Expectation value of an operator 0(xp, xp, A,.)

In the path integral formulation of the Schwinger model, the Euclidean
expectation value of an operator O given by

(O) Z-lj[Dx}][Dxp][DAp]e-s^^O(x}, xp, A,) (3.1)

where

Z \[D{p][Dxp}[DA^]e~s['t'v-A''] (3.2)

In the following we show that the sum over all gauge fields can be written as a

sum over classes of gauge fields characterized by the topological charge k.

Indeed, define

k ^-ld2xFox (3.3)
Lit Js2

Then, k is well defined, gauge invariant and independent of the coordinate system
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used. For all gauge fields, k is in fact an integer. To see this choose the following
coordinates for upper and lower half-spheres:

rx=x° r2 xl r3 (R2-x2)m (\x\<R) (3.4)

ri y° r2=X r3 -(R2-y2)m (\y\<R) (3.5)

These coordinate systems cover the sphere. They meet at the great circle r3 0.

Suppose AX) and X(y) are trie gauge potentials in these coordinates. Then
using Stoke's theorem,

k 3-
2jz

<f AX)dx»-$) A'X)dy») (3.6)
Jr3=0 Jr3=0 '

where the two line integrals are evaluated along the same direction on the great
circle r3 0.

By definition, the components of a gauge field defined on the overlap of two
coordinate patches are related to each other by a gauge transformation (cf. 1.16),
i.e., there exists h e U(l) such that,

Al(y) (A..(x)--hdvh-l)fl (3.7)

or
dy"

dy"A,p(y)^(Av(x)-l-h(x)^-vh-\^))dxv (3-8)

Thus

k ^-i dx»h(x) 3ßh-\x) (3.9)
---T J-3__o

It follows that k is an integer, the winding number of the gauge function h(x)
around U(l) as x runs around the great circle r3 0.

The gauge fields Aß therefore fall into topological classes labelled by k. In
the functional integral one must sum over all fields. A restriction to k 0 would
be a non-local 'boundary condition'.

Denote the set of gauge fields with topological charge k by sâk. Thus we can
write the expectation value of an operator O as

(0)=Z~1 f f [Dxp][Dxp][DAß]e-s^^O({p,xp,Aß) (3.10)

with

Z S f [Dxp][Dxp][DAp]e-s^^ (3.11)

where \Mk denotes the integral over only those gauge fields which have

topological charge k.

In fact, Aß may be expressed in a nice form where this dependency on k is

explicitly displayed. To this end, we first construct a rotational symmetric gauge
potential.
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Suppose x1* is any coordinates. Choose a spinor z(x) such that

r,oiz Rz, |z|2=l (3.12)

Then z is uniquely defined up to a gauge transformation

z(x)-*h(x)z(x), heU(l) (3.13)

The vector field

C,,(x)^j-z(x)9Xx) (3.14)

is hence a gauge potential as described above. In the coordinates xM and y**

introduced in (3.4) and (3.5) we may choose

z(x) [r2 + r2 + (R + r3)2]-HRlrA (3.15)

z(y) [r2 + r\ + (R- hfV^^ (3-16)

so that for r3 0

z(y) ^(rx-ir2)z(x) (3.17)

It follows that CM has charge A; 1.

When r is rotated, z rotates with the corresponding SU(2) matrix; i.e., if

then

z^>u~lz
where uOjU~l 0,5^. Hence Cß is rotation invariant. In particular, the associated
field strength Fm/\g must be proportional to Vg. Because k l, we deduce

Vg

2qR

Symmetric gauge potentials for any k are obtained just by multiplying C., by k.
Now suppose that A., is any gauge potential with topological charge k. Then

Foi/Vg is a scalar field on S2 and we may define the scalar potential cp by

-»-rrw (3-19)

Fos=^zh (3.18)

I d2xXgcp Q (3.20)

where A is the Laplacian on S2:

A ^=3,Vgg"vav (3.21)
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The definition (3.19) needs some explanation: If we exand the function Fox/Vg in
a complete orthonormal set of eigenfunctions of the Laplacian A, the piece
k/2qR2 is just the term corresponding to the zero mode. Hence the function
Fm/Vg- k/2qR2 no more contains a term proportional to the zero mode. This
guarantees that A is invertible on the space of functions orthogonal to the zero
mode so that equation (3.19) may be solved to obtain cp.

The field cp is gauge invariant and scalar under coordinate transformations.
Define

.4; _4„ - kCß - Vg €pvgvp dpcp (3.22)

By construction, we have

aM_4;-3v^; o (3.23)

so that A',, is a pure gauge. It follows that the representation

Ai,=kCli+Xgeliygv»dpctA-+-hd..h-i (3.24)
iq

holds. With the constraint (3.20) for cp, and upto a constant phase in h, the

mapping

A->(k, cp,h)
is 1:1.

4. Fermionic determinant

In the following, all the calculations are done in the rotational invariant
formalism introduced in Section 3. Later on, in Appendix C, we will use Dirac
operator of the general formalism to obtain Green's functions of various
operators.

Since the action (2.14) is quadratic in fermion fields, the fermionic
integration can be easily done for many important operators. Before illustrating
this let us note that it is more convenient to use a dimensionless operator in the
action. This can be achieved by setting

"Xr '•& d=«WW) <4»

Then we have,

(0)=Z~l f f [D^DrilDA,]

x exp (-S[Aß] - j d2xVg mil)o(VR fj, VR n, A^ (4.3)
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where

2=2 f [D^][Z)jj][DAm] exp (-5[AJ - f d2x\fgf,^r,) (4.4)

Now take, for instance, the two operators O 0(A) and O xp(x)xp(y). The
result of the fermionic integration depends crucially on the number n of zero
modes of the operator 9) (see Appendix B). As shown in Appendix A, this
number is closely related to the topological charge of the gauge field Aß present
in D R(Tß(dß + iqAp) + i/R). The following theorem summarizes the results of
Appendix B.

Theorem 2. Corresponding to every eigenfunction r]v of the operator iD with
a non zero eigenvalue Ev, there is another eigenfunction r]-v T5r]v with the

eigenvalue E_v — Ev.
Furthermore, all the zero modes %i have definite chirality, i.e., Y5Xi +-Xi af-d

the number of the zero modes n n+ + n_, where n+ and n_ denote the positive
and negative chirality zero modes respectively, is given by

n+ 0 n„ \k\ if A:>0

n+ \k\ /i_ 0 if k<0

The chirality operator T5 mentioned above is defined by T5 (l/R)oiri and
has the following properties.

n r5, r2 i, {r3,r„}=o, (4.5)

r5r, /Vg epvgvTp, {D, r5} O. (4.6)

Now we can perform the Grassmann integration over the fermionic fields (see

Appendix B) and we get, formally,

{0(A)) Z-li [DA,] det Be~s^O(Aß) (4.7)
Jtata/, *.=()

(Va(x)ipß(y)) RZ~4 \ [DAßXs{A'\-^m%X,y | D)
U^s Ar=0

+ 2 f [DAß]e-s^\-det'D)(dcXN)-lxik\x)^k\y)} (4-8)
k ±t JsJk >

Here

f [DA,
J.«...

Z= [DA.ldetDf.-51'4"1
/.=<)

(4.9)

In this expression det D denotes the product of all the eigenvalues of D. When
there are zero modes (i.e., kJ=0), the product of all non-zero eigenvalues is
denoted by det' D. ^aj3 is the Green's function of D, %(k) the only zero mode of D
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present for \k\ 1, and det N (%, %)¦ The scalar product is defined as

(xp, cp) i d2xVg~ xp(x)cp(x) (4.10)
Js2

where (xp)a (xpa)*-
The above expressions for expectation values are only formal because we

have not yet defined what these infinite products mean. To make them well
defined we have to regularize the theory. At any rate, we recognize det' D and
det D as quantities of central importance in our calculation. In the following we
give a proper meaning to them by using Pauli-Villars regulator fields with masses

M,R.

5. Regularized theory

The theory is regularized by introducing regulator fields xph whose contribution

to the action is

2 f d2xVg rpi(B - M,fl)t//, M, > 0 (5.1)

where xpt is fermionic or bosonic depending on e, being +1 or -1.

Ì>,= -1 2>,(M,7?)2" 0 for p l,...,r-l. (5.2)
i=\ 1

As a result, det' D is now replaced by

r
det' D fl det (D - M,R)e' exp £r<g (5.3)

-=i
It is more convenient to work with the hermitean operator Q with positive (or
zero) eigenvalues, defined by Q - D2. It is easy to show that

exp irgg (-l)'*l(det' Q)1'2 Y\ {det (Q + M2R2))eJ2 (5.4)

where k is the topological charge corresponding to the gauge field A, present in
D. Treg is finite for finite M,. Taking the logarithm we obtain

r<*> 2iM |*| + Tr' ln Q + Tr 2 e, In (Q + M2R2) (5.5)
i

The 'prime' on the trace means that the zero modes are excluded.

6. Calculation of T%>

This section is devoted to calculating r£*j explicitly for any given k and for
any Aß. The strategy will be as follows. We first recall that (equation (3.24)) a
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gauge field with any topological charge may be represented as

A„ kCß+Vg eßVgvp dp(p+-h 3ßh~]
iq

The variation ôY^l of T^ for a change ôcp of the scalar field cp is then calculated.
(Notice that Tr^ is independent of /.). This turns out to be intégrable and thus
gives r^j up to a term a independent of cp. Finally a is obtained by explicitly
calculating T^ for the special gauge field kCß.

6.1. Variation of Trkel

Before taking the variation of T^j, let us write it in a way which is morereg
convenient for further manipulation:

r<£> 2m \k\ + \k\ 2 e, ln (M2R2) + Tr' J2 e, In (Q + M2R2) + In q]

2jri |*| + |*| 2 e, ln (M2/?2) +22 e.pn (K + M2/?2) - ln A„]

Here, Xn are the eigenvalues of the operator Q. The quantity in the square
bracket may be represented as an integral. Thus we get

r<4> 2m 1*1 + 1*1 2 e, ln (M2R2) +22^ f ~ X'K - <r'(A"+M'*2))

2m |*| + |*| 2 e, In (M2/?2) - [ - (Tr e-,a - |*|)(l + 2 e,e~'M-Rl)
Jo t \ /

Under a variation ôcp of 0, the change in F^ is thus given by

ÔV^ -JT^ ô(Tre-'")(l + 2^-'w'"2) (6.1)

To evaluate <5(Tre~'Q) we use the following results, the proofs of which are
straight foward.

ÔD -qr5[D, ôcp] ÔQ -ÔD2 <7r5{2Dô(/)D + ô(/)Q + Qô(/)} (6.2)

Now
-i

e u-ivaô(Tre~'a) Tr \ dse-s,a(-tôQ)
Jo

-tTr(ÔQe~'n)
-4qtTr(r5ô<pQe"a)

4qtjTr(r5ô<pe-'i2) (6.3)

It is crucial that the variation of Tre"2 can be written in this way, i.e., t times a
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total derivative with respect to t. This enables integration by parts leading to a

rather simplified result. Inserting (6.3) in the expression for óT^ and then
integrating by parts we obtain,

o
ÔYr% -4q Tr (T5ôcpe~'a)(l + 2 e,e~'M<*2

-4q 2 M2R2 f dt Tr {Y5ôcpe-'a}e-'M-R2 (6.4)

To simplify this further to a form which will be more suitable for explicit
calculation we now wish to use the heat kernel techniques. So let us recall some
of the basic properties of the heat kernel K,(x, y | Â) of a differential operator A,
which is of the form

Â -^DpXgg'iVDv + C; Dß 9ß+Aß

where C(x) is a field of hermitian n Xn matrices and Aß is a vector field of
anti-hermitian n x n matrices. The heat kernel is defined by,

- + Â^Kt(x,y\Â) 0 for r>0, (6.5)

lim^(taï,y|Â) |g|-1/2ô(x-y) (6.6)
r-^-0

If P0(x, y | A) is the projector on the zero mode space of the operator A, we have

\ìmK,(x,y\À) P0(x,y\A) (6.7)
t—rCC

Note also the relation

Tr e~'k [ddxXg tr Kt(x, x) (6.8)

One of the most important properties of the heat kernel is that [25] it has an

asymptotic expansion

K,(x, y | Â) ~° (4jtt)-dXr2,4< 2 tkck(x, y \ A) (6.9)
/t=0

where all the coefficients ck are calculable using the defining equations (6.5), (6.6)
for Kt. Here d is the dimension of the (compact) manifold on which Â is defined,
and r is the geodesic distance between the two points x and y. For the case at
hand we notice that

Â R-2Q==^DflXgg"vDv + qr5^ + ^2 (6.10)

where Dß Dß + (i/2R)Tß, so it is in the general form mentioned above.
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Furthermore, K,(x, y | Q) K-Rit)(x, y | Â). Here we conclude the remarks on the
properties of the heat kernel and refer the reader to the detailed account given
in [20].

Now we observe that the first term in (6.4) is zero at the lower limit t 0

since the singular part of Tr (T5ôcpe~'n) is proportional to tr Ts which is zero, and
the regular part is multiplied by (1 + E c,-) which is also zero due to equation
(5.2). Here 'tr' stands for the usual matrix trace. At the upper limit we have

Tr {T5ôcpe-a} Tr {T5ôcpP0(Q)} (6.11)

where Pn(Q) is the projection on to the zero-mode subspace of Q.
The second term in ôT(rk^ can be calculated by noting that in fact we are

interested in the case where Af,--»«;, so, only small t close to zero will contribute
to the integral. Hence we can replace the range of integration by Jo where e is an

arbitrarily small finite value. Thus,

f dtTr[ôcpr5e-'a]e-M'R2'= fdt tr [ôcpr5e-'n]e-M-R2' (Af,-»*)
Jo Jo

I f d2xVg ôtp(x) tr [T5(x)K,(x, x I Q)]e~M>R2'
Jo Js2

Since the integration over t is now done in the vicinity of t 0, we can replace K,
by its asymptotic expansion (6.9). Hence,

r*Tr[ô</)r5e-'Q]e-M'*2'
Jo

f d2xVgôcp(x)[dt tr W5(x)-^-Tt 2 (R2t)kck(x,x\ Â)le"w'2*2'
Js2 Jo L 4JTK t k=0 J

jsd2xXgôcp(x)^dt~tr [r5(x)(^ + Cl)]e-^2' (Af^x)

f d2xVg ôcp(x) fdt^-tr [T5(x)cx(x, x | Â)]e"^2' (c0 1)
Js2 Jo 4jt

4jrM2/?2 \/2x^S 0<M*)tr lT5(x)cx(x, x | Q)] (M, -> x) (6.12)

As mentioned above, the coefficients of the heat kernel expansion are calculable
explicitly. We obtain for cx, in particular,

i î, r Fox 1

Cl(x,x\A) -qT5^=-—2 (6.13)

Putting everything together and also taking the relation E,-e, -1 into account
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we finally get

ór<*> -Aq Tr [r5ôcpp0(Q)] -2 J^^Vg <54>M tr [r5(x)(qr5 ^+^2)]

-Aq Tr [T5ôcpP0(Q)] - ^- J^2*Vg ôtf>(x) ^
2ô(lndet_V) + ô(^- J d2xVgcpAcp) (6.14)

1
where A —j= dltVggliV <9V is the Laplacian on S2, and fy is the * x * 'zero-mode

matrix' of the operator D defined as

_%-=[ d2xXgUx)Xi(x) (6.15)
Js2

The spinors %i form a complete set of independent zero modes of D which have
the form (see Appendix A)

Xl(x) e-"<"f^h(x)xi(x) (6.16)

Here {x,(x)} is a complete set of orthonormal zero modes of D>0 which is obtained
by putting cp 0, h 1 in D and o is the chirality of Xt(x). Integrating back, we
find Feg1 up to a 0-independent constant a;

r$ 2 ln det _V + £- [ d2xVg 0A0 + a.(*, Af„ /.). (6.17)
tt Js2

(terms vanishing for Af,—»°° have been neglected). The constant ar, for a given *,
can be found by calculating Tj§ explicitly for a special value of cp. To this end we
consider the case of a spherically symmetric gauge field with topological charge *.
This corresponds to cp 0.

6.2. Evauation of a(k, Mj, R)

Consider the gauge field corresponding to cp 0, h l. We have A,, kCß,
i.e., a rotation symmetric gauge field with topological charge *. Let us denote by
D0, fi0 and r"]*' the operators D, fi and T(k)g respectively, corresponding to this
special gauge field. As shown in Appendix A, the non-zero eigenvalues of D0 are
of the form e ±Vv(v + |*|) with multiplicity 2v + |*| where v 1, 2, In
addition, there are |*| zero modes. Hence fi0 has the non-zero eigenvalues
v(v+|*|) with multiplicity 2(2v + |*|), apart from the same |*| zero modes.
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Thus,

r?<£> 2m |*| + Tr' ln fi0 + Tr 2 e, ln (fi0 + M2R2)

r

2jri|*| + |*|2^1n(Af,7.)2

+ 2 e, 2 2(2v + |*|) ln [v(v + |*|) + (M.R)2]
i=0 v=l

(6.18)

where we have defined eQ— 1, Af0 0.

By introducing a new variable ii v — 1, we can bring this to the following
standard form:

r**> 2ni |*| + |*| 2 d In (MtR)2 + 2^2 2(2/i + 2 + |*|)
;=i i=o n=o

ln [(v + l)(v + 1 + |*|) + (M,«)2]

The sum over pi can now be performed by using the formula [21],

2 2 «.¦(«/* + b) ln [(pi + <xx)(pi + oc2) + (M,R)2]
n=o i=o

(6.19)

2e< K
a(MiRy ln (Af,/?) + - [26 - a(ax + a2)](M,R)

- (a\ + aj) - - - b(ax + a2 - 1)

+ -(<*,.- cv2)2 + (aax - b)C'(0, ax)

ln(Af,/v)]

+ (aa2 - bW(Q, cx2) - a[?(-l, ax) + §'(-1, cx2)] (6.20)

Here §(z, q) is the Riemann's zeta function (see [23, Sec. 9.5]). Thus we get for
the case at hand, for |*| =£0,

i*i
r?if 2m |*| + |*|2 + 2 |*| ln T(l + |*|) -AjJn\nn + ß(M,R) (6.21)

n \

where

/3 -2 2 e,(Af,Ä)2 ln (MtR)2 - \ 2 et ln (M,i?)2 - 8|'(-1) (6.22)
.=1 i=l

does not contain *, and is irrelevant because it cancels from the numerator and
denominator in the expectation values. For * 0, we simply have

I%^ ß(MhR). (6.23)
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Now, the general expression (6.17) for T^g gives, by setting cp 0 (and
h l),

I%k) 2 ln det N0 + a(k, M„ R) (6.24)

where det N0 àetN\^=0. Substituting back the expression for a found in this

way, we finally obtain

'det AH -2p$X£w)+tIx^
lk\

+ 2iti |*| + |*|2 + 2 |*| ln r(l + |*|) - 4 2 n In n + ß(Mi, R) (6.25)
n l

Thus we have an explicit expression for the effective action, or the fermionic
determinant of the theory for an arbitrary gauge field configuration characterized
by the topological charge *. Note also that Y\.k)g is independent of h.

Part II

7. Expectation values

Having obtained an explicit expression for T^] (or, equivalently for the
fermionic determinant) we are now in a position to calculate a number of
physically interesting expectation values.

With the introduction of the new variables h and cp in place of Ap (pi 0,1)
we can, first of all, write expressions (4.7), (4.8) for the expectation values of the
regularized theory as

(0(h, cp)) Z-^[Dh][Dcp] exp (|r£>[4>] - S^[<p])0(h, <p)\k=0 (7.1)

(*pa(x)%(y))

RZ-^-j[Dh][Dcp] exp (^[0] - S«[tf>])<Sßa(y, x | D)\k.0

- 2 hDh][DcP]expmk^[cp]-S^(p])(detN)-%k\y)} (7.2)
*=±iJ J

with

Z \[Dh][Dcp] exp (er«[0] - S<*>M)|*,o (7.3)

Here S(Ar)[0] denotes the pure gauge part of the action for a gauge field in the
topological sector *:

irk2 1 f
S(k)[<t>]-^-2 + ^jd2xXgcpA2cp (7.4)
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and ^(x, y | D) is the Green's function of the operator D. Similar explicit
expressions can be given for many other operators. We shall calculate some of
them in later sections. Expectation values of fermionic operators contain
explicitly the zero modes of the operator D, which are |*| in number in the
topological sector *. The zero modes % of the operator D can be expressed in
terms of the zero modes Xi of D0 in the following way (see Appendix A):

Xi(x) e-"™^x)h(x)x,{x)
e-"a^h(x)x,(x) (7.5)

In fact, o= ±1 is the chirality of x,- The last step follows because all x,'s have
definite chirality.

Let us denote by x and <P the normalized zero modes of D0 for * +1 and

* -1, respectively. According to Theorem 1, they have negative and positive
chirality, respectively.

* +l Do* 0 (X,X) 1 r.x -x (7.6)

* -l Do<p 0 (cp, cp) l r5<p=+cp (7.7)

In fact, x and cp may be found explicitly to be

*>-5b(";«) <t8)

where

'zx

V22¦c (7.10)

is the spinor (see equation (3.12)) used to construct the spherically symmetric
gauge field Cß whose components satisfy z*zx + z*z2 1.

8. (xpxp) of the Schwinger model

As the first application of the machinery we have developed so far, let us
calculate (xpxp) of the Schwinger model. Operator methods [2] give a non-zero
value for (xpxp). It is however known [7, 8] that naive attempts to obtain (xpxp)
using functional integral methods give the wrong result (xpxp) =0. Assuming the
cluster property, the correct magnitude of (xpxp) has been obtained indirectly,
within the path integral formulation [7]. Taking the presence of zero modes of the
Dirac operator into account, here we show how to calculate (xpxp) directly. In
Section 10, we then also verify that the cluster property is indeed satisfied.

We first do a formal calculation to obtain (xpxp) of the model. The
calculation is formal because we are just setting x y in the non-gauge-invariant
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operator xp(x)xp(y), which then becomes a composite operator that has to be
handled with care. In a later part of this section we calculate (xpxp) in a more
careful way paying proper attention to subtleties.

Define

Vi»è(i-r5)v V'L è^(i+r5) (8.1)

</»-. è(i + r5)v ^ l^(i-r5) (8.2)

Then it follows that

VlVr 3^(1 - r5)xp (8.3)

Ml 5^(1 + r5)V (8.4)
i^> ^R + ^L (8.5)

V;(d+^)v ^(d+^^+^(z)+^vä (8.6)

We can find (xpLxpR) and (xpRxpL) separately. We shall see that the
contributions to them come exclusively from the topological sectors with * — 1

and * +1 respectively.
To this end, first of all notice that

-1 t r5 \xp——^xp) RZ-i

-\[Dh][Dcp] exp (|r»] - S<*>[*]) 2 ~ flv^à rsv

- 2 f[^][00](det^)-Iexp(ir^]-5^])F)^^Xw)(8-7)
/c ±l J 11

(see Appendix B - Evaluation of Grassmann integrals) where rtv are the
eigenfunctions of D for k 0 and iEv are the corresponding eigenvalues.

It is easy to see that the sum over v gives zero. This follows directly from the
properties of the eigenfunctions and eigenvalues of D (cf. Theorem 2). Furthermore,

since all the zero modes have definite chirality, one of the projectors
(1 +~ r5)/2 acting on a zero mode x(k) always gives zero. Hence we find

/ - x / -1 - r,(ipRipL) yp—Y^y

S-WI
* -!-/?Z-,|[D^][D^](det TV)"1 exp (èUglfl - Sw[<p])Xwf'

(8.8)



658 Camillus Jayewardena H. P. A.

and

- / -1 + r5 \<Vz.Vä) \V—^— V/

-RZ-^[Dh][Dcp](tetNX exp (è_T<*>[0] - S^^BfTI^,.
(8.9)

i.e., only * —1 and * +1 contribute to (i/irIPl) a°d (^Pl^Pr) respectively.
Recall that x(k) here are the zero modes of the operator D. They have the

form

X(~l) e-*+Wh(x)(p(x) (8.10)

X<^. e+"^h(x)x(x) (8.11)

where cp and x are the corresponding zero modes of D0.
Now substituting the explicit expressions for T^, Sw[cp] and xw we obtain,

({pR(x)xpL(x)) /?Z-1|[DÄ][ö^,](det NX exp (^ +1-^
x exp (- x / rf2*Vg4>(A2- — A^0

det_V\(*=_1) _, 1
-2-7»(ta-) - (8 12.

det.V 2/?2^ l J

The factors (det N) cancel eath other. Furthermore,

det_V0 det_V|îJ=o (<p, <p) l (8.13)

Taking into account also the fact that

Z j[Dh][Dcp] exp ankM - S<*>[fl)|t.o

f[Dh][D^>yi2e-(f°^ (8.14)

where (9 |(A2 - (q2/n)A), we thus have

<^(x)V,(*)> i- (8.15)

\[DcP]e-{(t>.0<t>)

The /t-integral drops out, for the integrands both in the numerator and in the
denominator are now ft-independent. Note also that the regulator masses M, have

disappeared in the last expression. The integrals both in the denominator and in
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the numerator are of Gaussian type and can be performed to give

/1 JT

expU-^-rD2
(Vr(x)M*)) 2JqR VG^I°> (8.16)

4K.?T

where G(x, y | is the Green's function of the operator 6.
The eigenfunctions of the Laplace operator on S2 are the spherical harmonics

Yim(d, cp) with eigenvalues /(/ + 1)1R2; 1 0,1,2, and m -/,..., /. Hence
Ytm also form a complete set of eigenfunctions of 6. We remark, however, that
becuase of the restriction |52 d2xVgcp 0, cp can always be expanded in the set of
non-zero, modes. Hence the path integral is performed only over these modes.
As a result, in the Green's function the mode corresponding to / 0 is excluded.
Thus, we have

G(xy\0)= 2 ™ y)lW'' *'>
^X'y\V) £0 1(1+ !){1(1 + 1) q2

—-''¦-' 2R2 { 2R2 Xt
^ (2l + l)R22 ; -ÏÏÏ7 P,(cos co)

where

1*0

_1

2?

,2D2

2;r/(/+ !){/(/+ 1) + ^-}
2F(co) (8.17)

*"(<») ^ 2 }2l + 1)
2o2, ^/(eos co) (8.18)

* '=1/(/ + !){/(/ +1) + ?*
JT

Here (0, <p) and (#', cp') represent the polar coordinates corresponding to the

points x^, y* (pi 0, 1) on the sphere, co is the angle between r(x) and r(y) and

P,(x) is the Legendre polynomial of order /.

Thus we have

/1 JT

(xpR(x)xpL(x)) 4/?f : eFW)'2 (8-19)

Obviously for (xpLxpR) we get exactly the same result:

/1 JT

<^.V*> ,p ^(0)/2 (8.20)
ARjt
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The properties of sums of the type (8.18) are discussed in the Appendix D. In
particular, when _R—»x, i.e., when we come to the limit of the usual flat-space
Schwinger model we have the asymptotic expansion

F(0)R~™2y-l + 2.n(^R) + o(±) (8.21)

where y 0.577 • • • is the Euler constant. Hence in that limit we finally get

<Ml) (Mä>=£^ (8.22)

These results are identical to the results obtained by other methods [2].

8.1. xpxp as the limit of a gauge invariant operator

Now we want to do the same calculation more carefully. Instead of the
gauge-non-invariant operator (ip(x)xp(y)), we now start with the gauge-invariant
operator (xp(x)U(x, y)xp(y)) and set

(xpxp) \im(xp(x)U(x,y)xp(y)) (8.23)

Here U(x, y) is the phase factor,

U(x, y) exp (-iq f dz"Aß(z)\ (8.24)

The presence of U in the expectation value introduces an extra term to the
exponent in the path integral. However, since Aß depends linearly on cp, the
integral remains Gaussian so that the path integral can be evaluated. In place of
equation (4.8) we now have

({pa(x)U(x, y)xpß(y))

RZ-\-^[Dh][Dcp] exp (ï\U%[<t>] - SW[<P])

X exp y-iqj dzllAß(z)^ßa(y, x | D)|*=0

- 2 f[Dh][D<p](detN)-1
/c ±l J

X exp an^cp] - S<*>[0]) exp (-iqfdz>Afl(z))2ik)(x)xt\y)} (8.25)
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Denote by I(x, y) the line integral:

I(x,y)=\Xdz"All(z)

fdz^kc, + vg €pvgv" dp(p + yh dx1)

klc(x,y) + l^(x,y) + -\n^fi- (8.26)
iq h(x)

where we have also defined Ic(x, y) $xydzßC.,(z), which is independent of both
h and cp, and 1$ S*dzßVg eßVgvp dpcp which has the sole (^-dependence.
Recalling that

*(_1) e'^hcp (8.27)

*(+1) e+'*A* (8.28)

we now rewrite the above expectation value in terms of cp and h :

(xpa(x)U(x,y)xpß(y))

RZ-l[ - j[Dh][Dcp] exp (2r^[</>] - S<*>[0] - «^[0])

x^V^-* I O)|,=o-e-'^|[Dft][D0](detiV)-1

X exp (er<g[0] - Sw[cp] - iql^cp]) exp (+q(<P(x) + cp(y)))xa(x)xß(y)\k= +

- e+^j[Dh][Dcp](det N)'1 exp (£<%[<p] - Sw[<p] - iql„[<p])

X exp (~q(<P(x) + 4>(y)Ma(x)<pß(y)\k _x} (8.29)

Let us denote the three terms in this sum by a0, a+ and <*_, respectively. For
instance,

a+ -JRZ-1e-'^J[Dft][D<^](det N)'1 exp (^[cp] - Sw[0] - iql^x, y])

x exp (+q(<p(x) + cp(y)))xa(x)Xfj(y)\k=+. (8.30)

8.1.1. Evaulation of a+ and <*_. Expressing T%%, S and Z in terms of h and 0,
we get

\tDA)Xe-(<P,0<l,)-iqI^+qt<l>(x)+<p(y))

a+ R exp (- - ^L2)e-""cxa(x)xß(y) -

2 2q R ' Un*\-e-w>j[D<p]e

(8.31)
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To evaluate the path integrals we first notice that for products of Gaussian

integrals, the following is true:

\Udanexp(-T1 (€na2n + bnan))
J " n Z=-p fee <8-32)

\ Ildfl„exp (-E £„a2n

where en and bn are independent of a„.
In our case we have a similar expression when we expand the real field <p(x)

in a set of real eigenfunctions of the Laplace operator on S2. As mentioned
earlier, the zero mode is excluded.

Suppose <p(x) Lrnancpn where {tpn} is a complete, orthonormal set of real
eigenfunctions of L with non zero eigenvalues and let ûcpn encpn. Then we have

(</>. Ocp) 2 ena2n (8.33)
n

4>(x) + <p(y) 2 an(ct>n(x) + cpn(y)) (8.34)
n

W] 2 ««( f^MVg €ßVgv" dp(pn(z)) (8-35)
n \-ly '

so that we have precisely the same Gaussian integral as above when we identify

bn iq \ dz«Xg ^vgvp d*p<P„(z) - q(cpn(x) + cpn(y)) (8.36)

to find the result of our path integral we now only have to calculate E„ (b2J4en).
Recalling that the Green's function of the operator 0 was defined as

G(x,y\ü) ZUX)Uy) (8.37)
n C:n

where the zero mode is excluded from the sum, we get, after some algebra,

2G(0, 0) + 2G(jc, y)

- 2i [dz»Xg e,vgvp dP(G(x, z) + G(y, z))
Jy

- fdz'Vg eßVgv" a^pz'^Vg7 €ß,v.g'v'p' 3zMz, z')] (8.38)

We have used (and shall use hereafter) the shorthand notation G(x,y) for
G(x, y | Ü), and g' denotes the metric tensor in z' coordinates.

Consider a typical integral in the above expression;

/ fdz^Vg eßVgvp 3pG(x, z) (8.39)

2(«/4*„)-^
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To evaluate this integral, let us choose the path jc-»y to be a geodesic on the
sphere. Then z lies always on the same geodesic, as we are evaluating the line
integral along the path *—» y on the geodesic. Furthermore, we can fix one of the
points x and y on the sphere. Let us fix x to be the north pole. It is convenient to
use spherical polar coordinates for the explicit calculation.

x**{Q,q>) (8.40)

z**{6, cp) (8.41)

Then G(x, z) depends only on 6, so we write

G(6) G(x, z) 2 (2r/
+ 1)f?2

2fi2.fl(cos 0) (8.42)
'_1

2jtI(1 + 1) \l(l + 1) +
q

n

For I, in polar coordinates we now have,

/ p0Vgeeçgw^-G(0) O (8.43)

Similarly, the integral containing G(y, z) is also zero. Recalling that both points z
and z' have to lie on the x—*y geodesic, we immediately see that the last double
integral also gives zero.

Now we can give the final result for a+ :

a+ R exp (- -^-2 - iqIc)xa(x)Xß(y) exp (|- (G(0, 0) + G(x, y))

(8.44)

It is easy to see that the path integral in ar_ gives the same result as the path
integral in a+ which we have just calculated. Since Ic is also zero, we can directly
write

1 jr \ _ (q2
a_ R exp [^ - —^ - iqlc)cpa(x)cpß(y) exp [^- (G(0, 0) + G(x, y))

(8.45)

Thus the contribution from the sectors * ± 1 is given by

(ya(x)U(x, y)xpß(y))\iki=x

a+ + a_

« exp (i - ^2)(Ux)Xß(y)e-i^

- q>a(x)cpß(y)e+i^) exp (|- (G(0, 0) + G(x, y))) (8.46)
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From the definition (8.23) it follows that, for the sectors k ±1,

(xpxp) \im (xp(x)U(x, y)xp(y))
x->y

R exp (\-^y)(Xa(x)Xß<Ky) + <pa(x)<Pß(y))e',2C(00) (8-47)

where we have used the fact that limx^y Ic 0. The explicit expressions for x(x)
and cp(x) (see equations (7.8), (7.9)) give

w
4R2jt

Hence we get

X(x)x(x) <P(x)(P(x) t^2- (8.48)

exp i - -
1 JT

<*V>L-i K\^fR2> eF(im (8-49)

where G(0, 0) has been replaced by F(0) according to the definition G(x, y)
F(co)/2q2 (see equation (8.17)). Note that this is just twice the value we had for
(xpRxpL). In the limit as /_-»°° one thus gets

(^)|„=,=£^ (8.50)

What now remains to be calculated is a0.

8.1.2. Evaluation of aQ. In order to complete the calculation of (xpUxp) we stil.
have to find a0. To this end, we first obtain an expression for ^„(y, x | D) and
then substituting this we evaluate the path integral.

The Green's function ^ of D
Recall that

B RD (8.51)
where

D=Y\dß+iqAß) + ^ (8.52)

We also have

Ali kCß + Vg€ßVg^3p(p+-hdflh-1 (8.53)
iq

It is possible to find ^(x, y | D) explicitly for any given *, cp and h. This is done in
Appendix C using the stereographic coordinates on the sphere. Here we merely
state the result for * 0:

%x, y | D) --~\u-1(x)e''ia^x)S(x, y)e"qa^(y)u(y) (8.54)
Rh(y)



Vol. 61, 1988 Schwinger model on S2 665

Here S(x, y) is the Green's function of the operator D of the general formalism,
in the absence of any gauge field:

S(,,y) -±iQ&r»°£^p (8.55,

where fi is the conformai factor defined by g,,v(x) Q(x)oßV in stereographic
coordinates and u(x) the unitary matrix which relates the operator D in
Sc/(2)-invariant formalism to the Dirac operator D in the general formalism. It is

also calculated in Appendix C:

ux) a0(x)(l + iai(x)o') (8.56)

with

R xx—x2 xx+x2
ao

-J2(R2 + x2) a' -R- a2 -R- "3 1 (8-57)

Calculation of aa
In fact, what we are interested in is the trace of the matrix

(xpa(x)U(x, y)ipß(y))- Therefore, we only need tr ^(y, x | D) %a(y, x | D).
Since the traces of the Pauli matrices are zero, the only contribution comes from
that term of ^ which is proportional to the unit matrix. A straight forward
calculation yields

yaa(y,x\ D)= -^^(Q(y)Q(x))-ma{)(y)a0(x)^cosheyx (8.58)
R h(x) jtR

where 6xy q(cp(x) - <p(y)). The explicit use of fi and a0 also gives the relation
Q~ll4(x)a0(x) 1/2 so that we have

j Hy)
2nR2h(x)

<$aa(y, x\0)= --,_p2,7( cosh dyz (8.59)

For tr a0, we thus obtain

tr a0 -^—eß,2Z-i [[Dh][Dcp]e-('t'0't,^ic"^xy] cosh dyx
2jtR j

,ßizz-\ fpAj[Zj^jc-(*.«f*)--?/#l--.yJ+-/(#(y)-*(x)) (8.60)-eh
2jtR

Proceeding exactly the same was as was done for a+ we can evaluate the path
integral to get

tr a° 2Xr eXp (I" [G(°' 0) " G{X' y)]) (8'61)

where G(x, y) is again the Green's function of the operator C. Denoting the
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geodesic distance between the two points x and y by 5 we can write for large R,

G(0, 0) - G(x, y) G(0) - G(d)

ln2-y-ln-^=
yn. k{^) (8.62)

Thus

°°XrtXBX<B <*•«>

and as s —» 0,

For finite R we obviously have a non-zero value for a0. However, it is

proportional to 1/R so that for (xpxp) we do not get any contribution in the
flat-space limit.

Now that we have calculated all three terms a0, a+ and a_ of 8.29 we can
write down the final result for (xpxp) in the flat space limit:

(xpxp) lim lim (xpa(x)U(x, y)xpß(y))
R—*3c x—*y

lim lim (a0 + a+ + ar_)
R—».ac x—*y

eY a
- %= (8.65)
2jtVjt v '

This completes the rigorous calculation of (xpxp), giving no different result
than in the previous formal one in the /?—»°o limit. The non-zero value of (rpxp)
indicates the breakdown of chiral symmetry. It is known that this is due to a U(l)
anomaly present in the theory.

9. (F,)X(x)Fox(y)): Interpretation as a meson theory

Another interesting quantity with direct physical significance is the two point
function of the field strength operator Fox. The path integral remains Gaussian in
the presence of Fiìx(x)F{ìx(y) so we can again evaluate the expectation value

explicitly. Recall that (see equation (3.19))

F^k^-XgAcp (9.1)

Instead of Fox, we will use the more convenient quantity

^'Wi'iW--^ (9'2)
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The expectation value of x(x)x(y) is given by

E \[Dh][Dcp] exp (il<*>[0] - SwMM*)*(y)
(^)z(y)> =1—: (9-3)

j [Dh][Dcp] exp (mk)g[4>] - 5w[0])|*=o

In fact, only * 0 sector contributes, as our operator does not contain any Fermi
fields (see equation (4.7)). Thus

j[Dh][Dcp] exp mk4[cp] - S^[cp])Ax(p(x)Aycp(y)

(x(x)x(y))= —

AxAy

j[Dh][Dcp]exParikJg[cp]-S^[cp])

j[Dcp]e-^°^cp(x)cp(y)

j[D<p\

k=0

e-(<ts,04>)

Here C= \(A2 - (q2/n)A) as before. We can perform the path integral by
expanding cp in a complete set of real eigenfunctions of the Laplace operator A.

<P(x) 2 an<pn (9.4)
n

The path integral is now defined over the expansion coefficients an :

l[Dcp]e-^°^cp(x)cp(y)^ f R dane~^2 <ktotf>/(>0«.«,

2 4>i(x)<P,(y) \ û da^^a^ (9.5)
.7 ^ Tt

Here en is given by ücpn e„<pn. If i =£j we have in the product two odd-integrals
of the form jl^dxe~ax2x and the whole product becomes zero. If i=j, all the

integrals are simple Gaussian integrals, except the one

[ da,e-€"a2a2

which gives (l/2e,)vWe,-. Thus

f 1 nNI2

where _V denotes the number of eigen modes, and det Û is the product of all
eigenvalues. However, the factor nNI2/(de\ 6)v2 is exactly cancelled by a similar
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factor coming from the path integral in the denominator. We thus have

0((rWrt>"M,^. (9-7)

The real eigenfunctions of A, written here rather symbolically as cpn have in fact
two indices, like in ^,m(0, cp). Let us denote them by fr(x). They are obtained
from <3//m by making linear combinations. More precisely, for a given /, the
functions flr (r 1, ,21+ 1) are obtained by linearly combining %,-i, %yl
which span a subspace %. Thus we have

l([+_l)
R2Kf,r(x) - A-^Xf,r(x) r l,...,2l + l (9.8)

Expressed in terms of f,r, the above two point function is given by

(X(x)x(y)) AxAyY^^1 (9-9)* f, 26,
where

,2!/(/ + [/(/ + g
2 R2 1 R2 nti ~XX\XXX-\ (9.10)

Notice also that, since A is a hermitian operator the change of basis between {f,r}
and {^im), is achieved by a constant unitary matrix in each subspace _%,. Hence,

2 ftr(x)f,r(y) 2 »Ä.OO'SU.y)
r=l «! -/

K m -l

focoso,) (9.11)

where co is the angle between r(x) and r(y). Here we have identified the points x
and y with (0, qs) and (0', y') respectively.

Letting Ay in (9.9) act on the argument, we get

1(1 + 1Ì 2/+l
(xtoxOO) a, 2 -J^r 2 //r(*)//ta-(>0

;=1 Z/\ fc/ r=x

Let us also fix y to be the north pole so that cos co cos 0. It follows that

(X(x)x(ß)) -AxSh(6) (9.13)

where

^^l/cTTÏ^^08^ <9-14>
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with b q2/n. Properties of Sb(6) are studied in detail in Appendix D. Here we
only use the results obtained there. Since in polar coordinates

A A{—- (sin 6-*-) +4*1 (9.15)/?2lsin0 30\ 30/ sin2 ddcp2)
K '

we can write

i i s /. „ a
—= sin 0 —.ä2 sin 0 30 V 30

<X«x(0) - -2 —- — sin 0 — 5,(0) (9.16)

The flat-space limit is obtained by letting /?—»<» as s R8 is held fixed, 5 being
the geodesic distance between the point x and the north pole. This yields

(x(x)x(0))R=~ -^K0(Vbs) (9.17)

The function K0 is actually proportional to the free Green's function, i.e.,

r d2D e'px
(X(x)x(0)) -m *% L 2 (9.18)

J-a.(2n) p +m
where m b q/yn, and jc** are flat space coordinates such that x2 s. When
continued back to Minkowski space, one gets

(0 | Foi(*)F01(0) | 0) +m f -^- e-^a+i^ (9.19)

where p0 \lm2 + p2. Thus, Fox is a free field describing a massive pseudoscalar
particle. In particular, this particle has no interactions with itself or with any
other particle which could be in the theory.

10. The cluster property

The cluster property states that the vacuum matrix element of a product of
local operators factorizes when their space-like separations become large. This
property has been well established for massive theories. In this section we show
that also for the Schwinger model, where we have a massless fermion interacting
with a gauge field, this property holds.

We start by calculating the four-point function (ip(x)xp(x)xp(y)xp(y)). This
poses no big complications; the techniques we have developed so far can be

applied in a straightforward way. Nevertheless, the results turn out to be quite
illuminating. The necessity of considering all topological sectors, not just the one
with topological charge zero, becomes clear. In fact, it will be proven that the
sector * 0 gives only one half of the value expected. The sector |*| 2 provide
the other half whereas |*| 1 sectors give no contribution in the i.^°° limit.

Notice that the expectation value of xp(x)xp(x)xp(y)xp(y) is given by [cf.
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equation (4.3)]

(xp(x)xp(x)xp(y)xp(y)) R2Z-' £ f [Df,][Dr,][DAß]

x exp {-S[A„] - \sfx\Tg r)Dry)rj(x)ry(x)ij(y)r?(y) (10.1)

In fact, we must be considering an operator like xp(x)U(x, z)xp(z)xp(y)U(y, t)xp(t)
which is the product of two gauge invariant operators and take the limit x —? z,
y—»f. However, the experience with the calculation of the two point function tells
us that the result we get will be the same. Thus we directly calculate
(xp(x)xp(x)xp(y)xp(y)). As explained in detail in the Appendix B, we have to
consider each topological sector separately since, depending on the number of
zero modes of D (which is equal to the absolute value of the topological charge),
the fermionic integral takes a different shape.

10.1 Contribution from the k 0 sector

The fermionic part of the path integral in this case is given by (see equation
(B-38))

I0, /[ör7][ör?]e-C'D"^(^)J?(x)r)(y)r?(y)

det D{«<™(*, x)<Sßß(y, y) - Wß(x, y)^a(y, x)} (10.2)

For the sake of simplicity, let us consider the two terms separately. Define

P R2Z-1 j[Dh][D<p] det Be"51*1 tr <S(x, x) tr <$(y, y) (10.3)

Q R2Z~l i[Dh][D(p] det WiW^x, y)^a(y, x) (10.4)

Then we have the contribution for the 4-point function from the sector * 0 as

(ip(x)xp(x)xp(y)xp(y)) |*=0 P - Q (10.5)

Recall that

detD exp(ir£r°>) (10.6)

I?=° 2- \ d2xVg cpAcp + ß(Mh R) (10.7)n Js2 y

S[cp]\k=0 -jd2xVgcpA2cp (10.8)

Z j[Dh][D<p]exPar%=V-S[cp])

eß<2 [[Dh^DcpX^0^ (10.9)
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where

G=l(A2_qlA\ (10.io)
2 \ n I

Also recall that (equation (C-40))

<ê(x, y) \u-\x)h(x)e~qa^S(x, y)e-qa^(yX\y)u(y) (10.11)
R

where

Oq(xa-ya)
2ny v/ KJ " \x — y

Using the explcit expression for u we find

Ry+(x--y-)e~* -R2(x--y-)e~iP

i h(x) i \-RxX+-y+X* -xxX-y+)

S(x, y) ~ (fi(x)fi(y))— °'}* J> (10.12)

-V')e+*
%x, y) ¦

AnR3h(y)\x-y\2\ x+y+(x--y-)e~* -Rx+(x~-y~)e^
+i.2(jc+-y+)e+* +Ry~(x+-y+)e+*

(10.13)

where <_> stands for q(cpx — cpy). Thus

*^--^ÎTÎïX + e'°} <ial4)

Hence we have

tr <S(x, x) tr <ê(y, y) -^ (10.15)

Furthermore,

«<*(*, y)^(y, X) (^'^-L^ (tf + X2)(i?2 + y2)(e+2* + e-2*}

(10.16)

It follows that

P R2Z-'[^yf j[Dh][Dcp] exp (ir^°) - S(*=0>[4>])

¦—i-rl (mH)4^2R2
^ '



672 Camillus Jayewardena H.P.A.

and

i \2 (R2 + x2)(R2 + y2)
Q 2R2Z-l\——-3) i ¦ A J ;

\4jrtf/ |x-y|2

x J[DA][D0] exp (èr<*=°» - S<*=°>[<*>]) exp (2<7(4>(*) - <f>(y)))

i (/? + *-)(« +yiexp(^2{G(X)X) + G(y(>;)_2G(^>,)})8jt2JR4 |x-y|2
(10.18)

Here G stands for the Green's function of the operator 6. Let us fix the point y to
be the north pole; i.e., y" 0, and let j be the geodesic distance between jc and y.
If 5 Rd we can use the notation in the Appendix D to write

1 R2 + x2

y 8n2R2 \x\2
e (1U-iy)

Now let us fix 5 and let R—_?». (0 will also go to zero, however, s Rd remaining
fixed). In this limit, we also have

W-| + o(l) (10.20)

The contribution from P is clearly zero whereas, using the results of Appendix D.
for Q we get

Q ±-be2Y+2K°^s) (10.21)
ein

where b q2/n. Thus the sole contribution to the 4-point function from the fc 0

sector in the flat-space limit is given by

{ip(x)xp(x)xp(y)xp(y))\k=0R^^2be2^2K^~b^ (10.22)

As the distance between the two points x and y is now made large, i.e., s—?»,
K0(yrbs) goes to zero and we have

15 fa0} =-£(£) <10-23)

Thus finally,

5. fa <^)V'(*)V'(-V)V(>')>|*-o}=^ (^) (10.24)
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10.2. Contribution from the k ±1 sectors

The contribution from the sectors * ±1 is given by

(M>(x)xp(y)y(z)xp(t))\^=x R2Z~l 2 f [Df,][D[r,][DAß]
|*| 1 JMk

x exp (-S[Aß] -jd2xVg fi^ri)fi(x)v(y)fl(z)v(t) (10-25)

In each sector, the operator D has one zero mode. The fermionic integral gives
(see euuation (B-39)) in each sector,

j[Dfi][Dr,]e-^^r(x)rip(yW(z)riö(t)
det' D(det NX{xa(x)xß(y)&\t, z) + ^a(y, x)xr(z)x6(t)

- X\z)x\y)^a(t, x) - <SP*(y, z)xa(x)xd(t)} (10.26)

where % and -è are the corresponding zero mode and the Green's function of the

operator D, respectively.
For * +1, these two quantities are given by (see Appendix C)

Xl\x) e+"'t'^h(x)x(x) (10.27)

^^(?>2fiVW«W^(T) (10-28)

%x, y) \ u-l(x)h(x)e-«a^x)

x A^rRXx-yf °a{xa - ya)e~qa^y)h~^y>iy) <10-29)

whereas for * -1 we have

^e-i) _ e-"^x)h(x)(p(x) (10.30)

^X) 2R^(Zz)=2R^RXx2^) (1°-31)

<§(x, y) 4 u-\x)h(x)e-qa^{x)
R

Xa U*. +X+l oa(xa-y")e-^^h-\y)u(y) (10.32)
AnR \x - y|

Consider a typical term in (10.25) after the fermionic integration:

na*a>a<(xu x2, x3, xj R2Z~l i[Dh][Dcp] det' D(det N)~l

X xa'(xxWXx2, x3)xat(x4)e-SW (10-33)
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In terms of /, we can write

(X(x)V(y)V(z)xpô(t))\lk^x 2 {Ia6rß(x, t, z, y) + Fßa6(z, y, x, t)
k=±l

- Föaß(z, t, x, y) - IaßYÖ(x, y, z, t)} (10.34)

Recall that,

det'D exp (èr$) (10.35)

/ detN\(k=±l) a2 f r-
r£g=±1) 21n -—— +^-\ d2xyrgcpAcp + 2ni (10.36)

\det N0/ n Js2

so that

r^aXxu x2, x3, x4) -R2Z~l exp (± +1- Y^)^aKxx)^ai{x,)

x j[Dh][Dcp] ^lj^exp (±q(cP(xx) + cp(x4)) - (cp, 6<p)W™(x2, x3)

(10.37)

where ± sign in front of qcp corresponds to the cases ty x and *& cp,

respectively.
For * +1 we thus have

jaxa2ay,at( y Y Y \i yxx, x2, x3, x4)

(Iß n
¦R2Z-1exp\K- + ^-^~2-)xa'(xi)Xai(x4)

\[Dh][Dcp]h^^e^XX
J h(xx)h(x3)

(<r>.e<t>)

x UuXx2)e-"X l—2f + X'X.I aa(x\ -x"3)e-«°Xu(x3) \ (10.38)
K.K <*nK \x2 — x3\

and for * -1,

/->ï--_.-»..-W \1 IA X a\2, a\3, ---W

-tfZ"1 exp (l + f - A^]rX)X{xA)

x [j u-\x2)e-"°^-^r2 R^^2 °Âxa2 -x°3)e-«°>*>AU(x3) f (10.39)
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Using the explicit expression for u (see Appendix C) we obtain

u-\x2)e-qa^2Oa(xa2 - xa3)e-«°Xu(x3)

Rx3(x2 --tW)e"* -R2(x2 -x3)e'^
-Rx2(xì - *3+)e+* -x2x3(xî - *3+)e+*

'

2tf(QA)1/4|
x-Xx3(x2 -x3)e * -Rx2(x2 -x3)e
+R2(xì - x3+)e+* -Rx3(xî - x$)e+*

^(^A)1

—2(QXlQx-)wA (10.40)

where <I> stands for q(cpX2- cpX3) and the matrix A is defined via the last step.
In fact, we are interested in the quantity (xp(x)xp(y)xp(z)xp(t))\ i.e., we can

set a ß, y ô. From the equation (10.34) we thus have

(xp(x)xp(y)x}(z)xp(t))\{kl=x= 2 {Iayra(x,t,z,y) + F^(z,y,x,t)
k=±l

- I^aa(z, t, x, y) - I"^(x, y, z, t)} (10.41)

For * +l,

I (X\, x2, x3, x4)

Iß n \ frr.; rn,i h(x4) h(x2)-«'*XiXéï)h[D*W,)h(x3)

X exp (+q(cpxi + cpXi) - (cp, W))^j?^*^ ^&*&*^
x (x\xl)X1(x4) + X2(x2)x2(x4))(Axx + A22) (10.42)

Noteice that

Axx + A22 -R \x2 - X3I2 (e"* + eX (10.43)

4nRz
X\x1)x\x4) -—2 z2(xx)z*2(x4) (10.44)

x2(xx)x2(x4) ^2z*x(xx)zx(x4) (10.45)

Thus

' (xx, x2, x3, x4)

1 ß n \ frrw irnj,l'îW't(;c2)-^XXX^Dh^w,)h(x3)

X8^R2{Rl + *2 + ^3+)(fi,A3)1/4^2 fe(A:,)z2*(^4) + zx(zx)z*x(x4))

X exp (-(cp, Ocp) + q(cpxi + 4>x))(e~* + e+*) (10.46)
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Similarly,

I (xx, x2, x3, x4)

1 ß n \frr_.irr. ¦,^l(x4)h(x2)R2z-lMM-^)l[Dh][D"Wt)h(x3)

X exp (+q(cpx2 + </),4) - (cp, C<p)) —2 j^T^p ¦ ^2 P^PX
1 R2 + x2x3 i

rzR2 |x2-x3|2 2R

X {x\x.)x\xt)Axx+ x\x,)x\xMi2 + f(xt)x\x4)A2X+ x2(x,)x\x,)A22)
(10.47)

Analogous results are obtained for * — 1 also. Knowing that there is no
singularity of Iayya(xx, x2, x3, x4) for jc2 *3, as seen from (10.46), we can
furthermore set x y, z t in (10.41):

(V(x)xp(x)x}(t)xp(t))\^x= 2 {FYra(x,t,t,x) + FaaY(t,x,x,t)
k ±\

+ Fyaa(t, t, x, x) + FaYY(x, x, t, t)} (10.48)

Let us again concentrate on the case k +1. Let us also fix the point t to be the
north pole; i.e., f 0. Using the explicit form for x (equation (10.28)), and

performing the Gaussian integral over cp, we now obtain

I°"°{x, 0, 0, x) —5-0 exp - - -j-2 exp (2F(0)) F"aY(0, x, x, 0)
i /1 n

8n^2eXP\X2cfR2
(10.49)

Similarly, using (10.47) one obtains,

IaarY(x, x, 0, 0) 0 /""""(0, 0, x, x) (10.50)

Analogous calculations for the case * -1 yield

/«"•(*, 0, 0, x) ^~ exp (i -~^j exp (iF(0)) F"«Y(0, x, x, 0)

(10.51)

IaayY(x, x, 0, 0) 0 FYaa(0, 0, jc, jc) (10.52)

Putting all these results together, from the equation (10.48) we thus get

1 /1 n
(xp(x)xp(x)xp(t)xp(t)) ||4|., ^5 exp (j - ^W^j exp (|F(0)) (10.53)

Since for large R, F(0) 21n ((q/\fn)R) + 2y - 1 + 0(1/R2), in the flat-space
limit we have

({p(x)xp(x)xp(t)xp(t))\ìkì x~- (10.54)

i.e., the conttibution from the sectors * ±1 is zero.
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10.3. Contribution from the k ±2 sectors

In this case, we have

(xp(x)xp(y)xp(z)xp(t)) R2Z~l 2 f [D^D^DA^]
k ±2 Jslk

x exp (-S[_4*] - j d2xVg fjBv)v(xMy)ï(zMt) (10.55)

For |*| 2, the operator D has two zero modes in each of the sectors * +2 and

* —2. Performing the Gaussian integral over fields tj and r] (see equation
(B-42)) we get,

J[D^][Dr?]e-CD")f)(x)r,(y)r)(z)»?(0|,

det B*=-2(det N)-\r{x)f(y)x\z)x\t)
+ x\x)x\y)x%z)x\t) - xXx)x\y)xXz)f(t)
-X\x)x\y)x\z)x\t)) (10.56)

where %° and %x are two independent zero modes of D for * —2. As mentioned
in Appendix A they have the form

Xi(x) e-i"f^h(x)xi(x); / 0,1 (10.57)

where x' (i 0, 1) denote two independent zero modes of D0. Two orthonormal
zero modes of D0 are explicitly found to be

x^-rWaXIC,) <10-58>

^'rWaXS)) (ia59>

Similarly for * +2 we have

|[Dr)][Dr,]e-<"'D">^(x)r?(y)rj(z)r?(0|, +2

det D*=+2(det N)-l{q)%x)q)\y)q)\z)q>\t)
+ q>\x)Q\y)$\z)(i>%t) - $°(x)^(y)$\z)^(t)
- q>l{x)<j>0(y)q>°(z)4>\t)} (10.60)

where <p° and cp1 are two independent zero modes of D for * +2. Now we have

^'(x) e+«*wA(jc)ç»'(jc); / 0,1 (10.61)
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where two orthonormal zero modes of D0 are given by

^'IcWaX^) <">-62>

M-irhM'™) (10'63)

Recall that

det Dw exp (irjg) (10.64)

/det NX q2^xm^Lx^
\k\

+ 2OT|*| + |*|2 + 2|*|lnr(l + |*|)- 2 n\nn + ß(MhR) (10.65)
n=i

Here, _V is the zero mode matrix; N0 N\q=0. Thus

(10.66)

When these values are substituted in the above expressions for the path integrals,
the factor det N drops out. Notice also that in each case det _V0 1, since the
entries of _V0 are scalar products of orthonormal functions. Replacing [D-4.J by
[_9ft][.D0], and inserting the explicit expressions for the zero modes, we thus get

(t^(x)^(x)V;(y)^(y))||fcl.2 ^|[ÖÄ][D^]e-s<w^]
.2 r ßx

l2xVgcp Acp + 2-2 ln 2+'
¦>s2

X {(z*xzx)(x)(z*2z2)(y) + (z*2z2)(x)(ztzx)(y)

- (ztz2)(x)(z*2zx)(y) - (z*2zx)(x)(z*xz2)(y)) (10.67)

Substituting 0 —» —cp, we also see that the contribution from the two terms are
equal. Thus we obtain, after dropping the h -integral

(y(x)xp(x)xp(y)xp(y)) =^^-2exp(—^ + 2-21n2)

X {(z*xzi)(x)(z*2z2)(y) + (z*2z2)(x)(z*xzs){y)

- (ztz2)(x)(z*2zx)(y) - (z*2ux)(x)(ztz2)(y))

exp(^ \ d2xVg0A-^ + 2-21n2 + ^i[e-2<?(*w+^)) + e+2<?(aw+^))]
\2n is2 2/

JirD(p-\e-(<P,0<P)-2qi<Pix)+4,(y))

+ : (10.68)
\[D4>]e-«'-0*)f'
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The result of the path integral is given by

j[Dcp]e,e -<<P,0<p)-2ci(^tx)-t-<p(y))

1

\[D<P]g
<<t>,o<t>)

exp (q2{G(x, x) + G(y, y) + 2G(x, y)})
exp ([F(0) + F(0)]) (10.69)

where we have identified x <-» (0, cp) and y with the north pole. We are also using
the notation of Appendix D.

If we now fix the geodesic distance between the two points to be s R8 and
let R —» oo (and 0 -» 0), using the results of Appendix D we obtain

/ =-¦ ^rR-\ exp (2 ln 2 + 2y - 2 - 2K0(Vbs)) (10.70)

where b q2/2n. Using the explicit form of zx and z2 we can also easily find that

{(z*xzx)(x)(z*2z2)(y) + (z*2z2(x)(z*xzx){y)

- (z*xz2)(x)(z*2zx)(y) - (z*2zx)(x)(ztz2)(y)} sin21 (10.71)

which is equal to s2/4R2 in the above limit.
Putting these results together, and neglecting terms which go to zero as

R —» œ, we get

fl-»» b

8jt2
(y(x)xp(x)xp(0)xp(0))\lkl=2R=~—2exp(2y-2K0(Vbs)) (10.72)

As the distance s between the two points is now made large, we get an analogous
equation to equation (10.24)

lim {hm (^(x)xp(x){p(0)xp(0))\lkl=2}=-^-2(^) (10.73)

This is the contribution to the above 4-point function from the topological sectors

* +2 and * —2, in the limit s—» oo.

Adding contributions from all sectors (in fact only * 0 and * ±2 sectors
contribute), we finally get

lim lim (xp(x)xp(x)xp(0)xp(0)) [ 5 (%) (10.74)
4n \n

Comparing with the value obtained (8.65) for the two-point function (xpxp), we
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now see that in the flat space limit the cluster property is indeed satisfied, i.e.,

(xp(x)xp(x)xp(0)xp(0)) X ({pyy (10.75)

11. Summary and conclusions

In this work we have shown how to use the functional integral method to
solve the Euclidean Schwinger model on S2. Apart from being a generalization to
the ordinary model, the compact manifold S2 also enables one to proceed in a

mathematically more satisfactory way. Since the relevant differential operators
have discrete spectra, one can use their eigenfunctions to define the path integrals
properly. The radius R of the sphere plays the role of an infrared cutoff; we use
Pauli-Villars regulators to remove the ultraviolet divergences occurring in the
fermionic path integral. On S2, the model is still exactly solvable. It is, of course,
essential that the mass of the fermion is zero and the Pauli-Villars regulator
masses are sent to infinity. We have obtained all the results for finite R, before
taking the /?—»oo limit.

The model nicely illustrates the relevance of the notion of topology in field
theory. Abelian gauge fields on S2 can be classified according to their topological
charge. The path integral decomposes into a sum of path integrals involving
gauge fields of fixed topological charge k 0, ±1, ±2, On the other hand,
the non-trivial gauge field topology implies the occurrence of fermionic zero
modes. For gauge fields of topological charge *, the massless Dirac operator
possesses exactly |*| zero modes which require special treatment. We have

obtained explicit expressions for the propagator and the fermionic effective action
in the presence of an external gauge field of topological charge *.

Since the effective fermionic action turns out to be quadratic in the gauge
field, the functional integral over this field does not present any problem. We
have explicitly calculated several expectation values of physical interest. As it is

seen in these examples, only a limited number of topological sectors contribute to
a given expectation value. Thus, for the two-point function of the field strength
(Fox(x)Fox(0)), the only contribution comes from the * 0 sector. For the two-
and four-point functions of fermion fields, however, all the sectors with |*|=£l
and |*| -=2, respectively, contribute. In general, one can say that if the operator
under consideration contains a product of n pairs of (xp, xp), then the contributions

come from the sectors with |*|=£ft. Some of these contributions vanish in
the flat-space limit.

In contrast to the earlier calculations using the path integral method, where
the presence of the zero modes were not properly accounted for, we get the
non-zero value (ey/2n)(q/yrn) for (xpxp). This agrees with the value obtained by
operator methods. After calculating the two-point function of the field strength,
we have finally calculated, the four-point function (xpxp(x)xpxp(O)) in Section 10.
The cluster property, which has been always assumed in earlier works to obtain
(xpxp), is directly verified here.
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Part III

A. Properties of the operators 0 and D„

In this Appendix we study the general features of the operators D and D0.
Recall that

D /?(©+£) (A-l)

where 3) T^Q)., Tß(dl, + iqAß). We will also use the representation

Ap kCfl+Vg€flvgvPdpcp+-hdllh-i (A-2)
iq

for the gauge field Aß. The operator D0 is obtained from D by setting <p 0,
h 1. For the operator D0, one can obtain the spectrum, zero-modes, etc.

Although the spectrum of D cannot be given explicitly, the zero modes of D may
be given in terms of the zero modes of D0.

A.l. The spectrum of the operator D

Notice that /D is a hermitean operator with respect to the scalar product

(V, X) f d2xXg ip(x)x(x) (A-3)
Js2

where xp and x are 2-component spinors. If

xp denotes the row vector (xpx*, xp2*). Furthermore, since the elliptic operator /0
is defined on the compact manifold S2, its eigenvalues are discrete.

Let {r)v} (v 1, 2, be a set of independent eigenfunctions of /D with
positive eigenvalues Ev. Since D anticommutes (see equation (4.9)) with Ts it
follows that r5-7v are also independent eigenfunctions with eigenvalues — Ev. Let
us denote t/_v r5r?v, F_v — Ev. Together with the zero modes, the set {r]v},
v ±1, ±2, forms a complete set of eigenfunctions of /D.

In other words, the an/Z-hermitean operator D has the independent
eigenfunctions rjv (v ±1, ±2, with corresponding non-zero eigenvalues /Fv,
where r?_v r5»7v and £__„ — Ev, and the same zero modes as iD.

Zero-modes of D
Since D anti-commutes with T5 we can choose the zero modes to have

definite chirality. Suppose we have chosen such a basis in the zero-mode
subspace. Define

r D|^+ r -B\x_ (A-5)
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where $f+ and $?_ represent the positive and negative chirality subspaces,
respectively. Thus the zero mode equations become

TX 0 or rX 0 (A-6)

depending on whether x belongs to X+ or 2tf_. Now, if cp is varied, and x is also
varied according to

ôx -qôcpx or ôx +qôcpx (A-7)

respectively, the zero mode equations (A-6) remain invariant. It follows that the
numbers of zero modes n+ and «_ in 3€+ and dK_ are independent of cp, and may
hence be determined at cp 0. This is done explicitly in the next section, and the
result is,

n+ 0 n_ |*| if *>0
n+ |*| «_ 0 if *<0 (A-8)

The form of the zero modes may also be easily found. If Xi are the zero modes of
D0 B(0 0, h 1), then the zero modes of D are given by

Xi(x) e-"r^^h(x)xi(x)
e-"a^x)h(x)Xi(x) (A-9)

where a ± 1 is the chirality of Xt-

A.2. The spectrum and the zero-modes of D0

The eigenvalue equation for D0 can be solved for any *, because of the
rotation invariance, which allows to reduce D0 to angular momentum operators.
To achieve this we make use of a manifestly covariant formalism [21].

Let Wk, k eZ, be the space of square intégrable two-component spinor fields
îp(g)y g e SU(2), which are homogeneous:

{p(geiwa>) e-,kco{p(g) (A-10)

A complete set of such spinors is given by

Vs,m(g) eim*Xs(l, -m \R(\g)\ k, - ^) (A-ll)
where

s ±\
/ i |*|, i |*| + 1,... (A-12)

m —/,..., /

and

Xm=(l) Z-i/2=(J) (A-13)
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Here, _R(/) denotes the representation with angular momentum / and \l,m) are
the usual basis vectors in that representation.

'Angular momentum' operators acting on the functions in fflk may be defined
through

IaV(g) -jf VK<r'('/2)CT*g)|.=o a 1, 2, 3 (A-14)
i dt

These operators Ia have algebraic properties that are completely analogous to the
properties of the angular momentum operators 4° which are the generators of
the Lie algebra of SU(2), or of rotation group defined by

RW(eiœa") e2''ffl/»° (A-15)

Namely, we have

(i) [L 4] babele
^

(Û) I2^stm TsaUa^stm 1(1 + VVslm

(iii) I3xpslm mxpslm
^ ^

(iv) I±i)sim (Ii ± U2)^sim V/(/ + 1) - m(m + 1) xpsKm±l)

Our next step is to show that the operator /D0 may be mapped to an operator
acting on the functions in 3€k.

Choose coordinates x'1 on S2 and define z(x) as in Section 3. Set

*>-(_£. "'^)'s"ß> <A"16)

and, for any xp e 3tk,

xp(x) xp(u(x)) (A-17)

Because of homogeneity, xp and xp contain the same information. Noting that any
g e SU(2) can be written uniquely as,

g u(x)eKr'2)°3 xeU2 -2n<r<2n (A18)

and also making use of the homogeneity property it is straightforward, though
tedious, to verify that

m0xp(x) - {afl/a - — oja + l}x)(u(x)) (A-19)

where r e S2 corresponds to the point x. Thus the eigenvalue equation iD0xp Exp

translates to

Mxp -Exp (A-20)

where M oJa - (k/2R)oara + 1. Because T5 anticommutes with M, we have

MT5xp ET5xp (A-21)

Suppose {xpv, Xi}, v ±1, ±2, ; i 1, n is a complete set of
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eigenfunctions of M in %€k, where xpv are eigenfunctions with non-zero
eigenvalues and Xi are the zero modes. Furthermore, we have identified xp_v T5xpv.

Now define the positive and negative chirality wave functions,

XÌ xpv±xp_v v=l, 2, (A-22)

Although Xv are not eigenfunctions of M, the set {Xv,X.}> v l, 2, still
forms a basis in 3€k. In fact,

MxX -Evrv (A-23)

M%- -Ev7;tf (A-24)

However, we see that

M2xï E2vXî. (A-25)

so xt are eigenfunctions of M2 with eigenvalues F2. In face of the fact that the
zero modes %t can always be chosen to have a definite chirality (because
{M, r5} 0), what we have done here is to construct a complete set of
eigenfunctions of M2 with definite chirality. This was, of course, possible because
M2 commutes with r5.

Recalling that T, (l/R)oara, we see that all these eigenfunctions satisfy,

{(oala + l)2-\k2)x E2x (A-26)

This eigenvalue problem can be solved using the method of adding angular
momenta. Define the 'total angular momentum'

Ja Ia + i.oa (A-27)

Then we have

Oja=JaJa-Ua-ì (A-28)

The eigenfunctions of Ja are readily obtained by taking linear combinations of
V'i.m's (which are the eigenfunctions of /„ and 2oa) in such a way as to obtain
eigenfunctions of J2, J3 and I2. According to the rules of adding angular
momenta, the simultaneous eigenvalues of these operators are /'(/+ 1). fn,- and

/(/ + 1), respectively, where

I,... (A-29)

(A-30)

(A-31)

(A-32)

The corresponding eigenfunctions can be labelled by Xtjm- It follows that

E2 {j(j + l)-l(l + l) + l)2-\k2
\{(2j + l)2-k2} (A-33)

l \\k\+n; n 0,

j l±h if /#0
/ 1 if / 0

mj -j, -j + 1, ,i
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The following table shows the values taken by / and /, and the corresponding
multiplicity of the eigenvalue.

/ /'

multiplicity
(2/ + 1)

è 1*1 è 1*1-è
\ 1*1 + 1

1*1

|*|+2

ï 1*1 + 1 è 1*1 +è
ï 1*1 + 1

|*|+2
|*| + 4

||*| + 2 \ 1*1 + 1

è 1*1 + 1
|*|+4
|*|+6

: : :

For / 0, which is only possible if * 0, ;' only takes the value \
corresponding to \ \k\ + \. Thus we come to the following conclusions:

1. There are |*| zero modes which correspond to / |*|/2, y' |*|/2 —1/2
and m,- -/,..., /.

2. The non-zero eigenvalues may be labelled by the values taken by (2/ + 1).

Indeed, introduce

(2/+ 1) |*| + 2v; v l,2,
then

£2 v(v + |*|); v l,2,
with multiplicity 2(|*| + 2v).

The above is a statement on the eigenvalues of the operator M2 which,
translated back to operators acting on spinors xp(x), holds for the operator
fi0=-(D0)2.

Let us denote the subspace of 3€k spanned by the eigenfunctions of M2

corresponding to the eigenvalues £2 by _%v. The functions Xt<m< (/ (1*1/2) +
v — \, I —j ± \, m, —/, ...,}) may not have definite chirality. However, it
is possible to make a basis with definite chirality by taking linear combinations
of them. It is also easy to show that any such basis contains equal numbers
of positive and negative chirality elements. This enables us to construct the
eigenfunctions of M. Suppose, for instance, we have found a set of positive
chirality basis elements %X- To each of them we can assign a negative chirality
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vector Xv -(^/Ev)MXv, where Ev Vv(v + |*|). Then the functions xp±v

\(xt ±Xv), v 1,2, are the eigenfunctions of M.

Mxpv -Evxp„ (A-34)

Mxp_v +Evxp_v (A-35)

Furthermore, all the zero modes of M2 are also the zero modes of M itself. Thus
we have shown that, given the functions xpslm, we can completely find out the
spectrum of M, and hence of /D0.

There is an interesting thing about the zero modes; for a given * they all
have the same chirality. To prove this, consider the zero modes %ljm:, ^ 2 1*1.

]'= i\k\-1, m,=-j,...,j.
Mxp 0 (A-36)

or
{oaIa + l-l2kT5)x 0 (A-37)

or

{/(/ + 1) - /(/ + 1) -1 + 1 - \kT5)x 0 (A-38)

After substituting / \ \k\ - \, l \ \k\, this gives r5xp -(\k\/k)%, or in other
words, depending on whether * is positive or negative, all the zero modes xpljm.

have either negative or positive chirality. Denote the number of positive and
negative chirality zero modes by n+ and «_, respectively. Then, for any *,
positive or negative, we have

«+-«_ -* (A-39)

This is in accordance with the Atiyah-Singer index theorem [25].

B. Evaluation of Grassmann integrals

Evaluation of Grassmann integrals with a Gaussian integrand exp (a, Aa) is

quite familiar in the case when A has no zero modes. When A has zero modes, a
little more care must be taken although the basic principles are precisely the
same. In this Appendix we derive some related results, and illustrate their
application to our main calculation. (For a nice account on the basic concepts of
Grassmann integrals see the book by Berèzin [22]). The contents will be the
following:

• Evaluation of the Grassmann integrals
1. /0 J n^i da* dafti.al ¦ ¦ ¦ aiNa*N

2. I $ [Dy][DxpX*-Av)xp(xx)xp(yx) ¦ ¦ ¦ xp(xn)ïp(yn) where A is a self¬

adjoint operator with respect to the scalar product (cp, x), f°r the cases
when
(a) A has precisely n zero modes.
(b) A has *(<«) zero modes.

• Illustration of the results in special cases.



Vol. 61, 1988 Schwinger model on S2 687

B.l. Evaluation ofl0

Consider the Grassmann algebra generated by the Grassmann variables
(alt aN, a*, a%). We wish to evaluate the following integral:

f N
/0 EI da* daiaha* • ' ' aÌNa*N (B-l)

J i \

According to the rules of Grassmann integration it is clear that the value of /0 is

either + 1 or —1 for given sets of distinct indices (/1; iN) and (jx, jN). If
they are not distinct, /0 is of course identically zero. Furthermore, notice that /0 is

totally antisymmetric with respect to the indices (ix, iN) and (/,,... ,jN)
separately, i.e., if we exchange ik and /,, the value of I0 changes the sign. The
same is true with the indices (jx, jN).

Thus, if €ltl.„llN denotes the totally anti-symmetric Levi-Civita symbol of nth
rank, I0 has to be proportional to -.,,...,„ as well as to ejx...JN. This implies that

/o ce,w„e,...../N (B-2)

By setting (ix, ,iN) (j\, jN) (1, N) we find that c 1. Hence,

f N
/0 EI da* düiüifil ¦ ¦ ¦ aiNa*N «w/w» (B"3)

J i=i

B.2. Evaluation of I

I j[Dx}][Dxp]e-^A^xp(xx)xp(yx) ¦ ¦ ¦ xp(xn)xjj(yn) (B-4)

Let {xpj} be a complete set of orthonormal eigenfunctions of the operator A:

Axp^eM (B-5)

and for any xp and xp,

xp(x) 2 «MM (B-6)
i

V-(x) 2«f^(x) (B-7)

where t/>, (xpf)T. The set {ah a*} may be considered as an orthonormal basis
for the Grassmann algebra generated by them. The scalar product is defined
by

(H>, V) 2 afa, (B-8)

We define the measure [Dt/>][Dt/>] so that,

/ f û da* dae-Z'«°r°> 2 «,X ¦ • " «,„«;*%(xiH,(yi) • ¦ ¦ VuMjM
J iyi„

h -in (B-9)
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where £' denotes the sum over only those /'s which corresponds to non-zero
modes. Suppose there are * zero modes. If * > n, /is identically zero since the
product a,-. • • • a*n cannot produce all k variables corresponding to the missing
zero modes in the exponent. Thus we only have to consider the two cases * n
and * < n.

Case (/): * n
In this case, in order to get a non-zero value for /, all the indices (/,,..., /„),
0i> • ¦ ¦ in) must correspond to zero modes. This is so, because exp(£' t",fl,fl,*)
could not provide for any of the n pairs (a,, af) which correspond to zero modes.
Thus the integral decomposes into two parts.

/ Ml da* dui 2 a,ta* ¦ ¦ ¦ aita*XXxi)VjXyi) " - - V^COVV»^/.)
J i \

x [\\ da* dae+z'£'a'ar (B-10)

where the sum in the first factor is over the zero modes only. The second factor,
on the other hand, contains only non-zero modes, and gives the result
det' A FT e, where II' denotes the product over non-zero modes. Thus,

/ det' A 2 Wi)ty.(-V-) • • ¦ VXnHM (B-ll)
Is -Ir,

where /0 is the integral (B-l) considered in the previous section.

/o e,1...,„e7l...y„ (B-12)
Thus

/ det' Aeiy..ineh...jnxph(xx)ïph(yx) ¦ ¦ • V,„(x„)^„(y„) (B-13)

where the repeated indices are summed over zero modes. Recall that the xp's

appearing here are all orthonormal zero modes.
Suppose instead of orthonormal zero modes, we are provided with a set of

only linearly independent zero modes, i.e., instead of an orthonormal basis in the
zero mode subspace, we only have an independent basis {#,}•

To construct orthonormal zero modes out of them we could, for instance, use
the Gram-Schmidt procedure. However, this method is not very practical when
the number of basis elements is large. Therefore we rather resort to general
arguments. It will be proven that for the special combination of basis elements we
have above, there exists a nice expression in terms of independent zero modes.

Expand Xi in terms of orthonormal basis elements:

Xi SM (B-14)

It follows that

(Xi> Xj) S*kSj,(xpk, xp,)

S*kS„ôkl (B-15)
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Define the 'zero-mode matrix' by Ntj (xi, Xj)- Thus

Nij SjkSli or NT SS> (B-16)

It follows that

det Af det S det 5f (B-17)

Expressing x's in the product

£ivXit~iJCh(x-)Xi,(y.) ¦ ¦ • Xi„(xn)Xj„(yn) (B-i8)

in terms of xp's and also making use of the identity

e,r.,„detta5 ß,1,1---ß,„,.e,i.,, (B-19)

which is valid for any matrix B, it is easy to prove that

/ det' A(det N)X;r.,neh...a.Xxx)Xf,(y>) ¦ ¦ ¦ xd*n)XiM (B-20)

Case (ii): k<n
Let us denote the integral / by I2n in order to remind us that n and * are different
in this case; we are calculating the 2n-point function in the presence of * zero
modes of the operator A.

Like in the Case (i), using an orthonormal set of eigenfunctions of A we can
write the above integral as

& f ll da* dae~^-<a- 2 a,a* ¦ ¦ ¦ a,na*

xyìXxx){ph(y.)--x-Xn)ViXyn) (B-21)

The primed indices here correspond to the non-zero eigenmodes. Consider the
following facts:

• The expansion of the exponential always gives terms with pairs a,a,*.
• The above expansion does not give any one of the * pairs ata* that

correspond to the zero modes.
• Therefore, the rest of the integrand should provide for the product

axa* ¦ ¦ ¦ aka*k corresponding to the zero modes.
• Since there remain (n — k) pairs that correspond to non-zero modes, we

have to consider only those terms in the expansion of the exponent, where
just these modes are lacking.

•The terms in the expansion of exp (T,fLx fc",-.,-«*) which contain N-l
products of distinct a,a* pairs and lack the remaining / pairs are given by

2 II €iaX
{a,} ii-o,

where, a, denote sets of / distinct indices (which are missing in the product)
and a, is the complement of o,\ it contains all the other N - I indices.
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Thus we have, setting l n — k,

iL f ll da* da 2 EI «v«.-«* 2 atK ¦ ' ' aißt

If In

x v.^iM.^i) • • • %Xxn)n>iXyn) (B-22)

The indices /1( ...,/„, /W /„ take values in the set

5 {1, *}Uo„_/t
where the indices 1, * label zero modes. Indices in a and ô correspond to
non-zero modes. Since the sum over o means the sum over all dinstant indices, we
can rewrite it as a sum over all the indices i[, i'n-ke öUä, i.e., over all
non-zero modes which satisfy the condition i[<- ¦ -<i'n-k. Thus

Ik2n= f U da* da 2 ll d-aX
J fi—i-_fr _'e<7-,__-tt—'n-k • ea„.k

i{<—<!'„-k

x 2 a_.a,*- • • ß_X^(*iM-.(.y-) • • • vdxn)ip,Xyn) (b-23)
/'i .„eS
/i,...,/„eS

The set 5 is now given by 5 {1, ...,*, i[, /Wa.}- Notice also that the
product a^fl? • • • aina* is anti-symmetric with respect to exchange of two indices
in (/!,..., /„) and (jx, /„) separately. Hence we can write this product as

€il...inefl...ja1at ¦ • • aka*kai{a*\ • • • %-«fl'*-* (B"24)

where £",,...,„ is again the totally antisymmetric Levi-Civita symbol with

fi.-«i.../î„-t) l (B-25)

Thus we finally have

Iîn= 2 \X\da*daY[eraX 2 e,r
i\---iXk J /'éo i\....,i„eS

i\<-<iXk /i. — ./«e5

x axa*x ¦ ¦ -akaîa,X • • ¦ a^flj^Vi.fo)^*) " ' • Ift.OUVV.Xy-.)

2 det' A c'V--'-g/.->. ^(x^fo) • ¦ • KfeMW-V«)
'."•'n-f- I, i„eS c/; " " ' £t[„-k)

(B-26)

where det' A is the product of all non-zero eigenvalues, and i[, i{„-k) take
values corresponding to the non-zero modes.

Notice that the expression in the square brackets is symmetric with respect to
the indices (i'x, i[„-k)). Also notice that we can allow the possibility that any
two indices be equal, since the e-symbols take care that such a contribution gives
zero. Both of these considerations result in the identities:

,2 [ ]- 2 [ ] («-*)! 2 [] (B-27)
î_*"'('«-*) '! "'"'In-*) i']<¦¦¦ </(,,_fc)

no two
indices equal
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where [ ] denotes the square bracket in the above equation. Thus

1
Jk
2n (n-k)\

x 2
-_.—.<<„-*)

€.....,-.. fc"

2 det' A '¦-'" *"* xph(xx)xph(ys.) ¦ ¦ ¦ ipXnriiXn)
'I-'« ei'\ ' ' ' €i(n-k)
if-In

(B-28)

In this expression, the unprimed indices take values corresponding to all the
eigenmodes while the primed indices take only values that correspond to
non-zero modes.

B.3. Illustration

Here we shall illustrate the results of the previous subsection for the cases of
2- and 4-point functions.

B.3.1. The 2-point function.

h j[Dxp][Dxp]e-^^xp(xx)xp(yi) (B-29)

When the operator A has no zero modes we get from equation (B-28)

_1 2 2 det A £& xph(Xl)%(yi) (B-30)
'i h,h wi

where i\,j\£{i[}, which in this case means, that ix=jx i'x e {1,2, .}. It
follows that

/« 2detA^^Ä^
detA«(x1,y1) (B-31)

where

%x,y)= E Alfe) (B-32)
1 1,2,... €i

When A has one zero mode, equation (B-28) gives

/1 2 det' Aehehxph(xx)iph(yx) (B-33)
it,is

where /1( jx e {1} or /t =jx 1. Thus we have

/i det'A^1(x1)^i(>'1) (B-34)

where xpx is the normalized zero mode of A. Notice that the same result may be
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obtained via equation (B-20) which gives

„, A x(xi)x(yi)
(x,x)

where x is any (i.e., not necessarily a normalized) zero mode.

iXdet'A^X (B-35)

B.3.2. The A-point function

I4 j[Dxp][Dxp]e-^A^X(xx)X(yt)r(x2)n>ó(y2) (B-36)

In this case equation (B-28) gives

^ ^2 2 det A ^f^K(xx)W(y.W2(x2M(y2) (B-37)

it,h
where /1( i2,jx,j2e {i[, i'2) while /J, /2 take all values 1,2, Simplifying this
one gets

l'I detA{<S«ß(xx, yx)W6(x2, y2) - Wb(xx,y2)W\x2, y,)} (B-38)

Similarly, when A has one zero mode the result is

l\ det' A{xpf(xx)xpß(yx)Wö(x2, y2) + <Tß(xx, y,)t^r(x2)^f(y2)

- xp?(xx)xp<;(y2)Wß(x2, y,) - ««*(*„ y2)V[(x2)^f(y,)} (B-39)
where

^(x,y)= 2 *"(x)*f<y)
(B-40)

r=2,3... £,-¦

and xpx is the normalized zero mode of A. In the case when there are 2 zero
modes, we obtain

l24 det' A{xpx(Xi)xpx(yi) xp2(x2)xp2(y2) + xp2(x,)x}2(yx)xpx(x2)yx(y2)

- H>i(xx)xp2(yx)xp2(x2)xpx(y2) - xp2(xx)xpx(yx)xpx(x2)xp2(y2)} (B-41)

where xpx and xp2 are two orthonormal zero modes. Using equation (B-20) we can
give the answer in terms of any two independent zero modes X\ and Xi-

I24 det' _4(det N)-\xt(xt)Xi(y.)X2(x2)X2(y2)
+ X2(x,)x2(y.)xx(x2)xt(y2) - Xt(xt)x2(yi)x2(x2)xi(y2)

- X2(xt)Xt(yt)Xi(x2)x2(y2)} (B-42)

where /V,-, (x,, Xj) is the zero mode matrix.

C. Certain operators and their Green's functions

Here we investigate how certain operators mentioned in the main calculation
are related to each other and how the corresponding Green's functions reflect
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these relations. This will make clear why different formalisms are equivalent.
Expressing the Green's functions of complicated operators in terms of those of
simple operators will also facilitate the explicit calculation.

Cl. Equivalence of the operators D and D

As mentioned in the Section 1, the Dirac operator in the general formalism is

given by

D yaet(x)Dß y"D„ (C-l)

where D^ 3M + Afl + \yvyv-ß. y" are globally defined y-matrices. Multiplying y"
with the d-bein e£(x) (assuming we have a d-dimensional manifold) we obtain the
position-dependent y-matrices: yM(x) y"e%(x). If g^v is the metric tensor we
define y^(x) gtlvyv and ";" denotes the covariant derivative with respect to the
index that follows it. The quantity \yvyVili is the so-called spin-connection. Finally
Ap is the gauge field, which takes values of the Lie algebra of the gauge group G.

On conformally flat spaces like the d-sphere, the metric tensor may be
written as

gMV(x) fi(x)ôMV fi>0 (C-2)

by choosing suitable coordinates. In this case, the natural choice for the d-bein is

^(x)=gMVe£(x) fi1/2ôaA. (C-3)

or
e£ fi-1/2ôÛA. (C-4)

Hence, in these specific coordinates, we get

D Q-V-»l4{Ci-l/2ya(da + iqAa)}&"-1)14 (C-5)

where we have writeen Aa =Att for these specific coordinates.
On the 2-sphere S2, of radius R, the sterographic coordinates (x1, x2) defined

by

rx 2R2x1(R2 + x2y1 (C-6)

r2 2R2x2(R2 + x2X (C-7)

r3 R(R2-x2)(R2 + x2yl (C-8)

provide such a coordinate system. Here (rx, r2, r3) denotes the point (x1, x2) on
the sphere in terms of the coordinates of the flat 3-dimensional space in which S2

is embedded. Indeed, for the metric tensor we have

g„v(x) 3„r-3vr=fi(x)<5.,v (C-9)

where
AR4

(R2 + x2)2ßW=7^i (C-10)



694 Camillus Jayewardena H. P. A.

Hence

D Q-yX(3XiqAa)Qw (C-ll)

Now let us take the operator defined in the 5'i/(2)-invariant formalism:

D (®+±) (C-12)

with 3) rM®M where Tß and 3sß are defined by

r^-o-lrxa.r) and % 3ll+iqAfl (C-13)

respectively. It is easy to see that in stereographic coordinates defined above

Ti o • 32r r2 -o • 3xr (C-14)

and

D Q-1,2ya(3a + iqAa) + ^ (C-15)

where

yx(x) fi"1/2o • 32r y2(x) -fi-1/2o • 3xt (C-16)

These 2x2 y-matrices satisfy the Clifford algebra

{fa, ?b}=2öab (C-17)

Since any two irreducible representations of this Clifford algebra are unitarily
equivalent to one another, there must be a matrix u(x) e SU(2) which relates the
matrices yx, y2 to /1 0!, y2 o2 which also satisfy the same Clifford algebra:
i.e., there exists u e SU(2) such that

Ya uyau~x (C-18)

Now we can prove that the operators D, in the general formalism and D, in the
-S'i/(2)-invariant formalism are unitarily equivalent.

The proof of the above equivalence goes as follows: The matrices 1, yx, y2
and yxy2 for any given x are linearly independent and hence form a basis for 2 x 2

matrices. This can be used to expand 3iya, d2ya in this basis. For example, we get

3xyx -^fi-1 32fiy2 (C-19)

3i72 Ifi"1 32fi7i + 7^ fi1/2yiy2 (C-20)
IK

for dxya. Inserting ya u~iyau we obtain

[u dxu-\ yx] -ifi-1 32fiy2 (C-21)

[u dlU-\ y2] ifi-1 32fi7l + ì fi1/2o3 (C-22)
K
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where we have used the fact that [yx, y2] [o-1; o2] 2/a3. Since ueSU(2) it
follows that u dau~l is an element of the Lie algebra of SU(2). The above
equations may be used to find the coefficients of the expansion u dxu~l a.,a,.
This gives

u 3xu~l a\.\- 2-fi"1 32ficr3 + i fi1'2^) (C-23)
2i I R

or

Yl(u dlU~l) i {^ fi"1 32fia2 + i fil/21} (C-24)

Proceeding in the same way one can prove that

y2(M32M-1) ^yfi-131fio1 + |fi1/2l} (C-25)

Thus we finally have

uDu-lxp w{fi-1/2ya(3a + iqAa) + ^)Xxp

fi-3/4oa(3a + iqA0)Qmxp (C-26)

i.e., uDu~l D.

Explicit form of the matrix u(x)
We can find u(x) explicitly using stereographic coordinates. Writing

u a01 + /a,a, (C-27)

with a0, a, all real and al + a2 1 and using the relations

uyaX ya or uya yau, (C-28)

where yx ox, y2 o2, yx fi_1/2o • 32r, y2 -fi_1/2o • dxr, one can solve a set
of linear equations to obtain

ax xx-x2 a2 Xx+x2 a3
1 (C-29)

a0 R a0 R a0

where a0 R/\/2(R2 + x2). In obtaining these results it is helpful to notice that r,
3jr, 32r form an orthogonal set of axes at every point r on the sphere, and from
gßv(x) 3„r • 3vr fi(x)ô..v it follows that |3jr|2 |32r|2 fi(x).

Thus u(x) in stereographic coordinates becomes

u(x) J / Ä(l + 0 (xx-ix2)(l + i)\
W V2(Ä2 + x2)V-(x1 + /x2)(l-/) /.(I-/) J l ;

whereas

-V U\ 1 / Ä(l-i) -(x!-à2)(l + 0\ ,r,nM W MW V2(^ + x2)l(x1 + /x2)(l-/) /?(! + /)
J (C'31)



696 Camillus Jayewardena H.P.A.

C.2. Green's functions

The Green's function of a differential operator iona Riemann manifold is

defined by

s4G(x,y \s4)=g'll2ô(x-y) (C-32)

when sé has no zero modes. In this case, the following representation for the
Green's function may be given:

ri I rAl\ V y<(x)^,(y) ,n A.A.,G(x, y | -J-?) 2. (C-33)
i Ej

Here {xpt) form a complete set of orthonormal eigenfunctions of the operator sé

with the corresponding eigenvalues E,. However, when sé has zero modes this
definition loses its meaning. In this case one may still define the Green's function

G(x,y\sé) 2j T (C-34)
i E,

(Ei+0)

The Green's function so defined satisfies the differential equation

sdG(x,y | M)=g-y2ô(x-y)-P(x,y \ sé) (C-35)

where P(x, y) is the projector onto the zero-mode subspace:

P((x,y\si) 2 X,<xMy) (C-36)
f

(E,=0)

The functions {%,} here form a complete set of orthonormal zero modes of M.
As shown in Appendix A, the operator D, defined as

U r(^+-\ (C-37)

where 2 =T"(d^ + iqA„), Ap kC.. + Vg eßVgvp 3pcp + (l/iq)h 3M/z_1 has
precisely |*| zero modes for a given *. Recall the foregoing discussion where the
equivalence of the operators D D/R and D was proven:

D uDu~1 or D u~lDu (C-38)

If {xpi} is a complete set of orthonormal eigenfunctions of the operator D with
corresponding eigenvalues iEh {u~ixpi} form a complete orthonormal set of
eigenfunctions of the operator D with the same eigenvalues. It follows that the
Green's functions of the two operators are related by

G(x, y | D) u~\x)G(x, y \ D)u(y) (C-39)

Since D RD, we also have

Wx.y\ û) =4g(x, y | D) =^u"1G(x, y | D)u(y) (C-40)
_f\ K



Vol. 61, 1988 Schwinger modelons2 697

In the following we construct the Green's function G(x, y | D) of the operator D
explicitly for any given *, using stereographic coordinates. Recall that in these
coordinates,

_R_

R2 + x2
r —2 5 (2Rx\ 2Rx2, R2 - x2), (C-41)

the operator D is given by (equation (1.32))

D Q-3/4oa(da + iqAa)Qm (C-42)

where

Aa kCa + eab dbcp + - h dah - ' (C-43)
iq

and

Q« (Ä (C-44)

Denote the Green's function of D for cp 0, h 1 by S(x, y). Then it is easy to
show that the Green's function in the general case is given by

G(x, y, D) h(x)e-qa^x)S(x, y)e-qa^y)h-\y) (C-45)

Thus the problem of finding the Green's function of D is further reduced to
finding it for a special gauge field kCa which has constant field strength. Denoting
the operator D for cp 0, h 1 by D0, we have

D0 Q~3/4oa(da + iqkCa)Qw (C-46)

1
„ 1 Q1'2

T-z3az= — eah dh In fi - —
iq Aq 2qRl

Ca - z daz — eah d„ In fi - —s eafrx" (C-47)

After some algebra one can write D0 in the form

fi1/2
D0 fi-,/2o^3fl - —2 (1 + ko3)x"j (C-48)

which, in turn, may be put in to the form

D0 fi_3/4 exp (j o3 ln fiW 3afi1/4 exp (j o3 In fi) (C-49)

Because of the equivalence of the operators in the general and SU(2)-
invariant formalisms, the eigenfunctions and the eigenvalues of the two operators
are in one-to-one correspondence. Thus, if xp is an eigenfunction of D with
eigenvalue iE, it follows that

D(uxp) iE(uxp) (C-50)

i.e., uxp is an eigenfunction of D with the same eigenvalue iE. Furthermore, the
chirality operator T5 of the S£/(2)-invariant formalism turns out to be equivalent to
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the Pauli matrix o3:

uT5u~l o3 (C-51)

In other words, if xp is a spinor with chirality r with respect to r5, then uxp is a

spinor with the same chirality t with respect to o3. From the discussion in
Appendix A it then follows that

1. the non-zero eigenfunctions of the anti-hermitean operator D may be
labelled as r]v; v ±1, ±2, where rj_v o3t)v

2. if rjv is an eigenfunction of /D with eigenvalue iEv, the eigenvalue
corresponding to r)_v is — iEv

3. there are precisely |*| zero modes of D for a given *; they all have either
positive or negative chirality depending on whether * < 0 or * > 0,

respectively.

Now it is easy to see that the Green's function of D, defined as in (C-34) has the
form

and satisfies

S\x, y) -S(y, x) (C-53)

Furthermore, if Xn is any zero mode of D, we have the relations

f d2xXgXn(x)S(x,y) 0 (C-54)
h2

\ S(x,y)Xn(y)Vgd2y 0 (C-55)
Js2

All these statements about D are, in particular, true for D0 which is obtained by
setting cp 0, h 1 in D. The zero mode equation for D0 thus becomes

oada(Qme(k,4)a'lnQxn) 0 (C-56)

Xn (J?) (C-57)

whereby either Xn or x~ is identically zero depending on whether * > 0 or * < 0,

respectively. Hence, the zero-mode equation for the two cases may be written as

3+(fi(1-*)/4^-) 0 (C-58)

cL(QU+*)'Y+) 0 (C-59)

respectively, where we have defined

d± i(dx + id2) (C-60)

x±=x1±ix2 (C-61)
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Case (/): *>0
Let us concentrate on the case * > 0. An independent set of solutions to the
equation (C-58) is given by

X- an(x-)"^k~m(x) (C-62)

The condition that these zero modes must be normalizable

\ d2xXgXnXn=l (C-63)
¦Is2

restricts the values n can take. It is easy to show that

n 0, 1, ...,*- 1 (C-64)

\an\2 -^(k~1)21-kR-(2n+» (C-65)
An V n I

This is in agreement with the fact that D has precisely |*| zero modes for a given
*. Let us set R 1 for simplicity; at the end we can restore the R factors.

The projection operator onto the zero-mode subspace is thus given by

P(x,y) 2,( ° J(0 Xn(x)*) (C-66)

Kl -o3)^-{(l + x2)(l + y2)Y^l2(l + xXf-1 (C-67)

Thus the differential equation (C-35) satisfied by the Green's function reduces to
the two equations

fi(*"3>/4 3+(fi(x-*>/45_) IfiJ1 ö(x - y) (C-68)
q-(*+3V4 3_(Q(^i)/4S+) iQji ô(x-y) (C-69)

-^ 21-Wfi,fiW(<:"1)/4(l + x~yX'1 (C-70)

where, for simplicity, we have used the notation Qx fi(x), fiy fi(y). To
simplify them further, define

5_(x, y) fif "1)/4r_(x, y)fi;(*+1)/4 (C-71)

5+(x, y) fij(*+1>/4r+(x, y)fiW-^4 (C-72)

Thus we obtain the differential equations for F_ and T+:

dx+T_(x,y) ïà(x-y) (C-73)

3ì.r+(x,y) èó(x-y)--2-(*+1)fiW+1)/2(l+x-y+)';-1 (C-74)
n
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Furthermore, the properties (C-54), (C-55) lead to the conditions

jd2xXn(x)Qik"1)/4r_(x, y) 0 (C-75)

jd2yx-(y)Qyk-mT+(x, y) 0 (C-76)

for n 0, 1, ...,* — 1. Finally, from

S(x,yy= -S(y,x) (C-77)

follows the relation

T+(x,y) -T-(y,x)* (C-78)

Thus we can write two further differential equations for T_ and T+ :

3>+TX,y) -1X(x-y) + ^XkQyk+1V2(l + xX)k~' (C"79)
on

3171(x,y)=-^<5(x-y) (C-80)

The differential equations (C-73) and (C-79) determine 71 (x, y) up to an additive
function of x~ and y~. The solution is

T-(x, y) ^—^-^(1 + y+y-)-*(l + x-y+f + f_(x", y") (C-81)
2.TX — y

The condition (C-75) leads to

/_(x-,y-) o (C-82)

We prove that /_(x~, y~) 0 by showing that the function

F(x,y) ^-^-T(l+y+yWrWl+x-y+W (C-83)
2jtx — y

alone satisfies the condition (C-75) for 0<n -S* - 1. Uniqueness of the Green's
function then implies that F(x, y) f(x, y) or /_(x", y") 0. The proof goes as

follows: Define

J (1 +x x (x -y
This contains all the relevant factors in the integrand (C-75). The substitution

x ' r cos cp x2 r sin cp

yields

J<> V1 + r <y=» W'
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where

X i
y-

_?jr
r" \-6(\y-\-r) for p>0

(y_y+1l 0(r-|y_|) for p <0

Setting r2 p, \y_\2 z one obtains

+l,(>f^ö^p} (C-87)

Using [23, Eq. 3.194.3]

n\(k-n-l)\

(k-n-1)1 (n-q)l

(C-88)

,.; f A n!(*-n-l)! a .kT, pn 1 ,„...

*!

one can write this as

n
(yl >

To evaluate the remaining integral, make the substitution

(l + p) (l + z)co (C-90)

Then

(1 + zf [dp f 2 (%" f°<M<» - lr-'c"-*-1 (C-91)
Jz \i + PJ ?=o \q> h

Using [23, Eq. 3.191.2]

| dcocoi-^Xo - 1)""" B{k - n, n - q - 1)
Ji

(C-92)
(k-q)l

one sees that the two terms in (C-89) precisely cancel each other thus giving

Jn,k 0 (C-93)

for all 0 < n < * - 1. As mentioned above, this implies that /_(x~, y ") 0. Then
71(x, y) is given by (C-78):

TX, v) ^-^—T (1 + x+x-)-Wl + xXt (C-94)
z;rx —y
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Thus the Green's function of D0 is given by

2^(1 + x-y y(QQ)(k-m( 0 x--y-\0
An \x-y\2 {iixiiy) X-y- 0

or, restoring Ri=l,
-t\-ko-2k /p2 „-v+\ta.

S(x, y) ±-^— (K +
*£

>

(QxQyX^'4aa(xa ~ y') (C-95)

Case (ii): * <0
Zero modes are now given by (see equation (C-59))

a_(Q(i-i*D"x+) o (C-96)

An independent set of normalizable zero modes may thus be given as

X+n(x) bn(x+T&m-m(x) (C-97)

where n 0, 1, |*| — 1. The normalization condition leads to

^JfX:Y" <c-98>

The projection operator on to the zero-mode subspace is

f 2(X"+0W)u:(y)* 0)

-2(1 + o3) ^ {(1 + x2)(l + y2)}'1"'*,)/^ + xV)i*i-i (C-99)

The two non-zero components S+, 5__ of the Green's function are now given by

qj(i*i+3V4 a-+(fì(i*i+iV45_) lQji ô(x-y)

-P {(1 + x2)(l + y2)j.Ci-i*i)/4(1 + x+y-y*\-- (C-100)
8jt

Q-(3-|*l)/4 ^_(Q(l-|fclV45+) lQjl ô(x - y) (C-101)

To simplify these equations further we use the same substitutions as before (see

C-71, C-72):

S_(x, y) fi;(l*l+1)/471(x, y)fif'-1)/4 (C-102)

5+(x, y) fif'-1)/4r+(x, y)fi;«*l+1>/4 (C-103)

Thus we obtain

3171(x, y) \ à(x-y) - ^21-|A:|fif l+1)/2(l +xX)ikl~1 (C-104)
on

3i71(x,y) è<5(x-y) (C-105)
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Taking the complex conjugation of the two equations we get

dlTl(x, y) ï à(x -y) -^21-|^fif ,+1)/2(l +XXX1 (C-106)
oJT

dx+T*+(x,y) \ô(x-y) (C-107)

Comparison of these equations with equations (C-73) and (C-74) in * > 0 case
shows that the solutions F* (x, y) and F* (x, y) for * < 0 are the same as T+(x, y)
and T_(x, y) in the previous case. Hence we find

7W(x, y)=-J- +* +(l + x+x-)-|fe|(l+x-y+)l<r| (C-108)

Tl(x, y) ^-^-^(l+yX)Xi+xXykl (C-109)
Z7TX — y

or

T_(x, y)
-?- _l_ _(1 + x+x")-|fc|(l + xV)1*1 (C-110)

t+(x, y) ~~r^ (i + -v Vr'*'(i + *V )'*' (C-iii)
Z-Tx — y

The Green's function for * < 0 is thus given by

21-|*I U-2\k\ (R2 + -\\k\
S(x> y)

An \x-y\2
(QxQ,)(|t|-1)/4aa(x- - y ") (C-112)

Case (III): * 0

In this case, there are no zero modes; the projector P is zero. The Green's
function may be obtained by simply setting * 0 in either of (C-95) or (C-112).
Thus we get

Thus we have solved the problem of finding the Green's function of the

operator D for any given *. Namely, from equations (C-40) and (C-45) we have

%x, y | D) \ u-Xx)ri(xXqo^^S(x, y)e-qa"f(y)h-1(y)u(y) (C-114)
R

where S(x, y) is given by the equation (C-95), (C-112) or (C-113) depending on
whether * > 0, * < 0, or * 0.
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D. Various sums and their limits appearing in the main calculation

Most of the sums resulting in the (^-integral of the path integrals can be

expressed through simple relations between sums of the form

Therefore we study the properties of Sb(d) in detail so that all the other sums and
their limits may be obtained easily. All the relations among various special
functions used here may be found in [23] and [24].

D.I. Sb(d) and the Green's function of the Laplacian on S2

The Laplacian operator on a curved manifold is given by

A ^3,Vgg"v3v (D-2)

where g^v is the metric tensor of the manifold and g det (gpv). If we choose

polar coordinates on S2,

x (0, cp)

we can write

A=-^L2 (D-3)

where L2 is the angular momentum operator and R is the radius of the sphere.
Now consider the Green's function defined by

(-Ax + /.)Gft(x,y|-A) g-1/2ô(x-y) (b>0) (D-4)

In polar coordinates x (0, cp), y (0', cp') we also have g(x) /?4sin2 0. If
Yim(6, cp) are the spherical harmonics, the functions %m Y,m/R form a

complete, orthogonal set of eigenfunctions of —A which are normalized to 1 on
S2. Hence we can write

0t(„ hÄ)!ta s ^Mms^ (D.5)
/=0.1,... '(' + 1) u

m -l TT TO
K

and using the 'addition theorem' for spherical harmonics

2 Ylm(8, <p)YL(d', <p') ^P,(cos co) (D-6)
m 4n

we get

Gb(x,y\ -^ i%l{l^lbR2Pt^co) (D-7)
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where co is the angle between r(x) and r(y). Let us choose the point y (0', cp')
to be the north pole. This implies that cos co cos 0 so that G depends only on 0.

Let us denote it by G(0 | -A). Comparison with the sum Sb(6) gives the

following relation:

G,(0|-A) Sfc(0) + ^^ (D-8)

We wish to find a closed expression for Sb(d), or for Gb(6 \ —A). Since

Gh(8 | -A) satisfies equation (D-4) written in polar coordinates

{-RXeÌs(sl"eÌ,) + X^-A)"° <D"9)

for 0=£O. Thus Gb(6 | — A) satisfies the differential equation for associated

Legendre functions. Therefore, let us examine the associated Legendre functions
with the property that they are singular at x cos 0 1. These are usually
denoted by Qv(x). Expand Qv(x) in Legendre polynomials:

Qv(x) 2 a,P,(x). (D-10)
/=o

Using JW, dzP,(z)Pm(z) 2ôlm/(2l + 1) we find that [23]

°>=«+xztx <D-u)
(/ — v)(/ + 1 + v)

If we require that the denominator here to be equal to the denominator in the
sum for G(0 | -A)

(l-v)(l+l + v) l(l + l) + bR2 (D-12)

we get the two solutions

v, - \ + \l\ - bR2 v2 - i - VI - bR2 (D-13)

for v, with v, + v2 — 1. It is simple to see that

g.w+G.^i,(,W)W_..^w (D-14)

which is just 4nGb(d | -A). Thus we have Sh(6) in terms of known functions:

h{Q^x)+Q^x)]-ûR5"(0) 7z{Ôv,W + Ov2(x)}-7zr^. (D-15)

D.2. Different limits of the Green's function

We can now check if our Green's function reproduces the known flat-space
limit. We can also see what happens as b—>0.
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Flat-space Green's function of (—A + b)

To check the flat-space limit let us fix the geodesic distance s Rd and let /?—»<».

So we have to let 0—»0 as well. Define A y/bR2 — \ which is real since R is

large. Now

Gb(6 | -A) -i- {Q-i/2+a(cos 0) + g_1/2_,A(cos 0)}4jt
1

4 cosh Xn

We can use the integral representation

P_1/2+M(-cos 0) (D-16)

Pv(cos 0) l f .;°S(V + 2)(Pm rfç, (D-17)v ^Jo V2(cos cp - cos 0) r v ;

to find the behaviour of F_1/2_,A(-cos 0) for large R and small 0. This leads to
the asymptotic expansion

ekn 1 I s\2
F_1/2+„(-cos 0) — Ka(X6) + - 0{-) (D-18)

where K0 is a Bessel function. Furthermore,

A0 V^-8W (D"19)

and hence

KX)(kd)^KjVbs "

&VbR2/

K0(Vb s) + Kx(Vbs) —^ + O(^) (D-20)

The last step follows from a Taylor expansion and using the fact that
(d/dz)K0(x) -Kx(z). Thus, for the Green's function we have

Ob(e\-A) lKXÌ(Xbs) + Kx(Xbs)^^+o(li). (D-21)

In the limit R^-<^, this agrees with the flat-space Green's function of (-A + b) in
two dimensions, which is

G(r-r') ^-K()(Vb\r-r'\) (D-22)
In

For S, we have

5.(0)V =d^^,(V6*) + O(^) (D-23)
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Green's function of —A and its flat-space limit

Since / 0 is a zero mode of —A we cannot represent the Green's function of —A

as a sum over all eigen modes. In this case, a meaningful way to define the
Green's function is through (cf. equation (C-35))

AG(x, y | -A) g"1'2 ô(x - y) - P0(x, y -A) (D-24)

where P0 is the projector into the zero mode space. Then the following relation
holds.

Go(0|-A) àI|+l)^OS0) (D-25)

This is indentical with S0(6). Notice that / 0 is excluded. This series is

convergent and the sum is given by ([23], Eqs. 8.926)

5o(0) Go(0|-A)=-^lnsmf^
We can also deduce this by noticing that

1

Go(0 | -A) lim Gb(6 | -A)

(D-26)

(D-27)
.—o t AnbR

Define v vx - \ + VI - bR2, then v2 -1 - v. Expanding v for small b we

get

v -bR2 - b2R4 + 0(b3)

which gives zero as b —» 0. Therefore

Go(0 | -A) lim -î- f ßv(cos 0) + ß-^cos 0) - -—2
6-><. An l oK

(D-28)

(D-29)

may be expanded for small v and we get

Go(f,|-A) i..2Co-fdv v=0-
+ — lim

4jt b^t)

1 1

v bR2l

In the limit ò-^O, [-1/v - 1/bR2]-

1+x

•1. Furthermore,

ôo(x) \ In

ln
3F,

3v

1-x
1+x

v=o 2

where x cos 0, so we get

Go(0|-A) 5„(0)

(D-30)

(D-31)

(D-32)

11 lnl-x
An 2 An

(D-33)
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which is, in fact, the same result as before. This is the Green's function of -A on
the sphere S2.

Now we can check for the flat-space limit. Again we fix s Rd and let
R^œ, 0_>O.

1 — JC 0 S S I 1 \ ,„„„sin- sin—- —- + 0 -3 (D-34)
2 2 2R 2R \R3

Hence

Go(0 I -A) -^ ln I + const + oQ (D-35)

This is the familier result for the Laplacian in flat 2-dimensional space.

D.3. Various sums in the main calculation

i) While calculating (xpxp) we encountered the sum

where we had b q2/n. Notice that

F(0)^l/2/ + 1){^-/(7+1^Kos^
4;r{So(0)-5,(0)} (D-37)

Using the results in the previous section now it is trivial to give the large R
behaviour of F(0):

F(0) *=* -2 ln ~ - 1 - 2K0(Vb s) + o(^) (D-38)

where s Rd is held fixed,
ii) We also had the sum

f(0) 2 {2l + l)bR2
(D-39)n) ^xl(l + l){l(l + l) + bR2
K }

in the formal calculation of (xpxp). We give two ways to find this sum.
a) If we want to take F(0) and set 0 0, we are alarmed by the fact that

Sb(6) as well as 5O(0) is singular for 0 0. Indeed,

«,»._ -XXi (D-40)

^ {Ô-1/2+.a(x) + Q-1/2-,a(x)} - — 25,(0) =— {Ô-1/2+,a(x) + Q-m-a(x)} ~-^r2 (D-41)

where x cos 0, and Qv(x) is singular for x 1. However, we expect the
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difference S0(6) - Sb(d) to be regular there. Using the properties of ßv(x) we
indeed have (see [23, 24])

Q-1/2+a(x) + Ö-i.2-u(x) -In X± _ 2y - rp(l + /A) - xp(\ - ik) + 0(1 - x)

(D-42)

where xp(z) T'(z)/Y(z) denotes the Riemann's ^-function. The singular piece
in this expression exactly cancels the singular term in 5O(0). Hence

F(0) xp(\ + /A) + xp(\ - iX) + 2y - 1 + —-2 (D-43)
bR2

b) There is also a direct way to calculate F(0). Notice that

00 f 1 1 Ì
F(0)=è t/(/+i) ~ /(/+1)+bR2\

l\l- + ^ I l—\ (D-44)ftiXi i + i i + h + ik i + \-ik\ v '

where A y/b2R2 - \ as before.
In the limit R^> cc, \\ + /A| \\ - /A| b2R2 also tends to infinity. Hence we

can use the asymptotic expansion

1 ~/ 1

2z \R-
xp(z) ln z-- + 0[ —2) (D-45)

We immediately get

F(0) R=~ 2 ln Vb R + 2y - 1 + o(J^\ (D-46)

iii) Another occasion where we encounter the sum Sb(6) is in the calculation
of (x(x)x(O)) in Section 9. There we have

(X(x)x(0)) -AA(0) (D-47)

where Ax is the Laplacian. From the relation (D-8) we have

J_
4nbR2

where, for 0 =#=0, Gb satisfies the equation

(-A + ò)Go 0 (D-49)

5ft Gfe-^^ (D-48)

Hence

(-A + b)Sb= --^--2 for 0*0 (D-50)
4nR
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This implies that

<;rto*(0)>--»-_--£î

When s is then also made large, we can use an asymptotic expansion for K0:

K0(y^s)s=Xj^sexp-Vbs{l + o(^fj (D-52)

It follows that

hm {lim {(x(x)x(O))}} -^l^e'^l + o(J)) (D-53)
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