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PION-PION SCATTERING*

S.M. Roy

Tata Institute of Fandamental Research

Homi Bhabha Road, Bombay 400 005, India

ABSTRACT

We review exact results for pion-pion scattering in the framework of axiomatic field

theory and their phenomenological applications.

* Dedicated to the sixtieth birth amversary of Gérard Wanders.
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I. Special features of pion-pion scattering

Pion-pion scattering may be considered the simplest strong interaction process.

Particularly fruitful exact results are therefore obtained from the principles of axiomatic

field theory. They include Martin's impressive results on axiomatic analyticity domains and

absolute bounds on nit amplitudes in terms of pion-mass alone. The analyticity domains

imply physical region partial wave equations. An elegant idea of Gerard Wanders, the

totally crossing symmetric variables ('Wanders variables'), led to the improvement of some

of these results and to the practically useful 'Wanders sum rule' for scattering lengths. We

review here the exact results for wit scattering in the axiomatic field theory framework and

some of their phenomenological applications.

Theoretical results for pion-pion scattering are much more powerful than for

the other processes because of the following special simplicities in the v% case.

(a) Pions are spinless.

(b) On neglecting the mass difference between the pions, and neglecting all electromag¬

netic effects (i.e., effects of zero mass particles), the jt+, n~, it0 have a common mass

lower than the mass of any other particle. Assuming also the experimental fact that

pions have no bound states, the next lowest mass state with the G-parity of one

pion is the three-pion state, and the next lowest mass state with the G-parity of two

pions is the four-pion state. These facts lead to simple and powerful results on the

itn analyticity domain. In particular there are no unphysical cuts and no anomalous

thresholds.

(c) The Kit amplitudes have three channel crossing symmetry and simple unitarity rela¬

tions. We have,

F(a, t, u) C«F(t, », u) CnF(u, t, s) C„F(s, u, t), (IA)

where,

F(s,t,n)
\F*(*,t,u)
Fl(s,t,u)
F*(s,t,u)

(1.2)

with F'(s, t, u) being the amplitude with iso-spin / in the «-channel, and the crossing
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matrices being given by,

C„

1/3 1 5/3 "

1/3 1/2 -5/6
.1/3 -1/2 1/6

Gf«

1 0 0

0-10
0 0 IJ

and
' 1/3 -1 5/3

G,„ -1/3 1/2 5/6

1/3 1/2 1/6.

In terms of the partial wave expansion,

(units m, 1), unitarity implies,

Im aj(«) |a{(*)|2, 4 < * < 16

Im a'i(s) > |a/(*)p, 16 < « < oo.

Thus, if the 5-wave scattering lengths a, exist, then,

al Jim ^1 F'(4,0,0),

(/.3)

F'(s, t, «) £ £(2/ + l)al(s)Pt (l + 2^) (IA)

(1.5)

(1.6)

where S((s) are the phase-shifts for angular momentum I and iso-spin I.

These simplicities have been well exploited by Martin and others to derive a

wealth of exact results for Kit scattering [Reviews: M2-M7, B4, M12-M14,P4,S1,W1,Y2].

In contrast accurate experimental information on the kk amplitudes is difficult to obtain,

most of it being obtained indirectly through extrapolation of the kN -* xxN data [Recent

phase shift analyses: El, H2-H4,F1,C6,M11]. Theoretical exact results on it* scattering

are therefore rather useful in providing tests of the "data" and in their analysis (sec. III.4).
We want to mention also an objective which is at the moment purely theoretical, inspired

by the work of Atkinson (Al, À2, Kl). They have developed a procedure of building

crossing symmetric nit amplitudes obeying the unitarity conditions (1.5) starting from the

assumption of Mandelstam representation (not established in the axiomatic framework).
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This procedure probably comes as close to a theory of wit scattering as possible without

including in detail the contributions to the unitarity condition of the inelastic channels. It
is very attractive to attempt an analogous constructive procedure in the axiomatic framework.

The physical region partial wave equations (sec. Ill) constitute such an attempt.

II. Constraints on pion-pion partial wave amplitudes at and below threshold

We illustrate most of the results for the jr°7r° -> w°w° amplitude F(s, t) defined

by

F(.fi) ¦!**(•,«)+§**(*,<)• ("•*)

Its absorptive part A(s,t) is obtained from

A2(s, t) Urn [F'(» + ie, t) - F'(» - ie, t)] /(2«) (//.2)

We denote its partial waves by

ft(s) !/»(,) + H/»|», //(,) m &a[{,) (II.3)

II.1. The Froissart-Gribov formala and threshold behaviour

Martin proved that F(s, t) for t inside a domain which includes |t| < 4 as well

as the region t € (—28,4) of the real axis must obey twice subtracted dispersion relations.

In particular for the w°w° —? w°w° case.

F,.,«,. c„) +1 ]u*tjp. (J-t + J^), fo, |,| < (/,.<)
4

We then derive the rigorous validity of the Froissart-Gribov formula for £ > 2, and \t\ < 4:

m 7(hï) S ds'A(*''t)Qt (5^-7 -1), < > 2,1*1 < 4. n.b)
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We know that, A(s',t) > 0, for 0 < t < 4 and Qt(z) > 0 for z > 1, I > -1. Hence,

ft(t) > 0, for / > 2, 0 < t < 4, (//.6)

Also, for n,t>2, and 0 < t < 4,

Q<i-t-i) (//7)
- m *(£) '

It is straightforward to show that (II.6) and (II.7) hold also with ft(t) replaced by //=0(t)

(Ref. M8) and by //=°(t) - f'=7{t) (Ref. R5). If the scattering lengths a\ exist, then from

(II.6) and its generalization to f}~°(t) — //=3(t)> we conclude that, with the definition

«/ 5«/=° + faf* > 0, *>2 (JI.9)

aj=0 - af=2 > 0, I > 2. (/1.10)

and also (as a consequence),

c*/=0 > 0, I > 2. (//•")

Similarly, from (II.7) and its generalization, if a\ exist, then,

1 (t + l)(l + 2)

'16(<+|)(/+f)'«<+»<«^~; :;. (/«»

and a similar relation with at —? (or/-0 — or/-2). We see from (H.7) that for / 0,2 and

0 < t < 4, the amount of higher waves is limited by the amount of D-waves.

It has not been possible to establish normal threshold behaviour or the existence

of ot\ in the axiomatic framework. Martin (M9) has written down an example of an //(»)
obeying elastic unitarity for « ^ 4 on the elastic cut, and having an essential singularity

at * 4, thus ruining the threshold behaviour. We shall only record here Martin's (M8)

results on how much can be said rigorously about threshold behaviour of fi(s).
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From the dispersion relation (II.4), positivity of A(s', t) for 0 < t < 4 yields, for

*i < s < 4, 0 < t < 4,

|F(M)l<J37 + a>. ("13)

Similarly, from the positivity of A(s', t) — A(s', 0) for 0 < t < 4, we have, for *i < * < 4,

\F(,,t)-F(s,Q)\<-^- + Di
4 — 4

(//.14)

Due to (IL7) we have for 0 < s < 4, 0 < t < 4, the convergent expansion

F(,, 0 - F(«, 0) £(2/ + l)/,(s) [i*, (^ - l) - l] (//.15)

For t > 4 — *i, we have t > 4 — *, and [2t/(4 — *) — 1] > 1, and then the series is a sum of

positive terms. Hence,

0 < //(*) < (Ä + ft)
(2/+l)[P<(&-l)-l] 0<4-t<«<4. (//.16)

The positivity of /,"*(«) then yields,

Km
«-?0+

^=».2IglOl
|(#-4)|'-i

G 1 (<!)2

*^T7)rW 0<t<4- (//.17)

This is a rather remarkable restriction coming from the fixed-t dispersion relation and

the positivity of the absorptive part; but it is not enough to establish normal threshold

behaviour.

II.2. Constraints involving amplitudes at a finite number of points below threshold.

These could be useful as constraints on the extrapolation of physical region

partial wave amplitudes below threshold (Dl) or in the building of theoretical models for

the ^-amplitude (G4, B9).
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(a) Some simple properties of the total amplitude below threshold

Some remarkably simple properties of the total amplitude below threshold were

discovered by Jin and Martin (Jl). Let

Then, for 0 < t < 4 we have the fixed-* dispersion relation

00

„. _. z f Im G(z\ t)dz'
F(M)-g(«,t)-4«)+-y ,£:>)

(//.18)

(//.19)
'.(«)

with z0(t) (2 + %t)2, and the unitarity condition Im G(z\ t) > 0. Hence, for z < Zo(t),

and 0 < t < 4,

dz» G(z,t) >0.

Changing variables,

0»

ds' F(s,t) > 0, for 0 < t < 4, 2 - - < * < 4.

and

dF(s,t)
ds < 0, for 0 < t < 4, -t < s < 2- 2

(//.20)

(//.21)

(11.22)

Eqs. (11.21) and (11.22) remain true under any permutation of (s,t,u) because of the

complete symmetry of F(s, t, u) in all three channels. Thus, we get information on the

scattering amplitude in the triangle s < 4, t < 4, u < 4. In particular, we can prove that

(i) the symmetry point s t u 4/3 must be an absolute minimum of F(s, t, u) inside

this triangle, and (ii) inside the triangle F increases along any straight line originating at

the symmetry point. Another simple consequence of (11.19) is that

F(*,0)<F(4,0), 0<*<4. (//.23)

(b) Constraints involving the S-wave alone. We first state some simple results to

illustrate that the constraints of unitarity, analyticity and crossing give us a fair idea of the
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shape of the S-wave below threshold, and then indicate the methods of proof, the details

of which are to be found in the original papers (M8, A3, A4, B12, Cl, C3, Gl, G2, Jl,
Pl).

Jin and Martin (Jl) obtained the results

/o(*)</o(4), 0<*<4 (//.24)

and

^>0, 2<,<4. (//.25)
as

Martin (M8) improved (11.25) to obtain,

^^>0, 1.7<*<4 (//.26)
as

Auberson (A3) obtained

4h(»)
< 0, 0 < * < 1.127 (//.27)

as

Grassberger (Gl) improved this result to obtain,

^4^ < °» 0 < * < 1.217 (//.28)
as

Common (Cl) has derived the important result

^^>0, 0<5<1.7 (//.29)
as

From (11.24) to (11.29) it follows that /0(») has a unique minimum in the range 0 < s < 4,

located somewhere between s 1.217 and s 1.7. The shape of the S-wave thus suggested

is pictured in Fig. 1.

Martin (M8) has derived a class of inequalities of the form /o(*i) < /o(*?) where

0 < *i,2 < 4. For example, we quote,

/o(0) > /o(3.189), /o(3.205) > /„(0.2134) > /e(2.9863). (//.30)

These inequalities have been improved by Brander (B12) and by Grassberger (Gl), and

generalized to iso-spin combinations other than the w°w° —? w°w° by Auberson et al (A4).
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Ms)
f0(s) <f0 (4)

f0(0) > f0 (3189)

SJfÜU 0.0<,<|.2I7ds

1-217 1-7 3189

d%(s)
ds2 > O ,0<*<l-7

Fig.l. The shape of the jr°jr° -? w°w° S-wave amplitude /0(«) below threshold suggested by

the rigorous inequalities due to crossing and unitarity is illustrated.
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We proceed to prove (11.24) and (11.25). Due to Bose-symmetry,

(4-0/3

F0(s) -^—^ j dt F(s,t,4-s-t). (//.31)
0

Interchanging s and t in (11.22) we deduce

F(s, t) < F(s, 0), 0 < s < 4, 0 < t < -^. (//.32)

Hence,

/«,(*) < F(s, 0), 0 < * < 4 (//.33)

Combining this with (11.23) we have (11.24). Starting from

1/2

/o(») 2 f dx F(s, x(4- s)), (//.34)
o

we have,

^-./*[(2a^tt)-.(äa^tt)J (/»)
0

Further,

/0F\ *
I —- j > 0 for 0 < t < 4 and 4 > « > 2 > 2 - -,

/âF\ 4 - *(-—) < 0 for 0 < * < 4 and 0 < t <
V a* /, 2

Hence (11.25) follows. For the remaining results we start from the fixed-« dispersion relation

(II.4) and project out the S-wave,

oo

Mt) c(t)+±j^{(t-4-2s') + -^ln(p^^A(s\t), \t\ < 4. (//.36)

Thus the subtraction constant c{t) in the fixed« relation can be eliminated in favour of
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the S-wave to obtain,

oo

Fis, t,u) /.<«> Al-jds>y-s + sl+f\t_4 - ^/n (^i)] »(*',«)
4

/o(t) + JMM), |t|<4.
(//.37)

R2(t,s) is the contribution of the partial waves with t > 2 in the t-channel to F(*,t,u).
Using crossing symmetry, F(s,t,u) F(t,s,u), we have,

h(>) - h(i) « R,(t, s) - Ä2(», 0, for |*| < 4, \t\ < 4; (//.38)

and on taking derivatives,

^ ^ [R2(t,*) - Ä,(», t)], for |*|, |t| < 4, (//.39)

^d^ - ^W, *) - **(*> 01. *» l»l, 1*1 < 4- (//.40)

Eqns. (11.38) - (11.40) together with the positivity of A(s', t) and its derivatives with respect

to t for 0 < t < 4 constitute the source of the relations (11.34) - (11.39). For example, from

(11.38), /o(») > /o(0 if Ri(t,s) > 0 and Ri(s,t) < 0. This gives for example (M8)

/o(0) > /o(3.155).

A tighter inequality is obtained by requiring only that R2(t, s) > Ri(s, t). Thus we obtain

(M8)

/o(0) > /o (3.189),

Techniques for deciding the signs of R2(t, *) — R2(s, i) have been developed by Martin

(M8).

Results from straightforward positivity of the absorptive part can sometimes

be strengthened by using a relation between the absorptive parts following from (11.38).



Vol. 63, 1990 Roy 639

Substituting (11.38) in

o Ui») - /(«i)] + Mi) - fit)] + Ifi*) - fi*)}

we get the following relation between physical absorptive parts (R6)

0 [R2(su s) - R2(s, si)] + [R2(t, st) - fl2(*i, 01 + UM«. 0 - M*> »)] for M. 111. l'I < 4-

(//.41)
Similar relations have also been derived by Wanders (W3), Roskies (R3), and Auberson

and Khuri (A6). Grassberger (Gl) has shown, for example in deriving (11.28), that results

following from positivity of the absorptive part can be improved by a judicious use of

(11.41). Common and Pidcok (C3) have derived very useful inequalities on the i?-wave

below threshold using (11.41). The relation (11.41) can be regarded as a crossing relation

between physical absorptive parts. Such relations would be discussed further in Sec. III.

(b) Constraints involving a few low partial waves. We quote for illustration a few

results for jr°ir° scattering (M8), and a few for other iso-spin combinations (A4). For w°w°

scattering,

4.067/2(0.0341) < /o(3.839) - /0(0.0341) (//-42)

3.061/2(0.0730) > /o(3.654) - /„(0.0730) (//.43)

1.494/2(0.537) - 1.623/2(2.363)

< /0(0.537) - /o(2.363) < 1.510/2(0.537) - 1.622/2(2.363)

and for other iso-spin combinations

1.844/11(0.2937) + 3.765/11(2.4226)

< /0°(0.2937) - /0°(2.4226) - /0(0.2937) + /0(2.4226).

(//.44)

(//.45)

0.6146/11(0.2937) + 2.510/11(2.4226)

2 (JJ-46)
> /o(2.4226) - /0°(0.2937) + -/0(0.2937).

II.3 Constraints on integrals of partial wave amplitudes

Balachandran and Nuyts (B2) obtained necessary and sufficient conditions for

crossing symmetry in the form a denumerable set of equality constraints involving integrals
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of the partial wave amplitudes in the region 0 < * < 4. The remarkable thing is that each

of these equations following from crossing symmetry involves only a finite number of partial

waves. For example, some simple crossing relations for the jr°jr° case are

4

/d*/o(*)(4 - *)(3* - 4) 0.

o

4

j ds(4 - *)a[4(* - !)/„(*) + (4 - *)/,(*)] 0.

(//.47)

Following Balachandran and Nuyts (B2) these equations were further elucidated by Roskies

(R1,R4), Basdevant, Cohen-Tannoudji and Morel (B3), Cooper and Pennington (C5), and

Pennington and Pond (P2). The crossing equations were supplemented with the positivity

properties due to unitarity to obtain further inequality relations between partial waves

(P6,B1); for example, for the »r0*0 S-wave we have the relation,

4

\1(J ds(4 - *)a(* - l)/o(*) < 0. (//.48)
o

Piguet and Wanders (P6) have obtained a denumerable set of such inequalities resulting

from the positivity of the absorptive parts; their set is complete in the sense that it provides

necessary and sufficient conditions for the positivity of the Im fi(s'), s' > 4.

Several authors (P5,A5,B8,B9,G4,I1) have constructed models for low energy

pion-pion scattering starting from unitary parametrizations for the partial waves and

imposing the crossing conditions on the partial wave amplitudes below threshold to fix the

parameters. A symmary of these and other ww models is given by Morgan (M12).

III. Integral Equations for Physical Region Pion-Pion Partial Wave Amplitudes

The main idea (R6) is to use the axiomatic analyticity properties and high

energy behaviour to derive partial wave equations expressing Re //(») for 4 < * < smax in

terms of the two »-wave scattering lengths and the Im ff(s') for *' > 4,1' 0,1,2, • • •, oo,

/' 0,1,2. The unitarity condition Im <»/(*) rç/(s)|a'(*)|2, with »?/(*) given, then yields

integral equations to determine the a'(s) for 4 < « < »MI with *?/(*), the two scattering
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lengths al, and the Im ff (s1) for *' > smax as driving ternis. It is desirable to have smax

as large as possible. The first partial wave equations based on fixed-t dispersion relations

(R6) have smax 60. The idea of using dispersion relations on general algebraic curves in

the Mandelstam variables s,t and in the Wanders variables x,y (W2) was then exploited

(A6,A7,H1,M1). Using dispersion relations on straight lines in the x — y plane Mahoux,

Roy and Wanders (Ml) have obtained partial wave equations valid upto smol 125.31.

Using hyperbolae in the x — y plane Auberson and Epele (A7) prove the existence of partial

wave equations upto smax 164.7. There seems to be no fundamental obstacle to reaching

smu oo; we would then obtain an axiomatic frame work to construct the ww complitude

similar to the Atkinson-frame work (A1,A2,K1) based on the Mandelstam representation.

III.l. Integral equation based on fixed momentum transfer dispersion relations

With the matrix notation (I.l)-(1.3) the fixed-t dispersion relations for |t| < 4

and for -28 < t < 4, given by Jin and Martin (J2,M10) take the form

F(s,t) =C„ \c(t) + (s- u)D(t) +

1 Ids' *2+ u2 „ N

w J s" \s' — s s' — u /~4

where, the absorptive parts Al(s', t) are defined by

(///.i)

(///.2)

within the large Lehmann-Martin ellipse (L1,M10), and the subtraction constants C(t),

D(t) are of the form

C(t)
rc*(«)i

0

[g2(oJ
- S(*)-

0

dw{t)
0

(///.3)

due to crossing symmetry. The main trick needed in obtaining partial wave equations is

the elimination of the unknown (-dependence of C(t) and £>(t). Using crossing symmetry
rv rst
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at a fixed value of «, say * 0, we substitute Eq. (III.l) into the equation

Fi0,t) C„Fit,0) (///.4)

to express C(t) and D(t) in terms of c(0) and D(0). Eliminating G(0) and />(0) in favour

of the S-wave scattering lengths defined by (1.6) we obtain,

oo

F(s, t) ±gi(s, t)a A j ds' L(*, t, s')A(s', 0) + g3(s, t, s')A(s', t)| (///.5)

where,

gx(s,t) *(1 - G„) + t(Crt - C„) + 4G„,

1 1 [ t2 (4-t)2G,, 4t +4(4-t)C„]
w' s" [s'-t + ,'-(4-t) *'-4 j'

(///.6)

(///.7)

wsn [s'- s s'-u s'-(4-t)\ 2 t-4 2 JJ
(///.8)

and

(///.9)
r-!]

a 0
0 [ad

From Bose-symmetry,

//(,) ^a't(s)
1 +

(2
)<+J Id(cos6)Pt(cosO)F'(s, -2Jfc2(l - cos0)). (///.10)

Thus, to calculate //(*) we need to use (III.5) for t in the interval (*y*,0), and hence

need that A'(s',t) is well defined by (III.2) for all s' > 4 for t in ((4 - *)/2,0). The large

Lehmann-Martin ellipse (MIO) guarantees the convergence of (III.2) for all *' > 4 if t is in
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the interval (-28,4). For * 60, (4 - *)/2 m -28; for * -4, (4 - *)/2 4. Thus, for

—4 < * < 60, we obtain the partial wave relations (R6)

aii*4 -1±^ [J /**(.) $>" 1^(1 - x)) ap+

+ jdxP<{x) Jds'£^ f^W + l) £ L"(,,tZ^(l-*),,')

x /m <#>(*') + „," (*, i^(l - *), *') /m <.<,">(»')

-(-li^ri)}]'
(///.ii)

where the gf, i 1,2,3, are the matrix elements of the & defined in Eqs. (III.6) to

(III.8). We remark that Eq. (III.5) has * — u crossing symmetry built in and hence

complete crossing symmetry would be satisfied if t — u symmetry also is satisfied. From

(III.5) and (t — u) crossing symmetry we obtain the crossing conditions,

fds'\L2(s,t,s')- Ct,g2(s,u,s')\A(s',Q)+

+ lg3(s,t,s')Ais',t)-Cug3(s,ii,s')A(s',u)\\ 0,

(///.12)

valid for -28 < t, u < 4 and for |«|, |u| < 4. Eqs. (III.5) and (III.12) together are necessary

and sufficient conditions for complete crossing symmetry; both of them involve only

physical region partial wave amplitudes and can be checked directly against experiment.

Crossing relations involving physical region absorptive parts similar to Eq. (III.12) have

also been obtained by Wanders (W3), Roskies and Yen (R3,Y1), Auberson and Khuri

(A6), and Grassberger (G3).

Eq. (III.ll) expresses Re a^(«) for 4 < * < 60 in terms of af\ a^ and a

principal value integral involving the Im a^(*') for £' (0, oo), /' (0,1,2), and »' > 4.

When this value is substituted into unitarity equations,

*<'>(,) S [Im a'M? + [Re a'(*)]2' 4 - ' < 16

we obtain a set of coupled non-linear singular integral equations for Im a't(s) in the interval
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4 < * < 60, with the driving terms involving aj a,, »7/(8) for 16 < s < 60, and the

Im a\ '(s) for * > 60. These integral equations resemble in a mathematical sense those

studied earlier by Atkinson, Warnock and Kupsch (A1,A2,K1); mathematical questions

such as existence of solutions of these equations and their uniqueness have been investigated

by Pool (P7), Heemskerk (H5), and Atkinson et al (AIO, All). A rather serious difficulty
is that in solving the integral equations obtained by combining (III.ll) and (III.13), there

seems to be no practical way to incorporate the crossing conditions (III.12). An analysis

of the constraints and correlations imposed by physical region partial wave equations on

the S- and F-waves has been performed by Epele and Wanders (E3).

How can we obtain partial wave equations valid in a larger interval than Eq.

(III.ll)? We see from the Mandelstam s-t-u diagram (Fig. 2) that for s 60, t -28,
the fixed-t straight line touches the forbidden region in which the partial wave expansion

(III.2) is not known to converge at the point « u 16, t —28. (Even if we assume

Mandelstam analyticity for A!(s', t) we only increase smax from 60 to 68). Substantial

increase in sm„ would require the use of dispersion relations on curves (other than fixed-t

lines) which carefully avoid the forbidden regions in the s — t plane.

III.2. Integral equation based on dispersion relations incorporating explicit
three channel crossing symmetry

Mahoux, Roy and Wanders (Ml) obtain dispersion relations with explicit crossing

symmetry in all three channels and derive partial wave relations valid in the interval

—28 < * < 125.31. The crossing conditions on FI(s,t,v) are equivalent to the total

symmetry in s,t,u of the amplitudes Gt(s,t,u) (k 0,1,2) defined as follows (R2):

Go(*,t,u) /-•'•-'''V*,*,«) ÌF°(*,t,«)+ jF2(*,t,u) (///.14)

t — u u — * s — t

a, „|ä-i-(£l^-Ö!*4) +
* — t\ t — u * — u /
+ WFH-,u,*)_FHu,t,*)\+ (///16)t - u \ u - * t-s J

+ _J_ (Fl(u,s,t) _ Fl{s,u,t)\
U— 8 \ S—t U—t
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i-60-.t-u—28 \t—28
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O» * ^*N.
V> ^-O

Or ^./,° U-4)lu-l6) »64
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<r S-A

* l^-23SbUYc
,-0 J-0

t--28

Fig.2. This * — t — u plot shows that fixed-f straight lines with t < —28 intersect the

forbidden region' where partial wave expansions for the absorptive part are not

known to converge; hence the maximum value of * for points lying on the t u line

through which an allowed fixed-t line can be drawn is <„„ 60.
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Due to the antisymmetry of F1(*,t,u) under t <-> u the denominators appearing in the

definitions of Gi and G2 do not introduce new singularities at t u, u s, and s — t. Hence

the functions Gj(s,t,u) have the same analyticity properties as the amplitudes F'(s,t,u).
The F7(s,t,u) can be obtained from the G*(s,t,u) through the inverse relations.

The complete symmetry of the G*(*, t, u) in s, t, u is exploited by Mahoux, Roy

and Wanders (Ml) by considering the G» as functions Gk(x,y) of the Wanders variables

*,y(W2):

x 5 -—(st + tu + us), y =—stu (///.17)16 64

If (s,t,u) corresponds to a given value of (x,y), so does any permutation P(s,t,u) of

(*, t, u); however this does not introduce any multivaluedness in Gk(x, y) because G*(*, t, u)

Gk(P(s,t,u)). Thus the singularities associated with the change of variables (III.17) do

not appear in Gt(x,y) due to crossing symmetry. The only singularities of Gt(x,y) are

the images of the singularities of Gj(*, t, u) through the mapping (*, t, u) —» (x, y). On the

complex straight Une

y a(x - aro) (///.18)

Gk(x,y) Gi(x,a(x — Xo)) is a function of the single complex variable x. Martin (MIO)
has shown that FJ(s, t, u) has no singularities except for the cuts * > 4, t > 4, u > 4 if
any one of the three variables s,t,u £ D, where JD is a finite domain of the complex plane

containing the segment (—28,4) of the real axis as well as the circle of radius 4 around

the origin (see page 66 of Ref. M4). Now, the straight line (III.18) is a cubic in s,t plane

given by

(* + 4a)(t + 4a)(u + 4a) 64a[a(a + 1) - x0]. (///.19)

Hence,

min (|8 + 4a|, \t + 4o|, |u + 4a|) < 4|a|1/3|a(a + 1) - ar0|1/3 (///.20)

Hence, for small enough |a|, say for a € ^(*o). where V(xq) is a complex neighbourhood

of the origin, at least one of the three variables s,t,u £ D, for all points of the straight

line (111.18). Hence Gk(x,a(x — x0)) is analytic in the complex x-plane except for a cut

C(a,x0) consisting of the part of the complex straight line (III.18) for which at least one

of the variables s,t,u > 4. C(a,Xo) connects the point x ax-0/(l + a) with the point at
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infinity. From the Jin-Martin high *, fixed-1 bounds (J2,M9) we have, for a € V(x$), that

Ga(x,a(x — xo)) and G\(x,a(x — xo)) obey once - substracted dispersion relations, and

G2(x,a(x — x0)) obeys an unsubtracted dispersion relation in x. In terms of the original

variables s,t,u we have:

Gk(s,t,u) - Gkisuh,ut)(l - 6k2)
oo

-r- I ds'discGk(s',t(s',a,xo),4- s' -t'(s',a,xo))[s' -t'(s',a,x0)]x2tw J
4

x [2*' + t'(s',a,x0) - 4] \- ;1
; - .(/,~ ,u, rl » * °' *'2'l(*' -*)(*'- <)(*' - u) (*'-*i)(*'-ti)(*'-ui)J

(///.21)
where, a G V(x0), (*'> **»u>) *nd (*i»'x,«i) he on the straight fine (III.18).

Equation (III.21) can actually be continued to certain values of a outside V(x0).

To see this, choose x1 x0, so that *i *0 2(yi + 4x0 +1), and tx 0. Gt(»0,0,4 — *0)

is independent of 'a' and a holomorphic function of *o in the *0-plane cut along (— oo,0)

and (4, oo); hence the right-hand side integral, for x0 outside the cut (0, oo), is defined for

ail values of 'a' such that t*(*', a, Xq) belongs to the holomorphy domain of («' — t)(2s' +1 —

4)discGk(s',t,4 — s' — t) in the «plane given by the large Lehmann-Martin ellipse E(s'),
for all *' > 4. Let V(x0) denote this set of values of a, i.e.

V(x0) {a\t'(s', a, x0) € E(s'), *' > 4} (///.22)

V(x0) is of course larger than V(x0). Thus Eq. (III.21) with *i s0, h 0 define the

analytic continuation of Gk(s, t,u) to all points (s,t,u) such that

a « -4(st +
tuTus

+ 16x0)
S a(M'U'Xo) e (*0)- (///-23)

We thus obtain new points of axiomatic analyticity of F'(*, t, u).

Consider the application of Eq. (III.21) to the derivation of partial wave

relations valid for -28 < * < 125.31 (Ml). Since,

G0(4,0,0) i(a00) + 2a<2) Gx(4,0,0) ^(2a<0) - 5a<2) + 9a,),

G2(4,0,0) -^(2a<0) - 5a<,2) - Ito!?), (///.24)

Eq. (III.21) then furnishes Gk(s,t,u) in terms of a00', %\ ay and the physical absorptive



648 Roy H.P.A.

/64

125

o*
Con

* x
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0*?*¦*
o«-

**,o

IM, o< t <4,u<o

Fig.3. The Wanders x — y plot. The real s,r,u plane is mapped to the right of the curve

built up of G+ and G_ which constitute the image of the t ti line. The triangle

0 < s,t,ii < 4 is mapped inside the region abc. The lines y — 0 and y —x are

images of t — 0 and t 4 respectively. The forbidden regions S+ and S_ are bounded

by the curves T+ and T_ constituting the images of the end-points of the minor-axis

and the major-axis respectively of the large Lehmann-Martin ellipse E(s). Partial

wave-equations can be written for a given physical *, if through every point of the

part of the straight Une AB with t, u < 0 and * const., a straight line D not

intersecting S+ and S_ can be drawn. The maximum such value of * («max — 125.31)

is obtained when for the point P with t u, the straight line D„n, through P touches

S+ at G and S_ at Px.
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parts provided a(s, t,u,x0) Ç V(x0). Next (III.24) is substituted into the unsubtracted

relation (III.21) for G2(4,0,0) to obtain a sum-rule (the Wanders-sum rule (W2)) expressing

the F-wave scattering length ay' in terms of (2oq — 5a^2') and the physical absorptive

parts. Finally, we are able to express Gk(s,t,u) for a(s,t,u,x0) € V(x0) in terms of

a0 a70 ' and the physical absorptive parts. Their partial wave projections constitute the

partial wave equations; the condition a(s, t,u,x0) € V(x0) leads to the region of validity

-28 < * < 125.31. Fig. 3 iUustrates the method of calculating sm„ 125.31 graphicaUy.

For a given x0, a representation for //(*) vaUd in an interval *i(x0) < * < »2(*o)

is obtained; two values of Xq are enough to cover the region (4,125.31). We have

*x(0) 4, *2(0) 90.20, ^(50.41) 39.78, *2(50.41) 125.31. (///.25)

III.3. Extension of axiomatic analyticity domain of the pion-pion amplitudes.

An important application of the crossing symmetric dispersion relations (III.21)
not yet fully investigated is that they yield new points of axiomatic analyticity of the

scattering amplitude, in particular of the fixed angle ampUtudes FI(s, cos 0) and the partial

wave amplitudes. Martin (MIO) showed that the analyticity domain in * of FJ(«, costì 0)

plays a crucial role in determining the analyticity domain of //(*). Roy and Wanders

(R7) have obtained an extension of Martin's analyticity domain of F7(*, costì 0) using

the crossing symmetric dispersion relations (III.21). The new domain obtained and the

previous Martin-domain are shown in Fig. 4, for Re s > 75 and Im s > 0. If « is a point

inside the analyticity domain of F1(s,costì 0) so is a*; hence the part Im s < 0 is not

shown on the figure. A cut along the real *-a*k is understood. The new domain extends

upto Re s 125.31 where (Im s)max 0; at Re s 120 where the Martin domain has

(Im s)m„ ~ 0, the new domain has (Im s)max 22; at Re s 78, (Im *),»„» « 63 for

both the domains; for Re s < 78 the Martin-domain is larger than that obtained from the

new equations.

We indicate the method briefly. For any complex *, cos 0 0, let

disc Gk(s ,t(s ,a,xo)) disc Gk(s ,t (s ,xo,s)),
2t'(s',xo,s) (///.26)

(*'-4) 'costs') 1 +

where a is eliminated in favour of *. Let A(s') denote the semi-major axis of the large
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Fig.4. The improvement ofMartin's complex *-plane analyticity domain (MIO) ofF(*, costì

0) obtained by Roy and Wanders (R7) using the Mahoux-Roy-Wanders dispersion

relation (Ml) is shown for Re s > 75 and Im * > 0. A cut along the real «-axis

is understood. A reflection of the boundary curve across the real *-axis yields the

analyticity points for Im « < 0.
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Lehmann-Martin elUpse E (s1) in the costì'-plane. Let

Re cos2tì'(*')-
X(s')

a2w.n_n2 f /m C0S2Ö<(,')
l2

A»(*')'i-i +
il(s,)>/ila(s,)-l

-1. (///.27)

Then, costì'(*') £ E(s') if and only if X(s') < 0. For a given complex *, if there exists any

Xo for which X(s') < 0 for all *' > 4, then FJ(*,costì 0) is analytic in s at this point.

The domain in Fig. 4 is obtained by searching over aU x0; we note that x0 ~ 50 for the

part displayed in Fig. 4.

III.4. Phenomenological applications

The phenomenological understanding of pion-pion scattering became particularly

interesting after the discovery of the KK-threshold effect, the resolution of the

up-down ambiguity in the / 0 *-wave in the energy region above 750 MeV in favour of

the 'down' branch, (see the review of Morgan (M12)), and the appearance of phase-shift

analysis upto 1400 MeV (E1,H2). The physical region partial wave equations based on

fixed-t dispersion relations (R6) are a convenient tool to impose unitarity, analyticity and

crossing on the phase-shift data. For example, if the absorptive parts for *' > 60 are

considered given, the Im //(*') for 4 < *' < 60 from a phase-shift analysis can be inserted

into the partial wave equations to calculate Re ff(s') which can then be tested against

the input phase-shifts; or with more courage one can attempt a solution of the integral

equation. In practice, there are many problems such as the non-existence of phase-shift

data at very low energies, the difficulty of obtaining the high energy absorptive parts, the

estimation of the error involved in taking only a few low partial waves into account, and

the difficulty of ensuring the vafidity of the subsidiary crossing conditions on the absorptive

part.

The phenomenological use of the partial wave equations to the testing of phase-

shift data and the determination of the low energy parameters is one of the most impressive

applications of axiomatic analyticity properties. It was initiated by Basdevant, Le Guillou

and Navelet (B5) and carried out to perfection by other authors (B6, BIO, Bll, P3). For

example, Basdevant, Frogatt and Petersen (B6) choose the Im //(«) to be the imaginary

part of an amplitude g{(s) parametrized to satisfy unitarity with the experimentally
observed inelasticity, and to reproduce the experimental mass and width of the p-meson;
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considering the absorptive parts for * > 60 to be given by phenomenological considerations

(such as Regge behaviour), they vary the parameters in gt(s) to obtain a numerical

fit to the partial wave equations. Thus they obtained S- and F-wave amplitudes fitting

the partial wave equations and the data, for a range of scattering lengths given in Fig.

5, the range includes in particular Weinberg's current algebra values (W4). The F-wave

scattering length so deduced (B6) (0.040 ± .004) is however in strong disagreement with

the CERN-MUNICH experimental result (» 0.1) (Mil). We refer to (B6) and (S2) for

different views on this problem. The S- and F-wave scattering lengths from the physical

region eqns. are in good agreement with those deduced from QCD ideas by Gasser and

Leutwyler (G5).

It is hoped that similar use of the crossing symmetric equations of Mahaox, Roy

and Wanders (Ml) valid upto « 125.31 would yield further interesting information,

particularly for the higher partial waves. For the special case of forward scattering, dispersion

relations for Gk and positivity yield rigorous sum rules and bounds for scattering lengths

and ampUtudes (R8).

IV. Absolute bounds on the pion-pion amplitudes

Martin discovered the remarkable result (M3) that the pion-pion ampUtudes

obey absolute bounds involving the pion-mass alone. Improving these first results Lukaszuk

and Martin (L2) obtained,

-50<F*,*,-,*,Q,i,i)<8, (IVA)

The existence of bounds on the coupUng constant is explained by Martin by the argument

that if the coupUng were too strong it would produce bound states of the pion-pion system.

Martin (M3), and Lukaszuk and Martin (L2) also derived from these absolute bounds upper

limits on integrals of total cross section in terms of pion-mass alone. These bounds were

considerably improved by Common (C4) and Yndurain (Y3). Another important result

extracted by Martin from the absolute bounds is a lower bound on the jr0*0 —? w°w° S-

wave scattering length. Bonnier and Vinh Mau (B7) in an ingenious application of these
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Fig.5. The band of values of the S-wave scattering lengths a*, a\ for which Basdevant,

Frogatt and Petersen (B6) have obtained fits to the physical region partial wave

equations (R6) and to the data upto 1100 MeV.

Table 1

Absolute bounds on the tt n * • i amplitudes given by
Lopez and Mennessier (L4) improving the original results of
Martin (M3,L2)

0 0 0 0
TT IT -* TT TT Ampli tude Absolute Lower

(units m
TI

Bound Absolute Upper
Bound

(Units m
TT

F(4,0,0)
0 0 - 0 0

71 IT -1.75 NONE

F(3,0,l) -3.30 3.20

F(2,0,2) -3.50 2.85

F.i.O.f, -3.40 3.00

F(2,l,l) -7.25 2.75

4 4 4

l3'3'3' -8.10 2.70

F(3,2,-l) -1.30 14.5
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ideas, considerably improved Martin's original result and obtined,

0%'"'*''*' > -3m;1. (/V.2)

For the other iso-spin combinations Common (C2) obtains,

a°>-7.5, al >-7.1 (IV.3)

One also obtains bounds on energy averages of physical real parts e.g. (G6)

6

-7.9 < i fds Re F**'*-*''*'(*,0) < 9.6 (/V.4)
4

After much painstaking effort [A8,L3,L4,B7] the present bounds on the w°w° —> w°w°

ampUtudes given by Lopez and Mennessier [L4] are as in Table 1. The existence of these

bounds is a testimony of the power of axiomatic analyticity and unitarity.
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