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Complex groups, quantum mechanics, and the
dimension and reality of space

By R. Mirman

155, East 34 Street, New York, NY 10016

(30. XII. 1987)

Abstract. Orthogonal groups with complex parameters, and invariants of groups with nondefinite
signature, are studied. Functions invariant under an orthogonal group are invariant under the complex
group. Orthogonal transformations on coordinates induce unitary ones requiring relations among
these groups. This gives the dimension and signature of space. Using the invariants of inhomogeneous
unitary groups it is found that space has to be real. Requiring quantum mechanical statefunctions to
be eigenfunctions of the inhomogeneous part of the group over space leads to them being complex.

1. Introduction

Groups, especially unitary and orthogonal groups, have played an increasingly

important role in physics. Those with nondefinite signature, orthogonal
groups with complex parameters (like the complex Lorentz group) and in-
homogeneous groups, which have commuting generators forming a
representation of the group given by the other generators, the homogeneous part, have

interesting physical applications. We consider here some properties of these

groups and use them to study the dimension of space [1,2], the reason the
coordinates (distances) are real numbers, and the complex nature of quantum
mechanical statefunctions. These are closely tied to the dimension of space for
group theoretical reasons (so the dimension and signature can be considered a

consistency condition).
In the next section the complex groups are considered, and applied in

Section III to the dimension, in Section IV to the reality of space, and to the
complex nature of statefunctions in Section V. These indicate the restrictions the
nature of transformations, so group theory, places on the nature of space and

physical theories (here, quantum mechanics). One purpose of these sections is to
raise questions, which are of great interest but which cannot be studied here. The
results are summarized in Section VI.

II. The complex groups

Transformations on a real space form orthogonal groups. These can be
extended to pseudo-orthogonal groups, with nondefinite signature, to complex
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orthogonal groups, with complex parameters - relevant because of invariance
under orthogonal groups - and to complex pseudo-orthogonal groups; for 3 + 1

space the complex Lorentz group. This group has been extensively discussed [3]
but there appears to be no explicit statement of why it is relevant, what its
algebra is and why and of its relationship to the unitary group it induces.

An orthogonal transformation is given by x'; a^Xt, with the a's orthogonal
matrices. For a complex orthogonal transformation the parameters are complex
with the a's still orthogonal. Expanding about the identity with complex
parameters gives a0 ôif+ dxR,j + id2R'ij, with generators R and R' the same
(both are real and antisymmetric, so forming the orthogonal-group Lie algebra).
Each generator appears twice; the group has twice the parameters as the
orthogonal group. The number of generators can be taken twice that of the
orthogonal group or the same with the number of parameters doubled. The
number of commuting generators of the complex and of the orthogonal group are
equal. These label the states and the orthogonal-group basis states are completely
labeled. The complex group mixes them but does not introduce new ones so there
are no further labels so no other commuting generators.

The complex orthogonal group is a subgroup of the special linear group and

can have no more commuting generators than it. The complex Lorentz group
CO(3, 1) with twelve generators, a subgroup of SL(4) which has three commuting
generators, has two.

The complex group is relevant because a function is invariant under (is a

basis vector of) a (pseudo-)orthogonal group O(n) if and only if it is invariant
under (is a basis vector of) CO(n). Sufficiency is obvious. For necessity only the
algebra is needed. But the algebras are the same. Thus if a function is invariant
under all transformations of an orthogonal group it is invariant under all
transformations of the complex group (whether or not these are physically
realizable).

It is not surprising that functions of group parameters can be continued
analytically to complex values [3].

Invariance under the complex group has other consequences. For a product
of a vector on which 0(n) acts (like momentum) with an object like spin acted on
by SU(k) to be invariant, 0(n) must be homomorphic to an SU(k) subgroup. So

a unitary transformation is needed for each one of CO(n) such that the product is

invariant under the simultaneous application of both. The object on which SU(k)
acts must allow these transformations, part giving a group homomorphic to 0(n)
the other part similarly homomorphic so giving the same unitary group - CO(n) is

homomorphic to a product of unitary groups on the object.
Next, multinomial invariants of a unitary or orthogonal group go into

corresponding invariants for a group with a different signature. To change the
signature group operators are multiplied by i for each index greater than g. This
gives compact subgroups on vectors with indices less than or equal to g, and with
indices greater than g. The groups leave £ z,-z* or £ XjXj invariant; the sign for
the first g terms is positive, for the others negative.

The commutator containing an invariant is a sum of subsums each consisting
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of terms all with the same set of indices, and with the same pairing of indices on
the E's (different operator orderings differ by lower order terms), and since terms
with different indices are independent, each is zero. When the signature is

changed all terms in a subsum are multiplied by a factor which depends on the
indices; these are the same for all terms in the subsum so the factor is. So the
subsum, thus the sum-the commutator - is unaffected and remains zero. The
invariant goes into an invariant.

Thus the numbers of invariants from the enveloping algebra are the same for
all signatures. However the total number of invariants need not be. An example
is the sign of the time for the Lorentz group. But this is not given by a
multinomial in the generators.

If a group is a complex extension of a direct sum of simple groups (the
Lorentz group 0(3, 1) is a complex extension of 0(4) whose algebra is equivalent
to that of 0(3) x 0(3)) then its polynomial invariants are obtained from the
semi-simple group and both groups have the same number. The generators of one

group are obtained from those of the other by multiplying by i's and by taking
linear combinations. The first does not change the invariants, the second mixes
them but does not change their number.

Multinomial invariants of a group are also invariants of the complex group.
Invariants commute with all generators and the generators of the two groups are
the same.

III. The dimension of space and complex orthogonal groups

Equations of motion are form-invariant under the orthogonal group. Thus
they must be so under the complex extension. To see the implications of this we
study, as an example, the Dirac equation in n dimensional space (any metric
signature) —yßpIA\p(p) + mtp(p) 0. Coordinates transform as xj, A,,v.xv; with
A I + eA, x',, xfl + eXf,vxv, and [X^v, Xpa] co*l paXxç. The jc's are real, so the
A's represent the complex orthogonal group CO(n). The xp is transformed by
S(I + eX) I + eT; [T^, Tpa\ Qx^v paTxl=. The T's form a unitary group algebra
[Tf,v, Tpa] ô...] ô.,pTvc, - ôvaTf.p. For the y's, which are taken as not depending

on the coordinates, S(A)~lypS(A) Apvyv. So [yß, Taß] Xaß)liVyY. Then
iy'IÂp'lxSip(p') + mSip(p') 0, so Sxp is a solution.

Coordinates and solutions are different so the groups, thus co and Q, are.
They must be homomorphic: S(A)_1yvS(A) A^y,, (which cannot hold unless
there is a unique 5, up to terms commuting with the y's, for each A) are satisfied
by A,, A2 and A, with 5(A) S(AX)S(A2). Then S(A2XS(Axy1yvS(Ax)S(A2)
KpYp KvßS(A2yiYf,S(A2) AXvflA2l,pyp, so (the y's are independent since the

/j's are) Avp A1VMA2(Up; A's and S's obey the same product relations. Their
groups are isomorphic, up to multiplication of S by operators (like isospin) which
commute with the y's (groups which commute with y and S are divided out; by
unitary group we mean the factor group).
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The Jacobi identity [[y, T],T] + cycl 0 gives £ (tofv<pa- Qfv,pa)XxS =0.
This is not satisfied unless co Q, that is the algebras are isomorphic.

The solutions are the states of a representation of the largest invariance

group of the equation. What are its linear transformations (translations are not
relevant)? The p's can be replaced by sums (of the orthogonal group - the group
parameters can be complex - but not the unitary group else the phase of a p,
which we wish hermitian in any case, could be varied so that of a y would have to
be for invariance which is impossible with y2 1). The statefunction can be

replaced by another (of the transformed p's), the y's by a sum (the realization of
the y matrices can be changed - a similarity transformation giving the same
solutions) and a sum of solutions for the same p's, (including signs) with complex
coefficients is a solution. There are no further degrees of freedom so no further
transformations.

In 3 + 1 dimensional space the solution of the Dirac equation is a bispinor
with two halves mixed by transformations induced by rotations but not the two
components of each. In «-space the /^-component solution again consists of two
parts mixed by rotations with the components of each not so affected. We use for
the y's the realization of Boerner4 to show that the solution is ip (ux, u2) where
the components of ux are arbitrary and determine those of u2. It can be seen by

iteration that Boerner's p's can be written schematically as I j for px, and

/Qx o \ „ / 0 ÌU\ ta, /Qy o \for the others, and os as for ct,, and „for the
V 0 -Qx) \-iU 0 / V 0 -Qy)
others, where U is a unit matrix and the Q's, which have unit squares, are
functions of p(=ox), o(=oy) and the unit matrix; thus the squares of the p's and

Q7 0
ct's are unit matrices. For an odd dimensional space t0= I with Q a

function of ctz's. The Q's, p's and ct's anticommute.
These forms are true for two and three dimensions (v 1). Suppose they

are true for some v. For v + 1 all the p's and ct's are multiplied by e2 so

0 U\ /Qx 0 \ JU
U OMO -Q> are replaCed by

0 0 U 0X

0 0 0 u
U 0 0 0

,0 U 0 0,

and similarly for the Q's. These are of the same form giving the result by
induction. The argument for x is the same. There is one additional p and a when
v is increased by 1. Here p, and similarly o, is multiplied into a product of t's
symmetrical in their upper and lower halves, up to a sign (giving t0), because this
is true of the first x. Each 1 is replaced by p giving the result.

With these y's the Dirac equation for a space of dimension n 2v (or
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n 2v + 1 and either representation of the y's) gives (the pv term not present for
even dimensions)

pxu2 + ip2u2 +

and

pxux-ip2ux-

S (P/Q*y +P/+iQw-) + TvPv - w
_ odd) 3

E (P7Qx; + Py+ 1QW) + Tv pv + W
.odd /=3

Ux =0,

M7 0.

The determinant has to be zero; it is ~Y,pj + m2, which is zero because the

p's form an invariant S p2 m2 (the sum can have negative signs). Thus the

equations give u2 in terms of ux (as in 3 + 1 space). With no other conditions on
the «'s, ux is arbitrary. There are k/2 independent solutions for each set of p's,
where ip has k components so u, has k/2.

Coordinates transform under CO(n), solutions under U(k) and also under
the product of U(k/2) acting on spinor ux, and the unitary group (if any)
homomorphic to CO(n). The invariance group is (at most) U(k/2) x CO(n). The
order of unitary algebra A(v) is (v + l)2 - 1, of orthogonal algebra B(v) is

v(2v + l), and of D(v), v(2v - 1). The number of parameters in CO(n) is

2v(2v ± 1), and for a spinor4 k 2v. The number of parameters of U(k/2) is

2(2v~2), for U(k) 22v, so of the invariance group of the equation (the sum of the
numbers for CO(n) and U(k/2)) 2(2v~2) + 4v2 ± 2v.

The numbers of parameters of the groups for the equation and the solution
are equal (only) for v 2, and an even-dimensional space so n 4. Also the
numbers of commuting generators have to be equal giving 2 + k/2 k. This is

satisfied only in four-space. Thus the Dirac equation is, and can be, form-
invariant under orthogonal transformations because these counting conditions are
satisfied. (If the solution consists of / parts instead of 2 then this gives /' 2).

The equation is not invariant under O(n) only; we cannot divide the number
of parameters by 2. There are transformations on the statefunction which
correspond to orthogonal transformations with imaginary parameters because
invariance under the orthogonal group gives it for the complex orthogonal group.
With 0(n) instead of CO(n) v l, n 3 and k 2. But the components of a

two-component spinor are mixed by a rotation, there are no further degrees of
freedom, the SU(k/2) term is absent, so no values of n, k and v which satisfy.
There is no consistent solution for 3-space, or using 0(n).

A four dimensional space is a direct sum of two three-dimensional ones (the
algebras of 0(4) and 0(3) x 0(3) are isomorphic) so does not satisfy. If it were
invariant under (the algebra of) 0(4) it would have to be invariant under two
different sets of 0(3) transformations separately and it is not. The equation is

consistent in only 3 + 1 space giving the dimension and signature. Thus requiring
the Dirac equation to be invariant under orthogonal transformations does make it
invariant under complex orthogonal transformations, and fixes the dimension of
space as 3 + 1.

A transformation of the statefunction which mixes components connected by
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off-diagonal elements of the y's (isospin states for example are not so connected)
acts on the y's. For a scalar product of a y and a p to be invariant requires a

coordinate transformation and that the two groups be homomorphic (the
transformation can be multiplied by a term commuting with the y's so

isomorphism is too strong). If there is no homomorphism then interactions, which
act on statefunctions, change scalar products.

Interactions (nonlinear terms) act as U(k) transformations on statefunctions.
If the required homomorphism did not hold they would act on solutions to the
linear equation (say, in-states) to give functions (out-states) which are not
solutions (and not expandable in terms of solutions - the space given by
interactions is larger than that of the solutions of the free equation). An
interaction containing y's (such as the EM interaction) which has a sum on
indices, as is necessary to even look invariant, contains y,. This mixes ux and u2.
The resulting function can have any ratio of the upper and lower components
and so not be a solution. Specific examples showing the phase (introduced by a

complex transformation) explicitly have been considered (for nonrelativistic
cases) previously [5].

If in-states obey the free-particle equation there are outgoing one-particle
states (with the same spin) which do not obey it. The equation corresponds to a
Hamiltonian eigenvalue equation so the resulting states are not eigenfunctions of
the (same) Hamiltonian (as the in-states - and possibly of none). This implies
they do not have definite energy (nor definite momentum) and suggests that there
is no group for which the statefunctions are eigenfunctions of physically
meaningful representation-label operations.

This difficulty can be stated somewhat differently. A unitary transformation
gives a different observer [6] who measures with respect to itself and relates
coordinates by an orthogonal transformation. In these spaces there are unitary
transformations, so observers, with no corresponding rotations (none can be

assigned as the multiplication rules differ). For these, products differ so both the
free particle equation and interactions would be different for different observers
which would imply the formalism is inconsistent.

For the equation in 3 + 1 space the invariance group is the complex Lorentz
group (with algebra equivalent to that of SL(2, C) x 5L(2, C)) x SU(2), with
algebra equivalent to that of L(4), the largest group of transformations of the
four-component solutions. The homomorphism between C0(3, 1) and
5L(2, C) x SL(2, C), following from that between 0(3, 1) and SL(2, C), allows
invariance of the nonlinear equation under orthogonal transformations because
there is a transformation on the complex solutions corresponding to each

orthogonal transformation of the coordinates. Also C0(3, 1) is homomorphic to a

unitary group, another condition which must be satisfied, and is.
The relationship between the groups is independent of the Dirac equation. A

statefunction (which can describe spin or orbital angular momentum, both
complex so transformed by a unitary group) is a unitary-group representation
basis state. Transformations of the complex (pseudo-)orthogonal group induce
unitary-group transformations on it so space must allow a homorphism between



972 R. Mirman H. P. A.

CO(n) and a unitary group which mixes blocks of components but not necessarily
all. If not, another unitary group mixes blocks (of size k/j); it does not commute
with CO(n) otherwise it would give a direct product and we would divide the
latter out and consider the factor group. This is the full set of statefunction
transformations so SU(k) is homomorphic to CO(n) x SU(k/j). The Cartan
subalgebras of CO(n) and SU(k/j) commute and are distinct since SU(k/j) gives
linear combinations of the orthogonal-group basis vectors so supplies labels, so

commuting generators, to distinguish these states.
For the Dirac bispinor, spatial transformations induce related transformations

on the two spinors of each of the two independent solutions. But a sum of
the solutions, with complex coefficients, is a solution and these transformations
form 5(7(4/2). So the spin direction is changed by rotating the axes, by
performing successive boosts in different directions, or by taking a sum of basis
vectors, that is by Lorentz or by SU(k/j) transformations. These do not commute
for both produce rotations.

If instead of SU(k/j) there were a product of such groups not all sums of
statefunctions would be statefunctions (solutions). Rather there would be sets
such that sums of terms in each are acceptable, but not sums from different sets.
This would mean that not all SU(k) transformations were possible since the
transformations not allowed are of this group. Then the statefunction would
break up into a direct sum each term of which we consider separately. This
(implausible) case does not affect the argument.

What are k, j and n? Equality of the numbers of parameters and commuting
generators is necessary for a homomorphism. For the parameters this gives
2v(2v ± 1) + (k/j)2 k2, and for commuting generators v + k/j k. These must
have simultaneous solutions for j, v, and k, and these must all be integers. (There
are no solutions if the SU(k/j) term is missing). They have only one integer
solution, k 4, j 2 and v 2 with a minus sign.

Statefunctions in 3 + 1 space with more than four components are basis

vectors of larger representations of the unitary group on the four-component
function (which determines the number of group parameters). The other
representations do not affect the argument. (However it is well-known [7] that
relativistic wave equations have serious problems, except for the four-component
Dirac equation.)

Some Lorentz-group representations are infinite dimensional; this is not
relevant. Representation basis states are obtained by applying boost operators to
a four-component bispinor - the Lorentz algebra is isomorphic to an extension of
that of 5(7(2) x 5(7(2) so the bispinor contains a spinor from each. Unitary
transformations act only on the bispinor (its components are relatively complex; a

magnetic field gives a phase difference between the components of a spin-1/2
particle), not on the different angular momentum states in the statefunction of an
orbiting pair of particles with moving center-of-mass, for these have fixed phase
since their sum gives a definite function, that transformed from rest.

The difference between this and the finite-dimensional case is that for each
orientation of the axes there are different spin states, so another set of
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transformations on the statefunction, but here the statefunction in every frame is

determined by that in the rest frame. For a fixed frame no further transformations
are possible. So the transformation group on the statefunction is the orthogonal
group (times that on the statefunction at rest). If there were other unitary
transformations then in a given frame there would be different statefunctions all
reducing to the same one in the rest system. But this cannot be since there are no
variables, needed to distinguish the functions, on which these depend.

There is a further condition; orthogonal transformations of real coordinates
induce unitary transformations of complex statefunctions, so the algebra of the

orthogonal group over space must be isomorphic to the algebra of a unitary group
(the factor group obtained by dividing out any subgroup independent of
rotations).

Which orthogonal algebras satisfy? The ranks (the v's) and the orders must
be equal. Thus (v + l)2 - 1 v(2v ±1), so v 1 (for B), and 3 (for D). The
algebras of (7(1) and 0(2) are also isomorphic (v 0). For v 1 5(7(2) and 0(3)
and also 5(7(1, 1) and 0(2, 1) are homomorphic. For v 3 there is a

homomorphism between 5(7(4) and 0(6). Besides algebras over real numbers there are
ones over complex numbers. The algebra of 0(4) is not simple but the complex
extension is the algebra of the orthogonal group (the Lorentz group); complex
statefunctions transform under 5L(2, C). So 3 + 1 dimensional space satisfies.
The homomorphisms for all complex classical groups are listed by Barut and
Raczka [8]; there are no others.

The number of components determined by all conditions, on the number of
generators, the number of commuting generators and the number of irreducible
spinor components, is integral only for a dimension of 3 + 1, but for this all three
conditions (accidentally?) give the same number of components. This also allows
the unitary-orthogonal homomorphism. That is there are conditions on both the

unitary group and its representations, and on the Clifford algebra representations.
All are satisfied in a space of 3 + 1 dimensions, only.

That these arguments give the dimension, and signature, of space has an

implication; quantum mechanics requires relativity.
The fundamental assumptions here are that the coordinates of space are real

and the quantum mechanical statefunctions complex. This leads to the question of
why these hold. To study this we again use an extension of orthogonal groups,
pseudo-orthogonal groups.

IV. The reality of space

The coordinates of space are real numbers. This is so obvious, so central to
our thinking, that it may not occur to us to ask why. But ultimately all physics is

quantum mechanical and it is based on a complex space. The distance between

particles is a quantum mechanical quantity. Why is it not complex?
Is consistent physics in a complex space possible? Of course no definitive

answer can be given. But there are reasons to think it is not and that space must
be real. Specifically the inhomogeneous part of the group over space (the
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translation operators which define space) must transform as a unitary
representation of the homogeneous part giving a real space.

The inhomogeneous part is a representation of the homogeneous part which
is U(n) or a subgroup. The only complex space we need study is the defining
representation; consider the transformations on space, an m-dimensional
representation space of U(n) which is a U(m) representation space provided all U(m)
transformations are possible. This would not be if restrictions were imposed
limiting the transformations to a subgroup. If we require the generators be

hermitian the group is the U(m) subgroup 0(m).
It is also possible that some vectors could not be rotated into others; we

could rotate around some axes but not others. In saying that the space is a

representation of U(n) we imply that the number of homogeneous generators is
n2, fewer than the m2 of U(m) so not all of the latter can be implemented
(otherwise space would form the defining representation of U(m)). As we are
considering complex spaces (so not being limited to the 0(m) subgroup) the
nonimplementable transformations do not only change phases. Some mix
different vectors (say, directions). In these spaces there are linear combinations of
the U(m) generators which form the U(n) subgroup and can be implemented.
The remainder cannot be.

Not being able to perform all SU(m) transformations is analogous in
ordinary space to not being able to rotate in the xy plane (at least) without
simultaneously rotating in the zt plane. It would be impossible to perform
rotations from some fixed axes without also causing the object to move. There
would be no observers at rest in these frames and no physical meaning of, or
consistent way to measure with respect to, these axes. Not all mathematically
definable coordinate systems would allow observers so either there could be no
particles whose spin and velocity would point in any direction except for some
fixed one, or if there were such particles there would be no way of measuring with
respect to them. Consistent physics in such spaces is implausible and we assume
they are not possible.

Thus we consider only complex spaces given by the defining representation
of the group over it. These have only one invariant [9]; it contains both £"s and

p's. They have none containing only momenta so have no invariant distance,
mass, scalar products or angles.

This does not mean that if we rotate the distance between two objects
changes. If distance if taken as z\ + z\, then E2 gives 2z,z2, a different function.
Thus what to one observer is a distance, to one rotated (even slightly) is some
number with no meaning at all.

In ordinary space there are many ways of forming invariants and (invariant)
scalar products. But here there is only one invariant. Invariant Lagrangians,
Hamiltonians and interactions are impossible, implying different forms, different
dependence on variables, in different frames. Interactions give creation and
annihilation of particles so the number of particles would differ for rotated
observers. Particles, having different interactions, would behave differently for
different observers. Consistent physics in a complex space seems unlikely.
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This is not surprising. Space is defined by the translation operators which
must be real for invariance. There are no invariant complex numbers; their
phases can be changed. The unitary group is that which keeps real numbers, the
sum of absolute squares, invariant. There is no Lie group keeping complex
numbers invariant.

Thus only real spaces can have invariants consisting only of momenta or
coordinates. At best it is difficult to imagine a consistent, meaningful Universe in
which the concept of distance has no meaning. Space must be real to give an
invariant distance (among other such requirements).

A space which is a sum of a representation and its complex conjugate
(determined by the U(n) operator) has an invariant distance but there is no way
of rotating from a (basis) vector to its complex conjugate (unless we consider

space as a defining representation of 5(7(2«)). The representation is reducible so
this space is a direct sum of two spaces. It is not isotropic. Distance (squared)
would be defined as the coordinate times the coordinate in a different direction,
the magnitude (squared) of a vector, the vector times a different vector. Such a

space is not plausible either.
However the Hamiltonian (the translation operator conjugate to the proper

time) should be invariant (for consistency) so it depends on only z*z. This is

real; if space were complex the invariants would be absolute squares and
products. So momentum operators, which define space, would be real so give a
real space. This reducible representation still leads to a real space.

Complex spaces are ruled out. The representation (of whatever the homogeneous

group is) formed by the inhomogeneous part has hermitian generators.
Space is a representation space of the orthogonal group (the homogeneous part)
over the inhomogeneous part. Then the previous arguments give the dimension
so the underlying group. There is only one inhomogeneous part, so one
homogeneous part, which satisfies. The group over the space is determined by the
inhomogeneous part, which defines it, and this part is determined by consistency.

This gives another way of finding the dimension. Space is required to be

isotropic (enough so there can be observers in all, or many, coordinate systems)
and that it be real (so it has reasonable scalar products).

By the isotropy requirement the dimension of space must equal n (it could
not be less than n) so it is either the SU(n) defining representation or if required
to be real the defining representation of 0(n).

The defining representation is real only if it is an orthogonal group
representation. There is no orthogonal group which allows this. But the defining
representation of 5L(2, C) is four-dimensional and it is homomorphic to 0(3, 1)

so a 3 + 1 dimensional space satisfies; it is isotropic and real.
The representation of 5L(2, C), a complex extension of a direct product of

simple groups 5(7(2) x 5(7(2), is reducible being a sum of two two-dimensional
spinors, in the usual notation (2, 0) + (0, 5), and this is four dimensional. The
defining representation is not (2, 0); the group has six parameters and this allows

only a three-parameter transformation group. Space forms the vector
representation, (2,2), which is also four-dimensional (essentially our Universe exists
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because both 2 + 2 and 2x2 equal 4). There are two different representations
having the same dimension.

The coordinate vector belongs to a tensor representation so is real and is a

representative of 0(3, 1). Thus a complex extension of a direct sum of unitary
groups homomorphic to a pseudo-orthogonal group is required. The only space
which satisfies [8] has dimension 3 + 1. That is if SU(r) x SU(r) ~ 0(2r) then the
number of parameters must be equal so 2(r2 - 1) r(2r - 1) giving r 2. Again
the argument gives the signature.

Thus spacetime transforms as the defining representation of the smallest
orthogonal group over it; it is real.

V. Why is the quantum mechanical statefunction complex?

Space is real but statefunctions are complex (have relatively complex
components). Why? The reasons are implied by group theory.

With translation invariance a free-particle statefunction (an inhomogeneous-
group representation basis vector with the inhomogeneous operators diagonal) is

an eigenfunction of the translations. Its value at a point is given by the
statefunction at the origin acted on by translation operators which are realized by
first-order differential operators (the statefunction is a function of space). Instead
of statefunctions we can consider operators (the picture is irrelevant).

Then pj ~ i d/dxj with the i required else a basis function would be exp (px)
which could not be a probability, would increase without limit, violate unitarity
and give the position of the particle as infinity. So the statefunction is complex.

This realization for the linear parts of the translation operators and inclusion
of nonlinear terms - there are interactions - gives statefunctions with relatively
complex components. Even if real at a point, the translation operators contain
interaction terms which perform all transformations on a statefunction giving
relatively complex components at other points (the components are different
functions of space - specifically the time coordinate - because in a multi-particle
system each particle sees potentials which differ with direction so different
components have different energy).

A particle in a magnetic field (say due to another particle so quantum
mechanical) undergoes unitary group transformations. The field rotates the spin
(or orbital angular momentum) and changes the phases [10] of the components
differently. The velocity of the particle has no phase so is transformed by the
orthogonal group. An interaction (say, due to a field with a gradient) which
changes the direction of the velocity changes the phases and angular momentum
direction; an orthogonal transformation induces a unitary one. If a beam of
particles is split in two and different magnetic fields applied to the two beams
their statefunctions have an overall phase difference and the components have
different relative phases. An interference experiment measures these relative
phases.

The translation operators belong to an inhomogeneous orthogonal group so
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cannot transform real functions into complex ones. However the eigenfunctions
of the (nonlinear) translation operators are not one particle statefunctions but
statefunctions of sets of interacting particles [11]-sums of products of one-
particle states. The latter acted on by nonlinear operators are complex.

One-particle states are not eigenfunctions of inhomogeneous group operators
and not basis functions of a representation of it, so are not solutions of the
nonlinear equation of motion. They are eigenfunctions of free-particle operators,
the linear parts of the translations. On a one-particle statevector interactions give
terms from different representations; the space given by the interaction is larger
than an irreducible representation space. In experiments we study the complex
one-particle components of the statefunction of the system. Rotations affect them
so we have to consider their unitary transformations; these must be homomorphic
to the rotations.

VI. Conclusion

Requiring reasonable relationships between observations in different frames
gives conditions on physical systems and the nature of space. This fixes its
dimension and signature.

Invariance under an orthogonal group requires it under the complex
orthogonal group. But these induce unitary transformations. Physics needs
invariant scalar products of inhomogeneous operators - impossible in complex
spaces; space is real. Using the inhomogeneous group to define space, translation
invariance and interactions lead to complex statefunctions, with relatively
complex components.

The analysis of transformations, and the properties of the groups thus
involved, determines much about physics and about space.

Why is space real with dimension 3 + 1, and why are quantum mechanical
statefunctions complex? Because it appears that only this space and these
statefunctions allow consistent implementation of transformations, thus consistent
physics. It is not so much the properties of quantum mechanics and of space that
determine its dimension. Rather consistency requires this set of properties. The
dimension of space is thus a consistency condition. The properties of space, and
of physical laws, are closely related, demonstrating again the underlying
coherence of the laws governing our Universe.
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