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Abstract. We propose a Lorentz covariant description of the radiation field. It is based on the

observation that there exists a representation of the Lie algebra of the Lorentz group on the subspace

of helicity states of the Statespace of spin 1. This permits the determination of an action of the Lorentz

group on the amplitudes of the field, and thereby the construction of the general Lorentz covariant

solutions.
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1. Introduction

The classical radiation field is described by the plane-wave solutions of the
Maxwell equations. In standard notation, and in the helicity representation, they
are expressed as the sums E E+ + E_ and B B+ + B_ of solutions of
positive and negative helicity [1],

E±(x,t;c±) (27T)-3/2 J ^i{ï±{k)c±(k)e*%s-»»

B±(x,t;c±) (27T)-3/2 J ^{Ì±{k)c±(k)e^s-^

+ e*±(k)c*±{k)e~i{-%s-Mt))dzk

and such that k ¦ e±(k) 0, \e±\ 1, u - \k\, k e Ä3, (x,t) e Ä4 and

c± : R3 -+ C with / |c±|2d3fc < oo. The general solution of the transversality
conditions k • e± 0, are

ê± -j=(ex±ië2)eta

where

éi(fc) (- %* - %kih2, ^\A?T^)
uy/kf + k^ u)y/k( + k$ w »

ik —fc
'2(fc) (7Wtf ' Tfrl '0)

and a is an undetermined constant that can be absorbed by the phase of c±.

These solutions are not in covariant form : the transversality condition is not
Lorentz invariant. One can therefore generate new solutions by applying Lorentz
transformations on the solutions already constructed. It is however, not apriori
clear how the amplitudes transform under the Lorentz group.

In the following we propose a solution to this problem. It is based on the
observation that there exists a symplectic action of the group SO (3,2 on the space
ofhelicity states (coherent states) of spin 1. To be able to apply this observation we
consider the field as a function(al) on the statespace x spacetime, thus obtaining a
framework in which questions about covariance are more easily discussed.
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2. Spin 1 and helicity

The (quantum) observables of spin s are described by the generators Slt S2, S3 of
the unitary (projective) representation of the rotation group 50(3) of R3 in C2a+1,

the spin state space. For spin 1 the state space is thus C3 and a representation of
the spin observables is given by the selfadjoint operators

/0 0 0

(£,.) 0 0 i
\0 -i 0

In this particular representation, the real and imaginary part of the state-vector
transforms independently, and as "vectors", under the rotations. It is thus natural
to use the notation w -hs{ü + iv). In terms of the real vectors u and v, the

spin-density then has the following form

s (w)S(w) -w* Aw üAv
i

The most prominent structural property of the theory of spin is complex linearity.
Accordingly it possesses a (canonical) symplectic structure defined by the (real)
two-form [2]

Q i 2^ dw*. A dw?

i
This symplectic form is associated with the Poisson bracket

j
which can be used to define a structure of Lie algebra on the set of differentiable
functions on C3. The Lie algebra of linear operators on C3 under commutation is
injected into the Lie algebra of functions on C3 under the Poisson bracket by the

map defined by
A t-> (w)A(w) f(A)(w*,w) ;

in fact, {f(A),f(B)} (w)±[A,B](w) f(\[A,B\).
Definition : The vectors w -js{u + iv) G C3 such that w2 0, i.e.

ü • v — 0 and u2 — v2 0
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are said to describe helicity states (i.e. states of circular polarization).

Proposition : Let (P, u) be the symplectic manifold which in generalized spherical
coordinates (p, r, w, cp) is defined by (R+ x S3 U {0},dpAdw + dr A dip) where
53 is the projective space associated with the three-dimensional sphere 53. Then
the map

c : R+ x S3 U {0} -> C3 ; (p,r,w,<p) i-» (tu,.)

for
1 1

wi y|K' + ">,) y|foj + feajJv^e"

(ei,0 (-'r/pcos<p r/psivLcp y/l - r2/p2)

(e2j) (-simp,-cos y>,0)

is a symplectic embedding, i.e.

P+ X S3 U {0} ~ c(P+ x S3 U {0}) C C3 and c*ft w

Moreover, c(P+ x S3 U {0}) C C3 is the submanifold of helicity states.

Proof : Direct computation.

Corollary : The spin density is

s uAv \Jp1 — r2 cos cp \/p2 — r2 sin <p r)

on the helicity states.

Proposition : Let q y/puand r — y/pv; then, the set of functions (q{, p, ri,si;i —

1,2,3) constitute a basis for a representation of the Lie algebra so(3,2) in the Lie
algebra of functions on R+ x S3 U {0} under the Poisson bracket

{a, 6} dpadwb + dTadvb - dwadpb - d^adrb

Proof : The proof consists in verifying the "commutation relations"

{sosj} £ijksk Asurj} £ijkrk>{si,qj} CijkQk •

{*,-,/>} 0 Ari,<li} 6ijPdri>rj} -£ijksk >
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fai»?,-} sijhah ,{qi,p} r{ ,{r{,/>} -q{
This is done by computation.

Corollary : Let A denote the action of 50(3,1) on R+ x S3 U {0} generated by

(ri} sf : i 1,2,3), A the Lorentz transformations on Ä4 leaving invariant the
Minkowski metric, and let

q** — (p, q) and sp"

Then

/ o rl r2 r
—r, 0 s

r2 -s3 0

V- »! 0

9"(*a(p» r' fi V)) A"„g,'(pf r, w, 9?)

i.e. gM and s**" are manifestly covariant with respect to the Lorentz transformations.

From this corollary it follows that the expressions

«"V ^2 - *2(= °)

<AM p2-<?2(=0)

are invariant under the Lorentz transformations. Indices are raised and lowered by
the Minkowski metric. Moreover, for this particular representation

**v<f (~q-r,sAq-pr) (0,0)

Thus, the relations
sAq — pf=0 and q-f=0

are also invariant under the Lorentz transformations, and it follows that the
orthogonality of the "vectors" q, fand s is invariant. One can also show by direct
computation that the Lorentz transformed s ' of s satisfies

S"2 _ /2
s p
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accordingly,

?'2 ="2 j?/2 _ /2 „„j -fl -fl -fl -fl -fl -fl _ ns =9 r p and s • r s -ç r • q U

i.e. the orthonormal frame (<f//>, f/p, s//>) is transformed into an orthonormal
frame (q'/p1, r'/p',s'/p') by the given action of the Lorentz group.

3. The state space of the radiation field

There exists a non-linear action of the Lorentz group 50(3,1) on R3. Formally it
corresponds to the Lorentz action

where k* (\k\, k), and A is the usual linear representation of 50(3,1) on R
The measure d3k/u, u(k) \k\, is an invariant measure on P3 under the Lorentz
action of 50(3,1).

Let B(P) denote a Banach manifold of measurable maps

R3 -» P R+ x 53 U {0}

such that j p(k)d3k/u < oo. We denote by M+ and M_ the Banach submanifolds
of positive and negative helicity consisting of points satisfying the transversality
condition

s(p(k), r(k),w(k), <p(k)) Ak 0.

As is easily verified

M+ {(p,T,w,<p) e B(P)\r(k) %(k)
UJ

k
and <p(k) -arcsin(—= 2 )}

\Ai + kl

M_ {(p,T,w,cp) E B(P)\r(k) =^-p(k)
u>

k
and <p(k) it — arccos(—. x )}

Ky/kJTlcl
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An action of 50(3,1) on B(P) is defined by

(TaÌPi^w,<p))(k) AA(p,r,u;,y)(A~1fe)

Since the transversality condition is invariant under the rotations, the orbit of a

particular point (p, r, w, tp) € M± is parametrized by

50(3, l)/50(3) ~ (n G R.\n20 - n2 1 n0 > 0) H.

Definition : Let Ln L(n) denote the boost defined by L(n) A(^-), where

A(^-) denote a pure Lorentz transformation "for the velocity n/n0"; the subspace

M +°U M_ C #(P) such that

•^± {ri„Hlm S M± and n e H}
provide a representation of the state space of the radiation field.

From the construction of M± we see that they are diffeomorphic to

M± M±xH
the diffeomorphism being given by

f : M - M ; (m,n)(fc) ~ (rLn(m))(fc) A^Jm)^^)
Accordingly, the induced action Â f-1 o A o f of the Lorentz group on M, is

(XA((m,n))(fc) (\R(m)(R-lk) ,An)

where P R(n, A) L-1 (An)AL(n) is a rotation (Wigner rotation) [3].

Remark : From the Poisson bracket relations between the functions (q{, p, r,-, sj
we see that we could have chosen (q{, st) to generate the Lorentz transformations
on P. Then,

(P>r;)

transforms as a fourvector, and

0 9l Î2 % \
-qx 0 s3 -s2
-?2 -53 ° 5i
-Qs S2 ~si ° /

transforms as a tensor. This freedom of choice is related to the existence of the
two classes of solutions of the transversality condition. In fact, with this choice
the M+ defined above will describe states of negative helicity and M_ those of
positive helicity.
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4. The field variables of the classical radiation field

The geometry of the framework suggest that g and r can be used to define amplitudes

for the electric and magnetic components of the radiation field. In fact, as

one varies the phase w, g and frotates in the plane orthogonal to s. By testing this
idea one finds that the amplitudes a^ (v, -a), e,- foi and bx -\^kfjk °f
the vectorpotential and the field can be written

v s • k/^/üJp

a (—k A r + uis)/y/wp

e —uj2f/^/üjp —ujyfüJv — iu\fujJ2(w — w*)

iuy/ï/2(ejpeiw - e*Jpe-iw)

fe —wk A f/y/ÛJp

for the states in M±. Note that

e(m±(k)) -7=(?i(k) ± ie2(k)) for m± G M±

On these states the above expression can be put on the following manifestly
covariant form

which thus are valid on M±.
It is more convenient to consider the amplitudes as functions a and / on

M±. Now, defining à and /by

^((m^k^L-'k) a„((f (m,n))(fe),fc)

fr((m(L?k)tn,L?k) f^((f(m,n))(k),k)
we get

â„(m(fc),n,fc) i^^H^fc/H*))
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/^M*),!»,*) LanilLiu(sa^m(kWkß-

'sßt (m{k))knj/y/kßq*(m(k))

U)

Definition : The field observables of the radiation field are represented by the

functions P4 x M± —» R,

All(xft;p,T,w,<p,n)

(2tt)-3/2 J ä>(fc),r(fc),w(k) - (£„*)%> <p(k), n, k)d3k/u>

(27T)-3/2 J /M„(p(fc),r(fc),u,(fc)-(Lnfcr*p> *»(*),n.fcjd8*/'

This definition is justified by the preceding discussion and the following proposition.

Proposition : The field observables satisfies the "Maxwell equations"

F^ d*»K - &*K and 9X,F^ 0

Proof : The proposition is verified by direct computation. We note that the
amplitudes are

v (n0s- k — n ¦ (k A r) + wiî • s)/y/ivp

ä (—k A f+u)s (n • (k Ar) — ws • n)n + k • sn)/y/Up
n0 + l

ê lü(lü(—n0f H f • nn) — n A (k A f))/faöJp

- -» \ -r
b — tü(—n0kAr-\ -(k A r) • fin + un A r) /\fwp~

n0 + l
when we take into account the transversality condition. We note that dwr q.
This follows from the Poisson bracket {f, p} — q.

Let W t^=(—k At - iwf), then

wf(., w + a,.) Ì v/p72(#(., w, .)eia - #*(., «,, .)e-fa),
z
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kAf(.,w + a,.) -y/ï/2(W(.,w, .)eia + W*(.,w, .)e~ia),

and

I ivfc/2(W '(.. .)(it)e-i(L"fc)x - W '*(.. .)(k)e*L"k)x)

iy/«,(L?k>)/2(W '(.. )(L-lk')e-ik'*

-W'*(...)(L-lk')eik'-)

b= y/^/2(W '(.. .)(fc)e-i(L"fc)-* + W '*(.. .)(fc)ei(L»fc>-x)

y/U{L?V)/2(W '(.. .X^V"'-*
+ #'*(...)(X;1fc')eifc'a!)

where u/(fc) |fc|, k' Lnk and W ' noW - ^_# •nn + inAf.
Using this complex representation we can determine the energy and

momentum of the field by standard computations, applying the relation \W '\2

p(n0u} + k • n)2 pu'2, i.e.

j3„P°(...) yi[P(x'i;...)2 + ^;...)V
ju(L-nxk')p(L-xk!)d3k! jL°niik»p(k)d3k

Similarly, since \(W ' AW '*)> L°nl/kvL^k"p,

Pj(...) f(D(x»;...) A J3(a5";.. .))J'd3x

/ k'^L-'k'ML^k'yu'iL-'k'^k'

y' LÌvkvPÌ.k)dzk.

We have thus proved the following proposition.

Proposition : The energy and momentum of the radiation field are given by

P"(p,r, «,,¥>,«) J' L»nvk»p(k)d3k
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The action of the Lorentz group on the observables is induced by the action on the
states. Thus, the vector-potential A transforms according to

A^x»;p,T,w,cp,n) ¦-? A^x*; AA(p,r,w,cp,n))

/(WW^^JtCX*-1*) - (Ln'k) • x, .))/y/up(R-xk)d3k/u

J(LAnRe)liaßy(R-1krs^(.,w(R-1k) - (L"1*) • xì.))/^up(R-^k)d3k/u

|(APn£)/ia^A;aS^(p(fc),T(A;),«;(fc) - (Lnk) ¦ (K-xx)Mk))/^fMk)d3k/u

(AA)M((A_1x)" ; p, r, w, 97, n)

where P P(n; A) L~1(An)AL(n). For F and PM we similarly get

P"(...)h->A%P"(...)

*;„(*";...) ,- A„ "A, ^(A"1" X; • • •)

5. Discussion

So far we have considered separately the positive and negative helicity
solutions. In general, we must consider superpositions of these. This has no further
consequences, since the positive and negative helicity amplitudes transform
independently of each other under the given action of the Lorentz group. Moreover,
using that W '2 W '*2 0 one can show that

Ptl(p+,T+,w+,<p+,p_,T_,w_,cp_,n)

(Lnkr(P+(k) + p_(k))d3k./<

By performing a Lorentz transformation A(-^-) on the general solution F
(or by choosing the state-variable n 0), we obtain the solution(s) given in
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the introduction, and which is to be interpreted as the description of the field
produced and detected in the laboratory frame of reference. The general solution
thus describe a field produced in a frame of reference moving with velocity ft/n0
relative to the frame of reference where it is detected (and described). We see that
the formulaes take into account the Doppler effect due to the motion of the source.

The theory we have exposed is thus essentially an Einstein relativistic formulation

of the "standard" classical radiation theory. Its translation into a quantum
theory is straightforward. This theory is obtained, in its most simple and direct
formulation, by the substitutions c* ^/pe~tw —? a) and c y/petw —? a, where

a' and a denote the creation and annihilation operators. An evident application of
the theory is to study the radiation from moving atoms.
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