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Abstract. A system of Goldstone bosons - stemming from a symmetry breaking O(N) —> 0(N — 1)

- in a finite volume at finite temperature is considered. In the framework of dimensional regularization,

the partition function is calculated to the 3-loop level for 3 and 4 dimensions, where the
Polyakov method for the measure of the path integral is applied.

Although, the underlying theory is the non-linear «r-model, it will be shown that the 3-loop
result is renormalizable in the sense that all the singularities can be absorbed by the coupling
constants occurring so far. In finite volume this property is highly non-trivial. Thus the method
for the measure is confirmed. In addition we show that - to the considered order - it coincides
with the Faddeev-Popov measure. This is also true for the maximal generalization of Polyakov's
measure: none of the additional invariant terms that can be added contributes to the dimensionally
regularized system.

The occurring phenomenological Lagrangian describes for example 2-flavor chiral QCD as well

as the classical Heisenberg model, but there are also points of contact with the Higgs model,

superconductors etc. In addition the finite size corrections to the susceptibility might improve the

interpretation of Monte Carlo results on the lattice.
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1 Introduction

If a continuous symmetry is spontaneously broken, the Goldstone bosons (GB) dominate the
low energy behavior of the system. The interaction among the Goldstone modes is strongly
constrained by symmetries. This represents a universal feature of all models exhibiting
spontaneous symmetry breaking [23].

In the present work we choose O(N) as the symmetry to be broken down to 0(N — 1).

Of course this can also be applied to symmetry groups (locally) isomorphic to O(N), such

as SU(2) x SU(2) ~ 0(4) Thus it describes QCD with two flavors and broken chiral

symmetry.

The underlying theory will be the non-linear cr-model, which includes for dimension d > 2

all invariant terms. Thus it is not renormalizable because it contains an infinite number of
coupling constants. 3 To any order in the low energy expansion, however, a "perturbative
renormalization" can be realized, i.e. the coupling constants occurring to that order are able

to absorb all the singularities. This property provides us with a non-trivial check of the
results and the applied methods.

We are going to use a "magnetic" language, so the model most suitable to our terminology
is the classical Heisenberg model for ferromagnets below the critical temperature.

Particularly in soft pion physics the method of low energy effective Lagrangians seems

to be more efficient than the historical way (current algebra, Ward identities, etc.) [3, 4,
5, 7, 8, 15]. For unknown reasons two quark flavors are very light compared to the scale of
the theory. If their masses would vanish (chiral limit) the QCD Lagrangian would exhibit
an SU(2)r x SU(2)l symmetry. This symmetry spontaneously breaks down to SU(2)r+i,
creating GBs which are identified with the pions (7r+,7r°, tt-).4 Their properties reveal the
hidden symmetry. They can be analyzed by replacing Cqcd with its quark and gluon fields

by an effective Lagrangian with pseudoscalar meson fields [5, 6]. One constructs the most

general L in terms of GB fields consistent with the symmetry of the model. It is generally
assumed - although not strictly proved - that the low energy predictions do only contain this
information [22] Then all quantum field theories generating this type of GBs are covered.

Ward identities constrain the expansion of the Greens function in powers of the momenta
and the external fields. They also imply that the interaction among the GB modes of low
momenta is weak, and to any finite order of the low energy expansion there occur only a
finite number of coupling constants [4, 22].

In the standard model the influence of the gauge and fermion fields on the scalar sector

3Different is the 2-dimensional case: there the model is renormalizable. Many recent papers concentrate
on this case. We also refer to it in appendix E.

4For SU(3) x SU(3) the GBs are identified with the eight lightest mesons (tt, K, 17). This case is not
described by an O(N) symmetry; the groups involved in the breakdown SU(M) x SU(M) —> SU(M) are
locally isomorphic to an orthogonal group only for M 2.
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is weak. 5 Concerning the upper bound of the Higgs mass mn we can consider the SU(2)
sector separately and study an 0(4) scalar field theory [2]. On the other hand the 0(4)
model is inadequate for questions involving very weak scalar interactions, such as the lower
bound of mH', there the gauge and Yukawa couplings can not be neglected any more.

In the 0(4) model the tree level yields the relation m?H oc AP where Ar is the renormalized
self coupling. Thus mjj enters as a free parameter. Theoretical information about it can be

gained, however, making use of the fact that the cutoff A is unremovable. Even if we set the
bare A oo, for any given ratio A/mjj > 0(1) Ar runs away from infinity fast enough to
fix an upper bound for m^/raw that can be determined numerically. For decreasing A/mjy
the latter rises, so choosing the smallest, physically acceptable value for A/mji, we obtain
an absolute upper bound for mj [12, 13]. But its numerical evaluation is charged with
significant finite size effects due to massless GB [10]. We are going to present more precise
analytical results about finite size effects of that kind.

Generally our results are suitable for comparison with data of lattice MC simulations (in
particular concerning the conclusions about infinite volume), finite size properties of
ferromagnets etc. About the link to bosonic strings, see [21].

But of course the confirmation of the perturbative renormalizability of the results we get
with the Polyakov method for the measure has not at least a theoretical and technological
meaning. This is particularly of interest in view of the symmetry groups SU(N), where for
N > 2 no other applicable treatment of the measure is known.

We also show that the leading term, which corresponds to Polyakov's definition of the
functional measure, can be completed by an arbitrary linear combination of further terms
obeying the symmetries of the system: it turns out that in dimensional regularization - to
the considered order - all the contributions of non-leading measure terms vanish. Only if we
include power divergences such a generalization becomes necessary, e.g. for the invariance
of the partition function under some field transformations.

In section 2 we introduce the model and its parameters and derive the effective action

up to the third order in the derivative expansion for dimensions d 3 and d 4.

In section 3 we describe Polyakov's definition of the measure occurring in the path integral
and apply it to determine the measure to the second order. We also confirm the result of
this method with the measure of Faddeev and Popov.

The 1-loop calculation of the partition function is given comprehensively in section Jl.

The extension of this calculation to 3 loops is described for d 3 and d 4 in sections 5
and 6, respectively.

In section 7 we show explicitly that the results of sections 5 and 6 can be renormalized

5Here only a very heavy top quark could be a trouble-maker [16].
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perturbatively; we determine the constraints on the counter terms.

Conclusions and five appendices about rather technical aspects are added. There we
discuss the results with a generalized singularity structure that includes the leading power
divergences and show that perturbative renormalizability still holds. In finite volume this is

highly non-trivial, hence it provides us with a sensitive consistency check. We also discuss the
explicit form of the generalized measure, the link to a massive expansion and the conclusions
about the renormalizable case d 2 as well as the reduction to quantum mechanics (d 1).

2 The non-linear tr-model

In two dimensions, the non-linear cr-model can be characterized by the Lagrangian

F2
£(*») —dßSdßS (2.1)

where S(x) is an Af-component scalar field subject to the constraint

£ S"(x)Sa(x) 1 (2.2)
a=0

The model represents a renormalizable, asymptotically free two-dimensional field theory
which is invariant under global O(N) rotations of the vector S(x). One may introduce a
term which explicitly breaks the O(N) symmetry by coupling the system to an external
"magnetic field" H,

£(•>>) -S(HS) (2.3)

For dimension d > 2, the Lagrangian specified in eqs (2.1) and (2.3) does, however, not make

sense as it stands because the constraint (2.2) generates derivative couplings which are not
renormalizable (the coupling constant F carries the dimension [mass]"*/2-1). Accordingly, for
d > 2, the term "non-linear <r-model" does not refer to the Lagrangian (2.1), (2.3) but to the

following more general construction. One considers the set of all possible 0(AT)-invariant
couplings of the field S(x), allowing for arbitrarily many derivatives. Ordering the infinite
series of vertices according to the number of derivatives, the first few terms are 6

£(•«) Cdßsdßs+l-g^d2sd2s+l-g(2\dßsdßs)2

-^\dßSdJ)2 + ^d^Sd^S + (2.4)

where the dots stand for further terms involving six or more derivatives of the fields. The
corresponding generalization of the symmetry breaking term (2.3) involves derivatives of the

6The index of g is the number of derivatives.
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field S(x) as well as higher powers of the magnetic field. Assuming H to be constant, the
first terms are 7

- £(*6> E(tfS) + h<?l{HS)2 + h^l(HH) + h£l(HS)(dJdJ) + h$(Hd2S)

+h.W(HS)(dJdJ)2 + h{2l(HS)(dJdJ)2 + hW(HS)(d2sd2s)

+h£l(HH)(dßSdßS) + h$(HS)2(dßSdßS) + hty(HS)(Hd2S)... (2.5)

In the following, we study the model defined by

C &v) + Ö'h) (2.6)

in d 3 and d 4. More specifically, we consider the properties of the corresponding partition

function Z in a finite volume, which can also be understood as an IR regularization. We
introduce a rectangular box L\Li... Ld V (Li/L^ not large) imposing periodic boundary
conditions :

Z N j[dS}e-$vcd*

S(x) S(x + n) fi (niIi,n2Ì2,.. ¦ ,ndLd) n„ e Z

[dS] is the ordinary measure of the path integral and N is an .//-independent normalization
constant (which also requires renormalization, see below). One component can also be taken
to be imaginary time-like, so the corresponding side of the Euclidean box, say Ld, represents
the inverse, finite temperature of the system: Ld i. From this interpretation we see

that all the coupling constants must be independent of Ld, and due to the permutational
symmetry of the Euclidean axis they can't depend on L\,... ,£<*_! either [8, 14].

As shown in [7, 14], the partition function can be expanded in inverse powers of the size

of the box
L V1'4

In our consideration of the free energy, L~x takes the role of the energy in soft scattering
amplitudes.

We consider a small magnetic field of the magnitude

H=\H\ 0(V'1) (2.7)

so the leading term of the symmetry breaking part of the action is of order O(l).

It has been shown that for any d > 2, the leading order in the large volume expansion of
the partition function only involves the two coupling constants S and F, called "magnetization"

and "pion decay constant", respectively. (The latter denotation can be understood
by noting that F2 is the residue of the GB pole in the current correlation function at zero
external field.)

The indices of h are the power of H and the number of derivatives.
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Statistical physics sometimes introduces a "helicity modulus" T defined as the increase
of the free energy when the external field is slowly rotated: A/ j^a2, (a rotation
angle/distance). It turns out that T coincides with F2 [14].

The remaining terms in eqs (2.4) and (2.5), which involve additional derivatives or higher
powers of the magnetic field, only show up at non-leading order. Moreover, the large volume
expansion can be worked out perturbatively: to a given order in the expansion in powers
of 1/L, only graphs involving a limited number of loops contribute. In the present work,
we extend the results of [7, 14] by considering the large volume expansion of the partition
function up to and including terms of order (L2~d)3 8. As we will see, this requires a

perturbative evaluation to three loops (the loop propagator fixes the ordering in magnitudes
of L2~ Higher dimensions require more coupling constants from the second order on, e.g.
the terms in (2.5) with coefficients h\0 contribute to the action as L~d, so they are classified

differently for d 3 and d 4.

The GB mass is given by m2 W-, 9 such that mL << 1 i.e. the GB modes feel the

boundary conditions strongly. 10 On the other hand this must not be true for other mass
scales as they are given here e.g. by the mass of the u-particle (or the p-particle in QCD):
there L is much larger than the Compton wave length.

We note that for small H, S and F control the finite size effects, the GB mass and the
correlation functions.

In the limit of purely spontaneous symmetry breaking, H —* 0, the model contains zero
modes. They correspond to space-independent fields, S(x) const. for which only the

symmetry breaking part of the action is different from zero - for weak magnetic fields the
action reduces to HHSV. In the region H 0(V~l) we are studying here, the direction
of the vector S does therefore not strongly favor the direction of H; in the absence of a

magnetic field, all directions become equally likely. The standard perturbative expansion of
the model - where the field S is expanded around the direction of the magnetic field - is

not applicable here. As pointed out in [7], the problem can be solved by using collective
variables. The general field configuration is represented as

S{x) Çï-1ît{x) Çï-1{t0,iL) H (H,0) (2.8)

where fi 6 O(AT) is a global rotation associated with the zero modes (or quasi zero modes
for H > 0) while the vector 7?(x) describes the non-zero modes. The condition

j Tt\x)dx 0 ; t l,...,JV-l (2.9)

insures that this vector fluctuates around the direction (1,0), such that it0 can be expanded

8Actually we expand in powers of the small dimensionless quantity L2~d/F2. This is what we really
mean when - for brevity - we just count the powers of L2~d.

9This is not the case for d 2, where the GB mass exhibits a gap at H —» 0.
10m << 1/L - that corresponds to rule (2.7) and d > 2 - characterizes the so-called "e-expansion", in

contrast to the "chiral expansion" where ml O(l).
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To _ Ì » _ y (2fe 3)!! 2k
2- ^ 2kk\ v_ ;

Thus for H —* 0 the expectation values are:

< 7T° >= 1 < tl >= 0

i.e. the N — l vector field 7r represents (small) transversal excitations of S around its
longitudinal component 7r° (parallel to H).

It turns out that also the leading term of /fay) - the kinetic term ^-dßTr.dßn_ - contributes
to the action in order 0(1) (see [14]), so the power counting rule (2.7) is completed by

dßocL~l 7Tl(x) oc Ll-dl2 ; i=l,...,N-l (2.10)

Inserting the decomposition (2.8) in the action and using the rules (2.7), (2.10), we obtain
a series of the form

5 / Cdx Y,{St + St(H)}
" ' S—n

where Si and Si stem from £'sy' and Ö'b\ respectively, and the sum Si + Si(H) collects all
contributions of order 2,(2_<i)'. Accordingly, the partition function becomes

Z N/[dS]e-{s°+S°(H» 1 - £(S, + St{H)) + kZ(St + St(H))}2

In this work, we are interested only in the .ff-dependence of Z, so we absorb in the normalization

constant N an overall .ff-independent factor. Therefore, to calculate the partition
function to 0((L2-df), we need to evaluate 50, S1,S2 and S0{H). S3(H).

First we simplify Ö'y) given by (2.4): the transformation

S-» i+«F-i,{d-2)d2j (2.11)
\S + aF-W-2)d2S\

does not change the form of the Lagrangian but only the coupling constants [14]. This allows

us to choose the (dimensionless) parameter a in such a manner that g\ vanishes. Then only
the terms with F2,g\ ',g\ and g\' contribute to the order we want to consider.

If we apply the counting rule (2.7) in Ö'b\ only the terms with the coupling constants

S, h\ o, h^.o, ^i 2i ^1,2 and ^i,i remain relevant in eq. (2.5).

The transformation

§-. i + ß*F-2d/{d-2)H
(2.12)

\S + ßY,F-™Ad-*)H[

*In the literature the component ir° is often called a, naming the model.
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enables us to put also h\l 0 without disturbing g\ 0, since the latter is independent
ofi?. 12

In addition with the transformation

g _^
S + X^F-2<-d+2^d-2\HS)d2S

~*
|5 4-ASF-2('i+2)/('i-2)(H5)525|

(31
we also succeed in making h\ I vanish. Else it would occur for d 4. There, this last

transformation manipulates S only in the 3rd order, so it maintains the coupling constants

up to the 2nd order, in particular g\ ' h\\ 0

All the three transformations performed above do not change S in the leading order, so

the leading couplings F2 and S remain untouched. The rest of the coupling constants, which
correspond to our special choice of a, ß and A, we denote by g\ etc. In appendix B we

give the explicit transformation formula (B.14), which prove that these simplifications are
possible.

Now S J£(w,QH)dx shall be expanded: 13 14

S= f [—(dßwdßK + dßTr°dßw°) - Etffi007r°

+A$'ff(n°V + fi'VXd^TT + dßir°dßir°) - h[)ÏH2{Çl°\° + fi°V)2

-h™'!!2 + \g^'(dßTdß7L)2 + \g^'(dßTdww)2 + \g^'(dßd2iLdßd\)}dx

If we insert tt°, omit once more the O(N) symmetrical terms of 3rd order and choose

dimensionless coupling constants k\ ke, the expansion of the action becomes:

12Actually the elimination of h^\ is motivated only by the possibility of a space dependent magnetic field

H(x). In our case where H const, this term does not contribute to the action and transformation (2.12)

can be used to make h2 I or h2 0 vanish. We will recall this remark when counting the degrees of freedom of
the counter terms associated with the non-leading coupling constants in section 7 and appendix B.

13The region of spatial integration is always V, unless we indicate something else.

"Throughout this work ~, ~, mean: to an accuracy of 1*', 2ni, 3rd order in (L2~d), respectively.
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S0 Ç / dß7Ldß7Ldx - ZHVn00

Sx ^-J(KdßK)2dx + SSfljK2dx

S2 Ç / tt2(tt^tt)2dx + ^Lj(iL2)2dx d 3

S2 fjK2(K.d^)2dx + ^fLf(K2)2dx

+5k^ / dß-Eßßtdx - gj,y+t-i
+\ J[k4(dßKdßK)2 + h(dßKduK)2 + 2$(dßd2K)2}dx d A

S3(H) ^^J(K2fdx + ^^JdßxdßKdx-^§^[k2(Ci00)2 + k3)} d 2

S3(H) ^^J(K2)3dx + ^^[j(KdßK)2dx-U^(d,,1L)2dx]

+^p* [(fi00)2 /7L2dx - Q°'nok f TVSfe] d 4

Concerning the sign flip of kx, we follow the convention given in [14]. We define the non-
leading coupling constants, however, consequently dimensionless, like the transformation
parameters a, ß, A before. This is achieved by multiplying with the suitable power of F,
which is the only dimension-carrying coupling constant.

In addition the magnetic field is always accompanied by the (dimensionless) constant S.

Actually for d 4 there is also one term of order 5/2 namely:

E#fioiml u f it» \*j-pj—h J it (9mtt) dx

But from the contraction rules it is obvious that this term will not contribute to our three

loop result. So we omit it, although this is not justified in general: if we wanted to calculate
to five loops we would have to include this term, since there its square in the exponential
expansion does contribute.

3 The measure

In the presence of derivative couplings, the step from the classical Lagrangian to the quantum
theory is not straightforward. In the framework of the canonical quantization procedure, the
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problem manifests itself, e.g., in the fact that the interaction Hamiltonian does not coincide
with the negative interaction Lagrangian.

In the path integral formulation of quantum theory, the issue concerns the measure, i.e.
the volume element in the space of field configurations over which we are to integrate. In
particular the finite spatial volume we consider here causes non-trivial contributions.

In the following, we construct the measure by means of the method introduced by
Polyakov in his analysis of the path integrals for bosonic strings [18]. Polyakov introduces
a metric on the space of classical field configurations and defines the measure as the volume
element induced by this metric.

In our case, where the classical configurations are characterized by the field S(x), the
metric is a quadratic form involving the difference dS between two neighboring configurations,

ds2 I I dxdyY^Kitk(x,y;S,H) dSi(x)dSk(y)
i,k

The most important requirement to be imposed on the metric is locality: the support of
the kernel Kij, must be concentrated at x y. In addition, the metric must respect the
symmetries of the Lagrangian - Euclidean invariance as well as the invariance under global
O(N) rotations in the isospin space.

The ansatz
ds2 Ì / dS(x)dS(x)dx (3.1)

certainly satisfies these requirements 15 but by no means represents the general form of a

local metric. In particular, locality allows also derivatives to occur.

To find the maximal generalization allowed by the symmetry requirements, we perform
a derivative expansion and include the magnetic field, as we did for the Lagrangian. This
leads to the form:

d°l lyj{{dSf + J^^dS)2 + jfe-fiaSrvJT (3.2)

+^bj(ö2^)2+...
+bxJ^(dSy(HS) + b2F2{J)nd_2)(dßdS)2(HS) ...}dx

where we introduce new coupling constants for the non-leading contributions. The explicit
discussion of this general measure is given in appendix B. It turns out that all its non-leading
terms only yield physically irrelevant power divergences, i.e. they do not contribute to the
dimensionally regularized - more generally: not to the renormalized - free energy.

In the same appendix we also give the transformation rules of the couplings in the measure
under the field transformations (2.11) - (2.13). They show in particular that the form

15The factor 1/V is unimportant here, i.e. a question of normalization. Polyakov did not include such a
factor; he considers a curved space where it would have violated locality.
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(3.1) does not permit such substitutions: starting from the measure (3.1), they cause non-
trivial changes of all the coupling constants in (3.2) (which are, however, not relevant in
dimensional regularization, since they only affect power divergences). At last we demonstrate
the invariance of the entire partition function to 3 loops - including all possible couplings in
the Lagrangian and in the measure as well as the leading power divergences - under those
transformations with arbitrary coefficients.

It looks as if the quantization of theories including derivative couplings contain a considerable

number of degrees of freedom, here represented by the unspecified constants a<, 6;.

The essential point of appendix B is, however, that the freedom of choice for the coupling
constants in the measure does not mean an increased number of degrees of freedom of the
system.

So it is justified to consider in the main part of this work the simplified measure (3.1),
which yields relevant contributions, as we will see. In this section we give its evaluation in
terms of the collective variables introduced in section 2.

Without consideration of a magnetic field, the set of functions {5(x)} is parame-trized
by the direction of the mean magnetization

M l
IvVfvS(x)dx

- which plays the role of the collective variable introduced in section 2 - and by a set of
coordinates associated with the remaining degrees of freedom, which has to be regularized.

The collective variable may be identified with a subset of the rotation group, namely the
rotations in the planes containing a fixed vector, say e (1,0). There is a rotation fi of this
subset that takes the direction of M into e

rn M- fiTe (3.3)
\M\

This is the rotation needed to represent the general element S(x) of our space of functions
byeq. (2.8).

The non-zero modes we parametrize by a decomposition into a complete orthonormal
system of periodic functions u'n(x) :

**'(*) £„'<(*)«" (3-4)

where n (k,n) runs over the flavours k 1... N — 1 and over the modes

n 'nu ,nj), nM €

The form uxn(x) S'kUn(x) insures the remaining 0(N — 1) symmetry and the prime indicates
that the zero mode is excluded, in accordance with eq. (2.9). The mode functions obey

£/<-(*K.(*)«fc Snm (3.5)
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^Km<(*)ukm(y) 8ik(s(x-y)-~) (3.6)

where 1/V has to be subtracted in eq. (3.6) because of the missing zero mode. From relation
(2.10) we see that the coefficients qn are of order 0(L1~dl2).

In terms of the variables fi, ïr(x) the metric takes the form:

ds2 — —¦ I [dir(x) — uiTt(x)]2dx (ca dQ, ¦ fi — u> inf. rotation matrix).

Inserting the decomposition (3.4) this becomes:

ds2 gTnn8qm8qn + 2gmlSqmujoi + giku,oiuok

where Sq" dq" - —Jk j u\(x)-Kk(x)dx

gmn - àmn + v J [K°(x)]*

IX

.kt„yit„yki1 r t*m(»K(«K(*)*• (»)dx

9„. i/«:w(^w+«l)„
gik 8tk + — / [Tr'(x)itk(x) - 8ikK2(x)}dx

(with summation over double indices). Accordingly, the regularized volume element is given
by [dS] ^/g [d^TL^Lj, where [dir]' U'ndqn and

g det |
9mn 9mi

\ 9kn 9ki

Note that the volume element only involves the components w°* of u>. From definition

(3.3) we get dfhdfh E^1^0')2. This shows that their product is the volume element

on the unit sphere: n^fa0* dfi(fn).

The determinant g can be evaluated perturbatively. Ag is an if-independent factor, so

we need it only to the 2nd order, i.e. to (gn)4. 16

We first write it in the form

g det(l +e) e I m*
J (eab)

\ ekn eki j
where all the matrix elements ea(, gah — 8ab have the magnitude L2~d. Hence:

^/g (etr '"(1+0)1/2 e\tr<-\trS + 0((L*-+f)
16In order to be very precise we had to say that actually in 0"* order the integral over [die]' does not

even occur, so g=l is already the first order and the numeration of the orders is shifted by one. But such a
notation would cause considerable confusion.
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This is the form of y/g we need in order to add —ln^/g to the action.

Gaussian integration yields the contraction rule

< *'(*)**(») >= 8ikj^G(x - y) (3.7)

where G(x — y) is the propagator, which satisfies

- d2G(x) S(x) - Ì (3.8)

The measure can be expressed in terms of G. Hence all the contributions to the partition
function Z are determined by the propagator G and its derivatives.

The most obvious choice for the mode functions u'n(x) is plane waves (Fourier decomposition).

We are going to refer to this decomposition in the forthcoming when we deal with
momenta pn : pnuk —iVu*. This implies the form

n fn

(again the prime at the summation sigma indicates that we omit the zero mode). The choice

of the complete orthonormal system is unimportant and we will often refer to plane waves

only for convenience.

The traces in In^/g, however, contain UV divergences - e.g. the undefined term 8(0) -
so the system needs regularization.

Many regularization schemes are known. They all violate important physical properties
- if this could be avoided, regularization would not be needed. Since the violated properties
vary from one regularization scheme to an other, the question of their equivalence in the
final limit is highly non-trivial.

Our model is very sensitive for the type of regularization; e.g. a sharp cutoff in momentum
space or the Pauli-Villars regularization turn out to be unsuitable, see subappendix A.l.

A better possibility is dimensional regularization [1]. It has been used in [9] and [14],
and also in this work we apply it.

Its essential peculiarity can be demonstrated if we decompose the two-point Green function

into the limit at infinite volume and a volume-dependent correction:

G(x - y) G(x - y^v^oo + g(x - y) (3.10)

The first term is a distribution that takes in Fourier decomposition the form

(2*j3 / d¦Ps~3—• Regularization reduces it to a function GA(x — y), whose Laplacian is a
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regularized ^-function :

S\x-y) -d2G\x-y) (3.11)

At x y this is in general a function of the regularization parameter that diverges when
the parameter is removed, whereas in the particular case of dimensional regularization it
simply vanishes. This happens to all the singularities, which - in case of a momentum cutoff
- contain powers of the cutoff (such as GA(0) for d > 2); there remain, however, logarithmic
singularities (like GA(0) for d 2). For a discussion of dimensional regularization on compact
manifolds, see [17].

Whenever we deal with the singularity structurerefpropzerleg) of the propagator and
refer to dimensional regularization. For technical reasons, however, we are going to consider

a more general construction which keeps track also of the leading power divergence of each

term occurring in other regularization schemes. We will see that the essential properties
of the result still hold for this generalized singularity structure: we show in appendix A
that perturbative renormalization still works and in appendix B we verify the invariance of
the entire partition function under the field transformations (2.11) (2.13). As far as the

power divergences are concerned, we consider only those with the highest possible power of
the UV cutoff (that we denote by A, see appendix A). In divergences of the second order,

e.g., we only include the term oc A2(d~2'> and drop the one oc A''-2 which is sensitive to the
used regularization. Of course the logarithmic divergences that also occur in dimensional
regularization are not discarded.

As a consequence, throughout the main part of this work we assume <5A(z) to act under
the integral like an exact 5-function. This means an interchange of limits, which is justified
for dimensional regularization, but which would be dangerous in other regularizations (the
results without of this assumption are discussed in subappendix A.l).

So we will permit ourselves the luxury of including power divergences such as 5A(0); they
will reveal some aspects hidden by dimensional regularization, in particular it provides us

with very significant consistency tests.

Using the relation,

£E'«»(*)«£(»)U =8>k(8\x-y)-±) (3.12)

a lengthy calculation leads to:

_ V8A(0)-N+1 f 2. 2V8K(Q) - N + 1 r. 2.lny/g ~ ^ Jz2(x)dx + ^ J(K2(x))2dx

N-1 fl
8

(^JlL\x)dx)2 (3.13)

As a consistency test we compare our result (3.13) to the one of [14] (section 6), where
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also in the framework of dimensional regularization - the Faddeev-Popov method yields 17
:

Z N0[dp(m)[[dT]'[M[N-le-s

So |Ml^-1 should be the rneasure for 5A(0) 0. With |M| £ Jir°dx we get:

~ exp ((AT- 1)[- — jlâdx - \{^JTL2dx}2 - ±f&}>**])

This is indeed the 5A(0)-independent part of y/g, so we can affirm the consistency and write:

y/i [dx]' [dq][Mf-' ; [dq] ~ e*«Â<°K,J«,*+JtfJ**^*]'.

In contrast to the Faddeev-Popov method, the integration over the collective variable fi
here only extends over a subset of the rotation group. This difference is inessential, however,
for the following reason. Perform the change of variables k'(x) —> R,kitk(x), where R is

an element of the little group belonging to e (1,0), and replace Z by an average over
the little group. Both, the magnetization and the measure [dq] are invariant under this
transformation. Since every fi £ O(N) can be decomposed as fi RQrn (where fi^ belongs
to the subset specified above), an integral over all elements of the little group followed by
an integral over all directions m amounts to an integral of the full group. Finally, exploiting
also O(N) - invariance of the action: 5(fiT7r, H) S(ïr, QH) we arrive at

Z NJdnJ[dTr}'^e-fc^na)dx (3.15)

where <ffi is the Haar measure on O(N).

The procedure of [14] was first applied in [11] where Hasenfratz finds for lattice regularization

the measure

H'n*(E<) ezp(-X>,r0) exp{(N-l)lnY,<)
i—l XX X

(Xfa sum over lattice points).

In the continuum limit, the last factor becomes const.-]fiM[N~l. The factor exp(— ]CzZn7r°)
has been omitted in [14] because for dimensional regularization the exponent vanishes. In
the present case, the leading power divergence corresponds to

8A(0) — (a lattice constant) (3.16)

17We discuss here the analogue to the Polyakov measure (3.1). Of course a generalization with non-leading
terms is possible for the Faddeev-Popov measure too.
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so this factor becomes:

exp{-S\0)Jlnn°dx) exp V(0) [/V + \jtf)*da ...]) M

The only difference between the lattice regularization in [11] and the regularized
expansion in a complete orthonormal system of periodic functions used here is, as far as the
functional measure is concerned, the representation for the regularized volume element
associated with the non-zero modes.

We have seen explicitly to the second order that the measures of Polyakov and Faddeev-

Popov coincide.

An important motivation for testing the Polyakov method is its applicability to a larger
class of symmetry groups than it is the case for the FP measure. In particular it can be

applied to every symmetry breaking SU(N) x SU(N) —» SU(N), in contrast to the FP
method; for those symmetry breakings it is not known how one could apply the FP method
if N > 2 (as we mentioned in section 1, the case Af 3 is of interest for chiral QCD with
three flavors). 18

4 1-Loop calculation of the partition function

For the 1-loop calculation of the partition function we have to consider:

y/g to the 0th order 1), S0, S0(H) and Si(H). Inserting this in (3.15) we get: 19

Z « N / dQ /[Ar]'e-£ /8rt"«b+Tfl,0-^r I*2**

where we defined:

7 Y.HV oc O(l)
The evaluation of the generating functional is more convenient than the study of individual
Green functions [5]. d — 3 and d 4 needn't be distinguished yet.

With the substitution q" yy-Vp^ + ^^— qn oc 0(1) the second integral only
contributes to the normalization constant, hence

18That the transition to the unitary groups is not straightforward can be seen from the fact that for
SU(N) X SU(N) there is not such a simple invariant as \S\ in the case of O(N), but there is a set of
invariants, which is not easy to handle.

19Here, we clearly recognize the GB mass m2 W^
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Now we have to expand the Jacobian: ^-V(pn)2 + ^^— ^Ld~2(an + jß=?) where

an,ß oc 0(1), an being independent of H.

II '{\Ld-2(an + ^y)} N'[l + ^S;i- + 0((L2-d)2)]

Inserting this, we obtain:

Z « N^cffie^-^v-Efa/ri]) N3YW (7[l - ^Gj) (4.1)

The last step is an identity of the 'modified Bessel function' 20, obeying

W + —W-W 0 (4.2)
x

and Gj G(0) ^*E'n TyjT ¦ We expand this definition to Gk ^ J2'a T^fjï se,s figure

a) I b) \ c)

Figure 1: Diagrams representing the terms: a) Gj b) G2 c) G3 etc.

Eq. (4.1) is the result Hasenfratz and Leutwyler found with a different method [14].

But the 'Jacobian method' demonstrated here is not applicable beyond the 1-loop level. So

for the 3-loop calculation we will follow the straightforward procedure (expansion of the

exponential, Wick contractions).

5 The partition function to 3 loops in 3 dimensions

We first consider d 3. If we insert the results of section 2 and 3, the partition function
takes the form :

S Ne^tj J rffiefa^ + ìaW"00)2 J[d-K\'e-ìFi Ha»^d* ¦

20The identity is / dUein T(f)YN(x) for Q € O(N). The modified Bessel function has the expansion

Yn(x) X)fcL0 k'.r(k+Si (f 1 which is not oscillating, in contrast to the common Bessel function
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{l-^J^d^fdx-^Jedx
+ ^(J(TLdßlL)2dx)2 +

ß ~8^+1(jK2dx)2 + ^r(j(TLdßTL?dx)(jr2dy)

-Çjz'izd^ydx-^JtfYdx
-^^(J(KdßlL)2dx)2(JK2dy) - ^(J(KdliKydx)(Jz2dy)2

ß(ß2- s(N - i))(/^i)3 + E^{J{Kd^dx)(J(Kydy)
48 V3

F2in0\f_2j_slf_2l_a_,2j_., ßP
+-^^(J K2dx)(J K2(Kdß1L)2dy) + M.(Jj^dx)(J(e)2dy)

lU°° J (TL2 fdx - I^i / dßKdßKdx} (5.1)
16V

where

ß 7fi00 + JV - 1 _ V5A(0) and p ß- VSA(0) (5.2)

In the expansion {. ..} only the 7— (i.e. H-) dependent contributions to the 3rd order have

to be included. The rest has been omitted, rsp. absorbed by the normalization constant.
Accordingly for the coefficients ß2, ß(ß2 — 3(TV — 1)) and ßp in the 3rd order - that is: in
the last four lines - only the 7-dependent part needs to be included.

We denote: <...>= Ji-J —-. £ '-

/[Ari»«-**8/<*«>"¦

With < 1 >= 1 there remain 15 terms to be evaluated. To this end we use:

1 f 7, N-l^<yjTL-TLdx> -pä-Gi

<JdßKdßKdx> -^Vd2G(0) ^(V8A(0)-l)

Together with the contraction rules this enables us to calculate the terms in eq. (5.1).
We repeat that throughout these calculations (i.e. throughout section 5 and also section 6)
SA(x) is treated like an exact 6-function under the integrals. For the moment the difference
between the dimensionally regularized system we actually refer to and the more general
singularity structure we also want to consider manifests itself only in the presence of the
term 8A(0).

From the contraction rules we obtain:

1} < ~Çj{*%*)(*%¦**)** > -^a1(V8a(0) - 1)G1 (5.3)

2) <-^Jl2dx>=-^-2(N-l)G1 (5.4)
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Here we recognize the 1-loop result again.

3) < y J(TLdßTL)(TLdßTL)dx) j'(nd^wd^dy) >=(N-1)-I (5.5)

We leave it like this because - as we will see - we don't need to know I explicitly. We just
mention that it contains the term

J2 J(dßGdßG)2dx (5.6)

which can not be expressed in terms of G-functions at i 0. 21

s) ~ < iyv«.»')(»'v'm*i i/ »*»**] >

There are two types of pairing that contribute: we can either contract the two derivated
fields - this situation is similar to 4) - or contract each of them with one 7r (y). The sum of
these two contributions is :

ïfï(™A(°) - W - 1) [(tf - 1)GÏ + |°2] + afï(tf - ^ (5-8>

6) —- < J(¦KiTti)(Ttidßlti)(-Kkdß-Kk)dx >

-^W"1 < (fcÄij + 2^) |(,rV)(irV)<fa >

- -V-^^iN2-l)Gl (5.9)

7) "5V < /(*'*W)<fc >= -^ï(tf2 - DGÏ (5.10)

Now we have finished the first and second order. (A term of order I can easily be recognized

by the factor F~2i.) Except for Gj, G2 that were already represented by diagrams in fig. 1,

there occurs G\ see fig. 2. J2, which is included in I is represented in fig. 3.

a> OO b> cß
Figure 2: Diagrams to: a) G\ b) G\ etc.

2111For completeness we give the result nevertheless. The calculation yields:

1 sh [i(N - 1)(^<5A(0))2 -I- mA(0) - N - 9}G\ + {2(F<5A(0))2 - iVSA(0) + 4}fG2 + 2(JV - 2)VJ2j
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Figure 3: Graph for the term J2. Here and in the following diagrams, greek letters denote

partial derivatives.

The remaining 8 terms are of third order and require more effort. We show the treatment
of the most difficult one that includes all the steps we used for the third order. Then we

satisfy ourselves for the rest by quoting the result of each term.

8) - ^ < J (*%**)(**d„ir1)da J (Tkdvirk)(it%irl)dy J (^ir^dz >

We can reduce the effort remarkably by inserting the I of definition (5.5).

-1 ¦ ^T^ - ^T < [(«b)(cd)][(cf)G,h)][(r|,)] > (5.11)

in an obvious notation: a s: momenta, [ ]: same space-point, same flavor, bold/roman:
dß, dv, | : pairing r s is excluded
Thus r, s have to be paired with a.. .h. For this there are 7 equivalence classes:

i) a — r, c s (class with 4 variants) v) a r, e s (8)

ü) a r, b s (8) vi) a r, f s (16)

iii) a r, d s (8) vü) b r, f s (8)
iv) b r, d s (4)

i) We further distinguish 3 subclasses and get:

7fi00(AT - 1)

4F6V
[(JV - l)(VcTA(0))2 + 2(VSA(0) - 1) + 2 J dßvGdßvGdu]G1G2

-7fì^y ^[(tf - 1)(V5A(0))2 - 2(/V - 3)VcTA(0) + TV - 5]GxG2 (5.12)

ü) and iti) include the factor dßG2 0

iv) Again there are 3 subclasses. Using J dßGdßGdx — G\ we find:

- 7"00^6~ 1}
((tf - 1)(^A(0) - 1)G\ + 2(VSA(0) - 1)^ + 2Gl) (5.13)

In the remaining classes, r and s are connected in a mixed way to the x— and y—block, i.e.
the factor / G(x — z)G(y — z)dz occurs:

1 r eipn(x~z}\ t e'P^(y-z)\ i Jp*(x-v)
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a)e
Figure 4: Diagrams for : a) J3 b) T3

Explication of the notation: G(x) £fa GW -AGW => -a2ó
m>,+J>i|m=u ' —\-> dm2

G, G(0) G2, G(0) G3 etc. (see appendix C).
As in i) we denote u x — y. Then in v)... vii) there occur integrals over 4 G-functions of

u, whereby one dot and four partial derivatives (two by p and two by u) are distributed in
all possible ways. So we have to deal with the terms:

T0 JG(dlwG)2Gdu
r2 JGdvGd^vGdßGdu
r4 / G2dßvGdßVGdu

Ti / dßGdwGd^GGdu
T3 J dßGduGd„GdßGdu
r6 / GdßGdvGdßvGdu

(5.14)

With partial integrations all these quantities can be expressed in terms of one of them; we
choose r3 J2/4).

To -\G\ + (8A(0)- ±)GxG2-^G3
M 2(—yGiG2 + -^G3 + ^yJ3JrT3)
r2 |(Gl - v-7») ~ 21"3

r4 |(2Gf +1 j,) + r3
rs -i(G? + £j,)-ir,

?J3 + r3

(5.15)

where J3 f G3(u)du

Thus we can express everything through G1,G2,G3, J3 and T3, represented in figures
1, 2 and 4. The occurrence of precisely these terms in the 3rd order is consistent with the
massive expansion in [9], as we show in appendix C.

We continue to decompose the equivalence classes in subclasses. Each of them contributes
a summand to:

") -^(tf - i)[(^A(o) -i)2fe + Tvr0 + (tv + 2)rx]
vi) ~^(N - 1)[(V8A(0) - 1)10,02 + *±2(G? - iJ3) + (f - l)r,)]
vii) -^(N-l)[Gl + Nr4 + (N + 2)Ts]

If we insert the identities of the T's and add up we arrive at

FSfi00 -vfi007 <[(ab)(cd)][(ef)(gh)][(r|S)]>=-lfa-(TV. -
16 4i?6

{[(TV - 1)V5A(0) 4- j + j]G3, + [(TV - 1)(V£A(0))2 + 12V£A(0) - TV - 13] ^G,G2

+ [(VÓ»)2 - 2V8A(0) + 2] ±G3 -^ J3 + 4(TV - 2)r3} (5.16)
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9). 15) can be treated in the same way following Wick's theorem: determination of the
classes that avoid summation over linear momenta, decomposition of each class in subclasses

corresponding to the possibilities to pair the remaining fields. No further term is as lengthy
as 8), and exept for 11) the results include only propagators at 0. We write them down such
that each line stems from one equivalence class.

9) -&(™A(0) -1){N - l)i{N -1)2G> + e{N - ^vGi°2 + vM
F(tf-l)[(tf_l)G» + 2_GiGj

"GiG2

4JT2V yLv j i y
/?2(TV-l),

2FaV
(There is a fourth class but its contribution vanishes.)

/3(/32 - 3(TV - l)i ix. 3 .„ .6„„ 4
10) - "48v3 (^ -* - W + (" - tf™* + V2^

-vfi00 r 4 1

n) Y^{V8A{0) *1){N* - 1]\-{N ~1)G? + vGlGi\

For the latter we used : f G2dßGdßGdu -(G? - —J3)

-vO00 r 4 n

12) ^"(™A(°) - lXN* - *) [(tf - ^ + vGlG2l
-vfi00

+ |^(tf2 - DO!

13) -^(TV2-1)[(TV-1)^ + ^02]i^i^-D^-^ + f
11 i), 12 i), and 13) are essentially based on the same calculation.

-vfi00
14) -7^(tf2-l)(tf + 3)G?

16F6V
1001

15) _Tfa^i(TV-l)(V5A(0)-l)

Having completed the evaluation, we add everything up and the factor < {.. .} > in eq.
(5.1) takes the form:

<{...}>= 1 + (tv - i)[Ml + p2 + 7fi00(i/1 + u2 + u3) + (jn00)2(P2 + p3) + (7fi00)V3]

where the indices correspond to the order of magnitude. If we lift this up to the exponent
we get

<{...}> S* const. ¦ exp{(N - l)[(o, + a2 + a3)7fi00 + (ß2 + ß3)(jSl00)2 + 73(7fH3]}
where the const, is //—independent and

cti ui, a2 u2 - (TV - l)fiiVi, a3 v3 - (TV - l)(vxp,2 + pxu2) -\- (TV - 1)2/j2j/i
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TV - 1
ßi Pi —v\, ß3 p3 - (TV - l)(pip2 + uxv2) + (TV - l)Vi"i2

(TV - lì2
7s o-s - (TV - l)i/lP2 + i 7~^i

The most complicated contributions, p2 and u3 only occur in a3. There the ugly term X
cancels, so it was justified not to insert its evaluation.

Now we actually have a representation of Z, but we prefer to have the same form as

in section 4, i.e. we want to transform the integral on the unit sphere in the iso-space,

JdÙe^+ïëvWrexpl..} to the form e'l+^+'S /cZfie^t^.+^).
This can be realized making use of the differential equation (4.2), as we outline in

appendix D. The result is

81 0, 8'2 (N-l)ß2, S'3 (N-l)(ß3-(N-l)j3) + %
el (TV - l)ai, t'2 (TV - l)(a, - (TV - l)ß2)
4 (TV - l)[a3 - (TV - l)ß3 + (72 + TV(TV - 1))7, 4- (TV - l)2a^2 - £]

Inserting everything we arrive at the final result

Z g Nefr<»+»*> y,, (7[i + |L +iL + iL]) (MT)

e, ^Gj (5.18)

TV- 1
S2 ~^-G2 (5.19)

£2 (tf-l)(tf-3)(_G2 + |Q2) (,20)

<* ^(V^2"^)^ (5,1)

£3 (^_1){(tf-3K3TV-7)(_G3+6GiG2)_((iv_3)(iv_4)+72)J_

-^j3_(^_2)r3_W0)-^ifa^} (5,2)

It is not surprising that all the contributions are proportional to the number of flavors,
TV — 1, except for the terms with k2 and k3, which do not stem from a coupling of 7r-fields.

On the other hand we notice a repeated appearance of the factors (TV — 3) and (3TV — 7) that
can only be interpreted in the context of renormalization. Even more striking is that there

are many terms occurring in the course of the calculation that cancel at the end. Already in
the first order the (//-independent) 6:A(0)-contributions of the measure and the action just
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compensate each other. Further examples for such terms are in 82 : NG\ and G2. We write
82 : (TV, 1)G\ etc.

82

S3

£3

(TV,1)G2 e2: (N,1)V8A(0)G2, (N,1)8A(0)G2, (TV2, TV, 1)VJ2
(AT2,TV,1)V5A(0)G?, (N3,N2,N,1)G3, (N,1)SA(0)G1G2, N3G1G2/V
(N2,N,1)(VSA(0))2G3, (N2,N,1)VSA(0)G3, (N,1)(8A(Ù))2VG1G2
(TV2, TV, 1)5A(0)G1G2, (TV, 1)5A(0)G3/V, (TV,l)VJ2Gx

This long list of canceled terms exhibits a remarkable property of the system. The vast part
of it would have been ignored if we would have restricted ourselves to the terms that really
appear in dimensional regularization. We will see that all these cancellations of measure and

Lagrangian are strictly required by the perturbative renormalizability of the structure that
includes the leading power divergences.

6 3-Loop expansion of the partition function for d=4

The difference in the expansion of d 3 and d 4 is due to the magnitude of the terms
with the coupling constants fcj fc6. Generally, the terms with k\ ks are all oc ^, which
means of 3rd,2nd order for d 3,4 respectively, and the A:6-term is oc L~4, i.e. of 4tht2nd
order for d 3,4. Thus for d 3 only the //-dependent terms with k\,k2,k3 had to be

taken into account. For d 4, however, those terms contribute to the 2nd and 3rd order and

additionally contribute mixed terms with the first order in the exponential expansion. The
latter is also true for the k4 fcg-terms, so we have to include three coupling constants more
than in section 5.

We write down the expansion of the partition function as in (5.1):

Z 2 Ne^/</fie-ft00 + t2fÄ>/[^]'e-^M-)^.

{1 - ^yj^dx - Ç J(Kdßn)2(l + fa)<Tx - £ J(lâfdx - N "^ ß- (/l^x)'
4-— [J(7LdßK)2dx) - ~*p2y J dßltdßTLdx 4- — J z2dx J(z_dßTL)2dy

-j/[M^m2l)2 + h(d^dvlL)2 + k6~(dßd\)2}dx

-£r3 [j^dxf - g£ [JK2dx)2J(^_)2dy - f£ (/*'«**) (J(^_)2dy)2

+ßS-1 *-2dx M*)v* + ï&ï / *'*> Jtf^y + ßA^ (/ **dxî

+
/37fi°% f_2j_ fD_D_^ 7«'00

1 y t TU r r- I 7L2dx I dßTtßß-K_dy Ar -—r I K2dx I [^(d^Trd^Tr)2 + h(dß-n_d„Tt)2\dy

+^ J(K8ßK)2dx J(K2)2dy + 2^JÜ J(KdßK)2dx J(dvI_)2dy
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7ß00^ f 2,a m, 7"00 r, 2,3J 7«00fci r, a s2J (fn°°)2k2 r 2J+ ÏMÎ J *\d^)2dx -1—] (K2fdx - 2-— J (tf^dx - L_J_ J *-2d*

+^fi0ifi°* / *V«lx +^ / ,2dx J(dßd\)2dy} (6.1)

where ß and p keep the meaning given in definition (5.2).

Most of these terms have already been evaluated in section 5 (identically or only with
different coefficients). We just discuss the new ones.

First we define two new distributions :

DA(x) -d2SA(x) d2d2GA(x) d282G(x) and AA(x) -d2DA(x) (6.2)

In the framework of our decomposition G GA + g, where — d2G SA — 1/V, we find
d2g(x) 1/V and DA(x), AA(s) are volume independent.

At x 0 they are pure power divergences, stronger than those introduced before:

^ZpI AA(0) iD\0)=±J:pI AA(0) ^E(P«)2

They vanish in dimensional regularization but as in the case of 6rA(0) we do not omit them.

In addition we define:

Gßv dßdwG(x)\x=o

Then we find to the
2nd order

-H < J(ö*dto*l)(ftdA*)<fc >= -(T^1 [(tf - 1)(V8A(0) - l)2 + 2V2(GM„)2]

-f < jd^d^a^d^dx >= -yy^[(V6A(o) - l)2 4- TVV2(G^)2]

-#* < J dßd2z.dßd2Kdx >= fc6^VAA(o)

3rd order

< &^f^dxJdßiLdßzdy >= ^^(N - 1)[(TV - 1)(V5A(0) - 1) + 2^

^- < U rti(x)Tti(x)dß^(y)dß^(y)d^k(y)du-Kk(y)dxdy >

^(tf - l)[{(tf - 1)(^A(0) - l)2 + 4(V£A(0) - 1) + 2V2(G„„)2}(TV - l)Gl
+8VGßuGßu]

where we have used : / dßGduGdu Gßu

*g± < Sj7ti(x)Ti(x)dß^(y)d^(y)dßitk(y)d^k(y)dxdy >

^(tf - l)[{(tf - 1)(^A(0) - I)2 + 4(V5A(0) - 1) + TV(TV - 1)V2(G^)2}G!
+1NGßuGßv]

ySÌ2Vkl < /(3l9M7r)(x9M7r)rfa: / d^nd^ndy >

^(tf - l)[(tf - 1)(^A(0) - l)2 + 4(V8A(0) - l)]Gx
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where we inserted / dMUGdßl/Gdu 8A(0) - 1/V.

$ft < jK2(dßndßK)dx >= *fò(N - 1)2(V8A(0) - 1) G,

£$k < /[fiwfiofc7rV* - (n°°)V]ix >= £$[1 - TV(fi00)2] G,

^ < x2^ / dßd2Kdßd2Kdy >= ^>(TV - 1) [ - (TV - 1)G, VAA(0) -f 2Z>A(0)]

So we found in connection with the new coupling constants k+.. .kg also new kinds of
terms: (GM„)2 and GßvGß„ - see fig. 5 - are associated with kt,k5 and include a regular
contribution. Their occurrence is again consistent with [9], see appendix C.

M

2//u( J j if H W
2f

Figure 5: Diagrams for GßvGßv and Gßl)Gßv

ks contributes the remaining new terms VAA(0), GaVA^O) and £>A(0) that vanish in
dimensional regularization (i.e. they can not be found in [9]); so the coupling constant k6 is

physically irrelevant. (It can easily be seen that this is true to all orders of magnitude.)

But the new terms don't prevent us from following exactly the same procedure as in
section 5. We add all the summands of the integrand of Z, heave it in the exponent and

remove the parts with (fi00)2 and (fi00)3 according to appendix D. Thus we arrive at the
result:

Z S Ne*«***) «,^[1 +£ + £+*]) (6.3)

«i -^Gl <6-4)

.2 - ^G2 +^ (,5)

*2 J"-y-S) (Gl - 1g2) - ^[(V8A(0) - l)kl + k2] (6.6)

'3 - (tf-D^G,-2^,^) CT)

£3 (JV_1){_(tf-3)(3TV-7)(G3_|GiG2)

(TV-3)(TV-4)+72r TV -3
Ï2Vi °3 - 1ÜTJ3 -{N- 2)Ts



Bietenholz 659

+ ^7[(tf - l)V5A(0)fc! - (TV + l)(fc, - fc,) 4- (V5A(0) - 1){(TV - l)fc4 + *,}]<?!

+(fc4 + yfc5)GMJ,G^ + ^6Tfa(0)} (6.8)

Now we have completed the evaluation of the partition functions for d 3 and rf 4 to the
3r order. We repeat that for dimensional regularization we can omit 8A(0) and £>A(0), and
as a consequence the coupling constant k6.

If we want the 2-loop result we simply neglect 83 and e3. Then the difference of d 3

and d 4 are only the additional terms of the latter with kltk2,k3. The 2-loop result has

been given already in [14]. There one finds in the appendices also a description of methods
and results for the numerical determination of </i and g2, the regular parts of G\, G2.

As new cancellations for d 4 we can report:

83: (TV2, TV, 1)^(0)^
e3: (N2,N,l)SA(0)k1G1, (TV2, N)k1G1/V

(TV2,TV,l)V(5A(0))2G1(fc4,fc5), N2(8A(0),±)k4Gu N(8A(0),^)kiG1
(N,l)k<V(Gßl/)2Gu (N2,N,l)h(Gß„)2Gu (N2,N,l)G1k6VAA(0)

Again the power singularities are strongly represented in this list, in particular there are

very few 8A(0) in the final result - even though we met whole polynomials of V5A(0) in the
calculation - and AA(0) does not show up at all.

All this is part of a sensitive consistency check, because only due to this cancellations
even the generalized singularity structure we consider is perturbatively renormalizable, see

appendix A.

7 Perturbative renormalization

Now we are going to verify that the results obtained in sections 5 and 6 fulfill the
constraints imposed by renormalizability 22. We repeat that for the singularity structure we
refer to the decomposition (3.10). Most singularities of our system of leading divergences
are power divergent (i.e. physically irrelevant). In this section we restrict the consideration
to the relevant singularities that really occur in the dimensional regularized system. The
remarkable property that even the generalized structure we dealt with so far is perturbatively
renormalizable is discussed in appendix A.

We apply the "mass independent" renormalization prescription, that sets all the finite
parts of the counter terms zero [20]. This prescription is preferable especially in view of the

22Foi brevity here we write sometimes "renormalizability" where we actually mean "perturbative
renormalizability", as specified in section 1.
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/3-functions [19]. In the path integral formalism, the rescaling of the fields to be integrated
over can be absorbed by rescaling the source accordingly [19]. But since H only occurs in the

product E//, it suffices to renormalize all the coupling constants, where Er/7 actually means

(E//), (the subscript r denotes the renormalized quantities). On each of the three levels, the

couplings should be able to absorb the divergences without picking up a V-dependence (see

section 2). The volume independence of the counter terms is the constraint that provides us

with the non-trivial check of our results.

For the subsequent discussion we introduce a measure for the degree of divergence. Let A
be a characteristic regularization parameter with the dimension of momentum, so the non-
regularized system corresponds to ft™ ^ (In the naive momentum cutoff "regularization", A

would be the cutoff, or more generally a characteristic length of the support in momentum

space, e.g. for a smooth cutoff. In a lattice regularization A would be proportional to the
inverse lattice constant, etc.) Then we can express the degree of divergence in powers of A.
We recall that for dimensional regularization only the singularities oc /nA remain and that
we only consider them in this section.

It is required by the concept of low energy expansion and included in our Bessel
representation that after renormalization the leading coupling constants E and F coincide with
the bare couplings, so we don't need to renormalize them here.

This is not true, however, for the non-leading coupling constants kj. There we make the
ansatz:

kJT kj + K0,j liQj oc InA (7-1)

where in the counter terms Kq,j the "mass independent" renormalization prescription excludes

additional (finite) terms.

(SffV)2
The partition function has the form Z Ne f* n YnCSHVpi) Hence the renormalization

has to provide:

E,-plr E-Pl (7.2)
E* E2

Fi
¦ P2' - F4-^¦P2r ™-P2 (7-3)

where in p\T, p2r all the singularities are removed. We are going the evaluate these two
equations order by order.

In the first order there are no counter terms available since only the leading coupling
constants are involved. This is in accordance with the fact that the 1-loop result does not
contain singularities; GA oc Ad~2 vanishes in dimensional regularization (both, for d 3 and
d 4).

For the second and third order, d 3 and d 4 have to be discussed separately. We

start with d 3 :
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Gn|K-oo diverges if 2n < d. Then we regularize it to 23 GA oc Ad_2n and G„ GA-fgn(V)
This concerns for d 3 just Gi, whereas G2,G3 are regular V-dependent functions.

As a consequence the partition function has no divergences even to the second order, in
agreement with the observation that there are still no counter terms available.

For the remaining terms that contain integrations over V, a corresponding decomposition
is more complicated. Let J be such a term: J fv T(x)ddx which shall be brought to the
form J j(V) + ^2i JAji(V) JA being V-independent divergences (that can be absorbed

by the renormalized coupling constants), and j, jt being regular. T is some combination of G-

functions. Their decomposition into GA(x) + g(x, V) yields the form T Y,k TA(x)-tk(x, V)
where the tk are regular functions, whereas the TA depend on A but not V. If TA oc A"' and

tk oc L~bk, then (ak + bk) will be fixed for all k, since A has the dimension of a momentum.
This also means that close to the origin TA(x) oc x~"k Thus only the summands with
ak > d are really singular for A —» oo (if tk(0, V) ^ 0) 24 the rest contributes to j.

For the treatment of those singularities, let's call them JvTA(x)ti(x,V)ddx, we apply a

technique that was similarly used in [9]. Let 5 be a sphere around the origin inside the box
V. If we decompose Jv into Js ¦ ¦ ¦ + Jv-s ¦ ¦ •> onty the nrst integral is singular (at x 0);

the second one can be added to j. Let t\ be the Taylor expansion of ti(x) around x 0 to
the order ai — d (its coefficients depend on V); then we write the singular term as:

Js TA(x)[ti(x, V) - tf\x, V)]ddx + Js TA(x)tf\x, V)ddx

The first term is regular and contributes to j. Finally:
JsTiA(x)tf\x,V)ddx JiRaTtA(x)t{°\x,V)ddx - flR*_s... ¦ We include the last term in

j again, and the integral over the entire Euclidean space is the desired JAji(V) ; JA is

independent of V, with a leading divergence oc Aa~d. 25

That this procedure corresponds to the decomposition of the Gk described above can be

confirmed if we apply it on fv(G(x))2ddx G2; we arrive at the same G2 (for d > 4).

With this concept, we investigate the structure of

TrJz=hi [GA3 + 3GA2<7 + 3GA92 + g3]d3
V V Jv

We look for singularities close to the origin where GA(x) oc 1/x. Only the first term is

singular. We find:
J3 JA + j3 where JA oc Ink

23For d 2n GA becomes oc /nA, i.e. relevant for our discussion. This is also the meaning of A with
vanishing power in the following.

24The generalization for the case tk(0, V) 0 is straightforward.
25We introduce the sphere 5 instead of just writing Jv TtAt[0)dx /RJ T^t^dx-J^t^ T^tfdx because

it permits an additional selection of the singularities, as we will see.
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The singularity JA survives dimensional regularization, so it must be renormalized, see below.
Our most complicated term is T3 / dß(GA 4- g)dß(GA 4- g)du(GA + g)dl/(ÒA + g) d3x. g(x)
is an even function, so dßg cxß + c"'3"'xax^x7 + ¦ ¦ ¦ (from section 3 we know: dßvg[x=0

8ßJV - c=i).
About g(x) we know: dßg(x)\x=0 0, dßUg(x)\x=0 —8ßi,gi so ö„<7 has the expansion:

dvg —g\Xv -f c'"0''xaXßX1 + ¦ ¦ ¦ Applying this we find:

r3 rA + TA9l + rA^ + 73 where : rA oc A3, rA oc A2, rA oc InA, l3 regular

It might seem that there is also a singularity oc A associated with c', but the corresponding
volume-dependent factor vanishes as we see when we integrate over 5. This happens to all
the non-covariant terms. In addition only TA is relevant for the present discussion.

The 3™* order of pi, p2 is denoted by ^5"£3, jîS3. Inserting the result of section 5 we

see that in 83 there are no logarithmic singularities, so we find for the counter term the
constraint:

Ko,2 4- Ko,3 0 (7.4)

Exploiting in the same way the 3rd order of (7.2), we arrive at:

«0,2 - «0,1 ^^ JA + (TV - 2)rA (7.5)

We conclude that the set of counter terms {«o,i, «0,2, «o,3} is submitted to the two
(independent) constraints (7.4) and (7.5), so the counter terms keep one degree of freedom.
But as we mentioned in section 2 we could have used the transformation (2.12) to eliminate
either k2 or fc3: if we do so, i.e. if we exploit maximally the freedom of choice of the fields to
reduce the number of coupling constants in the Lagrangian (for H const.), then the two
remaining counter terms are uniquely determined.

Now we carry out the procedure for d 4.

In the final result of section 6 there are three terms that contain a singularity in dimensional

regularization:

G2 GA4-52

Js Jb9i+js
r3 rA^1 + 73

and the renormalization involves already the second order of eqs. (7.2) and (7.3). We insert
the results for S2 and e2 :

«0,2 + «0,3 —^-~G2 (7-6)

«0,1-«0,2 - ^f^GA (7.7)
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The 2-loop results of d 3 and 4 are alike, only the fc,-terms are one order higher for d 3.

It is remarkable that on the other hand the mechanism of renormalization is much different.
Here G2 is divergent, but the counter terms /c0j allow it to occur in S2 and e2

Third order

If we insert S3 in (7.3) we make the interesting observation that the constraint (7.7) is

identically repeated.

In the third order of eq. (7.2) also the counter terms associated with fc4, k^ occur 26.

If we insert £3 and apply eq. (7.7), only the new counter terms remain and and can be
determined:

- mhr, -7 {^T^fa - fafa - *» - >«l«0,4

«0,5

(7-8)

Actually there are three constraints imposed on {«0,1, «0,2, «0,3}, but only two of them
are independent, so the set {«0,1... «0,5} keeps one degrees of freedom. However, if we
eliminate k2 or fc3, then all the counter terms are uniquely determined, as for d 3.

In summary we repeat that perturbative renormalizability can be affirmed on all the three
levels of magnitude, for d 3 and d 4. This we could demonstrate in the framework
of dimensional regularization without determining the singularities (nor the regular terms)
explicitly.

If we reduce the number of coupling constants in the Lagrangian by means of field
transformations to its minimum, then renormalization can only be realized due to the coincidence
of various constraints imposed on the counter terms, which are associated with the remaining

coupling constants. In this case, all the counter terms are determined uniquely, both for
d — 3 and d 4.

8 Conclusions

We have investigated the non-linear cr-model in 3 and 4 dimensions, describing a system of
Goldstone bosons in a large but finite volume and in presence of a weak magnetic field of
the order of the inverse volume (such that the Goldstone bosons feel the finite size strongly).
The corresponding partition function is perturbatively renormalizable as we have shown

explicitly to 3 loops.

Here and to all order no counter terms of k$ are involved in the renormalization.
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We can also confirm the applicability of Polyakov's functional measure that contains
relevant contributions in terms of the finite size. Referring to dimensional regularization, an

arbitrary linear combination of further invariant terms can be added to this measure without
yielding any contribution to the action.

The explicit three loop results for the large volume expansion of the source dependent

part of the free energy are given for spatial dimension d 3,4 in section 5, 6, respectively,
without specification of the isospin space dimension TV. They take a particularly simple form
for TV 3 (Heisenberg model). They provide a basis for the interpretation of Monte Carlo
results, in particular for their extrapolation to infinite volume.
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A Perturbative renormalization with power
divergences

In this appendix we are first going to show that the results of sections 5 and 6 are
perturbatively renormalizable, even if we include the leading power divergences of all the singular
terms, as specified in section 3. In the second part we add some remarks about other
attempts to regularize our model.
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The property of perturbative renormalizability with leading power divergences is much

more general than the one shown in section 7 where we restricted the discussion to the
terms that occur in dimensional regularization. The latter could be deduced from this
appendix as a corollary. The generalization, however, suffers from the problem that we do

not know a regularization scheme that leaves us exactly with the divergences we include here.

What we consider are the terms that all regularizations displaying power divergences have
in common. So we are not very surprised that this structure is meaningful. On the other
hand the generalizability is remarkable, since there are many divergences involved with many
different volume dependent prefactors. Hence the constraints imposed on the counter terms
become very narrow; in particular various counter terms are actually overdetermined by the
number of constraints and renormalizability only holds due to the coincidence of several of
them. This coincidence requires very special relations among the coefficients of the terms
occurring in our results, which provide us with the highly non-trivial check announced in
the introduction.

Like in section 7 we use the "mass independent renormalization prescription" which does,

however, not affect the additional counter terms we include here. They will be expressed
in positive powers of Ad~2/F2, where A is the characteristic regularization parameter (of
dimension of a momentum) introduced in section 7.

We will proceed in a manner that does not only show the renormalizability by determining
the counter terms explicitly, but also the significance of this property. Starting from the £

loop result (£ 0,1,2) we make a quite general ansatz for the (£ + 1) level - including
all the terms occurring in the calculation to this level - and examine, which constraints

renormalizability imposes on its coefficients. Although some coefficients are arbitrary from
this point of view, a lot of them are determined exactly: from the beginning many of them
must be zero (in accordance with the long list of canceled terms given at the end of section
5 and 6) and for £ 2 we can even "predict" non-vanishing coefficients. 27 This clarifies the

meaning of the result and gives a sound basis for the conclusions about the multiloop terms

(/ > 3).

As a general ansatz for the renormalized leading coupling constants we write:

Er E(H-<714-<72 + o-3...) (A.l)
A(d-2)n

Fr F(l + /i +/, + /»...) ^,/n«-^-
where E,F are the bare couplings and an, fn their associated counter terms. The renormalized

non-leading coupling constants can also contain logarithmic counter terms (known from

2 As we will see, the renormalizability does not depend on any special ratio between different singularities
of the same power. This justifies the predictions mentioned above. If we could assume this independence
of singularity ratios also to higher orders, we could immediately predict the coefficients of various multiloop
terms, such as G\, G\~2G2/V, (k 4,5 etc. However, we have no prove for this assumption.

Hence for exact predictions we would need a general prove of this assumption as well as the assumption
that the singularity structure we consider is really renormalizable to all orders. So we write "predictions" in
inverted commas.
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section 7), so there we write:

A(d-2)n
kjT kj 4- «oj 4- «ij -I- «2,j + • • • «oj oc /nA k„j oc (A.2)

Again we discuss order by order eqs. (7.2) and (7.3).

First we consider the 1-loop result of section 4; here only (7.2) is involved. It takes the
form:

S(l -h *i -K..) [ 1 - ^f;-^ y. Si) S (l - ^r(GA + 9i))N-1
2(F[l + h + ...])

This may be exploited to the first order (oc F~2) :

-i ~l^Gi (A-3)

So the 1-loop result is renormalizable and fixes 0\. Now we wonder, how significant this is,
i.e. which subset of the possible 1-loop results can be renormalized.
A general ansatz is:

Pt 1 4-
ai "tf"'1 G1 where P0il £ aM(V5A(0))*

aj and a^i being arbitrary constants. The V-independent part yields:
Ol jkGA and the V- dependent part: akxl 0 (V k) Thus we already have non-trivial
constraints, although the renormalizable class is quite large up to now.

We consider d 3 and list the singularity structures of the divergent terms occurring in
the 3-loop calculation:

Gi GA 4- gx ; GA oc A gx regular

* la + /*£ + j* ; It <* aS. It « A2, j, regular

J3 — JK -f-Js ; -TA oc /nA, js regular

Ts rA + rA3l + rA ± + 73 ; rA oc A3, r6A oc A2, TA oc ln A, 73 regular

Presuming the already exploited 1-loop result, a general ansatz for the 2-loop result is:

Pi l- Zfè-Gx + j*{(a2 + Pa,2)G\ + bA^G2 + (t + PT)VJ2}

P2 (5, + P&,2)G\ + ^G2 + (t + Pf)VJ2

where the P's are again polynomials in V<5A(0). For px we have to consider the second order
of (7.2) :

N-1
°"2 - -JpT9i{<ri - 2/1)
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j^{(a2 + Pa,2)(GA2 + 2GA5l) + Pa,2gl + ^G2 + (t + PT)(V/A + /A) + PTj2}

We conclude: PŒ|2 Pß t PT 0, a2 a2G^2/F\ f1 (f- ^)G^. a2 and 6

are arbitrary. The required cancellations are achieved, thanks to the compensation of the
S (O)-contributions of the measure and the Lagrangian. Inserting oi, a2 we get:

(TV-l)(TV-3) TV-2
2 " 8PÏ ' /x " "Tf^" * }

Now also (7.3) must hold to the 2nd order (oc F~A). The renormalized side can not
compensate any divergent terms, so the general renormalizable ansatz is just: p2 b G2/V.
This is indeed what we found, with 6 (TV — l)/4

Third order

Here the constraints imposed by renormalizability develop for the first time their full
power. They no longer only exclude certain terms and cut off the polynomials in (V8A(0))
in the coefficients, but also "predict" the exact values of non-vanishing coefficients.

The 3rd order of px, p2 is denoted by -e*£3, 4î83. As a general ansatz for e3, S3 we take

an arbitrary linear combination of the terms :

Gi, yGxG2, yïG3, ykj (j 1,2,3), yJ3, r3, and VGxJ2
where again the coefficients include polynomials in (V8A(0)). Presupposing the 2-loop result,
the 3rd order of (7.3) requires that in S3 a lot of contributions vanish and fixes the form:

(TV-l)(TV-3) fa^^I^VJn*3 -^ GxG2 4- — G3 4- y(rJ3 + 2^d3ki)

which is in accordance with section 5. c is arbitrary and if we insert the result in the

remaining constraint: ^2jdjK0j fJA we arrive at eq. (7.4).

Exploiting in the same way the 3rd order of eq. (7.2), we find for e3 the form :

(N-l)(N-3)(3N-7)( 6 * c
£3 (-G14--G1G2j4-^iG3

+ ^Y,{d> + V8A(0)dx,J)kj + lyJ3 + sr3
j

where c, dj, dx,j, r and s are almost arbitrary. Again the specified coefficients are in
accordance with the result of section 5.

So to the 34 terms that had to vanish non-trivially for d 3 we can add 3 more coefficients
that precisely take the only value that permits renormalization of the structure we consider.
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The counter terms are

- - -j^((w"T""G"+<,<°»t-+"v-2«) <A5>

A - -^fafafa' + r0 <A6>

£ <*,-«<>; rJA + srA (A.7)
3=1

Inserting the explicit result in eq. (A.7) yields constraint (7.5). We note that for TV 2 and
for TV 3 the counter terms take a particularly simple form.

Now we carry out the procedure for d 4.

Since no confusion is possible, we denote the parameters equally as for d 3, as we

already started to in section 6 and 7. So ak, b, c etc. have a local meaning for the dimension

we are discussing at present.

The singularity structures of the terms occurring up to the 3rd order take the following
form:

Gx GA 4- Si GA oc A2 (first degree of divergence)
G2 GA 4- 52 G£ oc /nA

h =lt + ltv + ltv*+h, /AocA8,/AocA4,/Aoc/nA
J3 Jt + Jb9i + J3 Jt <* A2, Jt oc /nA
r3 =rA4-rASi + rcAf + rA^i + 73

rA,rA,rA,rA oc A6,A4,A2,/nA (respectively)
Gßu -8ßu SA(0) + gßv 5A(0) oc A4

GßV -8ßV GA + gß„ GA SA(0) oc A2

DA(0) oc A6 ; AA(0) oc A8

where the last term is regular everywhere.

The general ansatz for £2 has to be extended to:

3

V
C2 (a, + Pa,2)G\ + b-^G2 + 1 £(4 + Pdj)kj + (t + PT)VJ2 + (r + Pp)VAA(0)

3=1

and again the same for S2, with a2 etc.

From the 2nd order of (7.3) we see:

öj Pd2 Pß Pj. t Pf v Pß 0, Ej djKoj bGA

(except for this, dj and 6 are free). Inserting what we found in section 6 we arrive at eq.
(7.6).

-.A
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From eq. (7.2) we can only conclude: Pa2 Pß — dk>1,j t PT r pp 0.

This time already in the 2nd order 8A(Q) can occur, and indeed it does. The rest is almost
free, and:

», ir,{^Oi' + S'{0)-£d,jkj}

- -'"faifaV-^VW (A.8)

>¦ FÎl+^°n=-^f (*¦»)
3

X;^«o,j bGA (A.10)

Eq. (A.10) contains the slight restriction of the freedom announced above and leads to
constraint (7.7).

Third order

This time the ansatz for e3, S3 is a linear combination of the following terms:

G3, fGiG2, ^G3, fkj{j=1...5), fJ3, r3, VGxJ2, GxV(Gßv)%;(i 4,5),
Gß„Gßvkj (j 4,5), fc6Z>A(0), fc6G1VAA(0).

In 53 once more most terms have to vanish. Omitting them it just remains:

F2(2<7i - 4/i)(^is2 + k2 + k20 + k3 + «3,o) 4- «i,2 + «i,3 4- E ëj«o,j
fe3(GAGA + GA52 + gxGA) + GA E 2/*i

Inserting the counter terms known from the 2nd order, we find :

(TV -1)(N -3)k3

^l^oj 63GA (A. 11)

«1,2+ «i,3 jf{N - l)(kx - k2)GA (A.12)

As we mentioned in section 7, eq. (A.11) reproduces identically the constraint (7.7). In
addition we see now that also constraint (7.6) has been repeated.

Eq. (7.2) causes more work; generally there we can exclude less quantities because it
starts from the tree-level. A lengthy book-keeping yields in the pure Gn sector what we got
for d 3 before, but beyond that some novelties:

£3 {N-li{N-3){3N-?){_G3 + « GiGi) + ^Ga + g, E.(e. + eijVS*(0))kj
+ VJ3 + sT3 + GßuGßv Ei vjkj 4- pk6DA(0)
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c,ej,ex,j,r,s,Wj and p are almost arbitrary, as we see if we compute the counter terms:

at £-1 [ _ (*-3Xw-7)gA3 + i([Ar _ 1]fci + [JV + 1][Ä4 + k5])GA8A(0)

-(TV-2)rA4-|fc6/)A(0)]

/2 £ [-^f^GA2 + 1([TV 4- 3]*j + [TV + l][fc4 -f *5])*A(0) - (TV - 2)rA] (A.13)

«i,2 - «1,1 éî [{2(tf - !)*i - 2(tf - 3)^2 + (TV + 1)(*4 + h)}GA
+^Jt + 2(N-2)TA]

where on the logarithmic order eq. (7.8) has to be added.

In summary we repeat that perturbative renormalizability can be affirmed even for the
singularity structure with leading power divergences on all the three levels of magnitude, for
d 3 and d 4. This we could demonstrate without determining the power singularities
explicitly. This property imposes very narrow constraints on the coefficients of the 3 loop
result.

The treatment of power divergences becomes in part applicable when we discuss conclusions

about the renormalizable case d 2 in appendix E. There, e.g. the singularity GA is

logarithmic, so it must be included in the renormalization.

A.l Constraints on the regularization

In this subappendix we add some remarks about the problems that occur if we try to
regularize our model in a way different from dimensional regularization.

In the main part of this work we have treated the regularized 5-function S (x) like an
exact <5-function under the spatial integral without worrying. If we don't choose dimensional

regularization, this is risky since we anticipate a limit which we ought to take only at
the very end, after renormalization. First we are going to give generalized results for the
measure and the partition function without any assumptions about 8A(x) (rsp. GA(x)).
Then we observe which properties have been used in the first part of this appendix and how
far they are necessary for perturbative renormalizability. As an example, the Pauli-Villars
regularization fails to fulfil the required properties. Concerning the physical properties, it
maintains covariance but violates unitarity (the opposite is the case for lattice regularization).
At the end we outline why also a sharp momentum cutoff is unsuitable for this model. We

are not much surprised about this when we consider that it violates both, unitarity as well
as covariance.

First we consider the measure and only use relation (3.12), which is now understood
as a definition of 8A(x). No further properties of this function are presupposed. Then the
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measure takes the generalized form:

'»VS VgA(0)2/ + 7^)^ + ^^/^W^ (A.14)

-^ (7 /^XH2 -^ / / *A(* - y)s2(*)I2(j/)<^

t,Jfe

Here we already observe modifications in the second order.

Let us consider the partition function for d 3 and generalize the result of section 5. We
insert eq. (A.14) and - in accordance with eq. (3.12) - we use eq. (3.11) when performing
the Wick contractions. In the evaluation of the contracted terms, we always maintain the
generality of SA(x), except for the following three assumptions about the regularized system:
a) The regularized propagator is translation invariant : GA(x,y) GA(x — y).
b) Partial integrations are permitted everywhere without causing extraordinary terms.
c) The regularization does not require additional terms in the Lagrangian.

For example on the lattice all the three assumptions are not fulfilled: e.g. the non-
covariance requires to include terms like g\ '(dßSdßS)(dßSdßS) in the Lagrangian.

As a consequence of assumption a) an odd number of derivatives of the propagator at
the origin has to vanish. This property has been used very extensively:
Already to the first order, the evaluation (5.3) only holds with the (non-trivial) constraint

dßGA(x)\x=o 0 •

This would be violated for "regularizations", which are not symmetric around the origin
in momentum space, e.g. a sharp cutoff |p — p0\ < A. We see easily that it is required
from the 2-loop renormalization; else it would cause there a non-vanishing contribution
(dßGA(x)\x=0)2GA, which can not be absorbed.

On the 2-loop level we find modifications for the following terms:

P4
/1 < —{J(lLdßiL)2dx)2>

TV — 5 r f-h < ^r J J 8A(x - y)z2(x)iL2(y)dxdy >
1

-/3 < iE/ J(SA(x-y)Yrt(x)rrh{x)iri{y)Tk(y)dxdy>
i,k

<^{J(KdßK)2dx){J,2dy)> &fail[(^A(0)-l)((TV-l)G24-^G2)
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+2Gx J 8A(x)G(x)dx]

The source independent terms Ix,I2,I3 do not enter the final result because their product
with Sx(H) is cancelled on the 3-loop level. So we don't need to evaluate them.

On the 3-loop level we focus our attention again on the troublesome term

^47«°fa ti-usiiA2t t.tJ\ ..„ootf-1<--^r(J{7Ld^fdx)t(j\2dz)> -7n°°^ÌGi/i
7n°0
16P6

< [(ab)(cd)][(ef)(ffh)][(r|,)] >

with the notation introduced in eq. (5.11). In particular the functions To Ts defined in
eqs. (5.14) can not be expressed in terms of T3 as easily as in section 5. Instead of eqs.
(5.15) we have:

r0 r3 4- 72 + |(7i - 74) where :

Ti -|(r3 + 7l) 7l J(-SA + ±)dßGdßGGdx
r2 i(74 - r3) 72 / dßGdßsAGadx
r4 r3 + 73 - 74 7, J dß8AG2dßGdx

r5 74-f(r3 + 73) 74 ì(/5ag3^-ìj3)

Also in the remaining nine //-dependent 3-loop terms there are numerous modifications.
Some of them include again the quantities 71 74. Following all the steps of section 5 with
these generalized terms we arrive at a partition function of the form (5.17) with:

,i -£zi0l
2

S - N~1 C62 - "IF" 2

TV-lr 2 2(TV-3

S3

[ - (TV + 1)G2 + ["v 6)G2 + AGx J 8A(x)G(x)dx]

^F^. 4- ^GxG2 - G2JsA(x)G(x)dx] +^
e3 (/V-l){-l(TV+l)(TV + 3)G3-^[(TV-3)(TV-4) + 72]G3

+ ^y [TV2 - 8TV -f 11 - 4V J(SA(x))2dx + 2(TV2 - 6TV + 7) J SA(x)dx]GxG2

-f-3 ^1G\JsA{x)G(x)dx + -^^-G2JsA(x)G(x)dx

+ ]-Gx J(8A(x))2G(x)dx + — J(6A(x))2G(x)G(x)dx

+^^- J SA(x)G(x)G(x)dx - 1-Gx(JsA(x)G(x)dx)2

--[4(TV - 2)r3 - 27l + 2TV72 4- (TV - 2)73 + (-TV + 6)74]
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-U(V8A(0)-l)kx-k2}}

Comparison to the corresponding result of section 5 (eqs (5.18) (5.22) shows that:

> ei and 82 are unchanged.

> £2 and 83 coincide with the corresponding quantities of section 5 only if

J 8A(x)G(x)dx Gx (A.15)

/(*A)2

J(8A)2

\sA

> For e3 the analogous transition requires eq. (A.15) and 8 further constraints:

f 8Adx 1 (A.16)

^2dx 8A(0) (A.17)

^2Gdx 8A(0)G2 (A.18)

J(SA)2GGdx 8A(0)GxG2 (A.19)

SAGGdx GxG2 (A.20)

J SAdßGdßGGdx 0 (A.21)

j 8AGdßGdßGdx 0 (A.22)

J 5AG3dx G3 (A.23)

So the nine properties (A.15) (A.23) of 8A rsp. GA are required for the transformation
of this 3 loop partition function to the former, simplified form.

Note that in the evaluations of section 5 we have additionally used two more relations of
that kind, but since they affect only /2 and /3 (which cancel separately), they are not needed

for the final result.

We have, however, not answered the crucial question, which among those constraints are

really necessary for the perturbative renormalizability of the 3 loop result.

To handle this question we procceed as follows: we assume that we are dealing with
a regularization in the proper sense, i.e. if we remove the regularization parameters the

propagator and all its derivatives return to the original form. We consider now the constraints
(A.15) (A.23) for such a proper, but general regularization and list the additional singular
terms that might occur. Using in particular the symmetry of the regularized propagator in
momentum space, we find that



674 Bietenholz

1. A discrepancy on the level of the leading divergence is possible in eqs (A.15), (A.17)
(A.20) and (A.23).
2. Additional (non-leading) divergences can occur in

J(8A)2dx J(8A)2Gdx, J(8A)2GGdx and J8AG3dx

Their possible, non-leading contributions are of order A, /nA, A, A, respectively. Thus e3

can receive an extra term of the form

o1AZ,-2G1G2 -I- a2/nA L~2Gx + Na3AL~2 4- (TV - 6)a4AL~2

(«j const.). Obviously all these terms contain a singularity with the volume dependent
prefactor L~2 oc gl, which can (in general) not be renormalized: the only counter terms that
can absorb singularities with the same prefactor in e3 are cri and fx But they are uniquely
determined from the 2 loop level and therefore not able to absorb further singularities.

For the analogous reasons all the constraints about the leading divergences are necessary.

If in a regularization such additional divergences exist, they have to fulfill very special
relations to preserve perturbative renormalizability.

For d 4 the generalized partition function has again the form (5.17), where

TV-1
2

Gx

TV - 1 k2 + k3
"2 —777— C2 +4V V

- - <*-¦>[-*fo +^ + fr/""--(m0)fa*1 "*'l
83 ^^[^^GxG2-l-G2JsAGdx-2-^^G3 + kxJsAGdx-k2Gx}

e3 (Ar-l){-l(TV+l)(TV + 3)G3-^7j[(TV-3)(TV-4)+72]G3

+ ^[tV2 -8TV + 11 - AV f (8A)2dx + 2(N2 - 6N + 7) J 8Adx\GxG2

3TV^ r
_ N_zl j A

4 fa 2V/
4--G1 J(SA)2Gdx + — J(SA)2GGdx

J8AGGdx- -Gx(J8AGdx)2
TV-5

+ ^V~
-l- [4(TV - 2)r3 - 271 + 2TV72 + (TV - 2)73 - (TV - 6)74]

+ ~kx [^fafa^( VcTA(0) - l)Gi - J SAGdx + GxJ 8A(V8A - l)dx]

+k2^Gx + [(N-l)ki + h]^§^j8AGdx
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+(h + -h)GßVGßv + h6 J 8ADAdx)

In its evaluation, the assumptions a) c) - and the comments about them - remain
unchanged. For the simplification to the result of section 6 we still need eqs (A.15)
(A.23) and in addition:

JsADAdx DA(0) (A.24)

Concerning the eqs. that have to hold non-trivially on the level of leading divergences, eq.
(A.24) has to be added to the list given for d 3.

The variety of possible non-leading divergences is much larger here than in the 3 dimensional

case. 28 The following terms can cause additional contributions, the form of which is

given in the right column:

J(SAfGGdx, J 8AG3dx J 8ADAdx } ajA4/,"2 4- a2A2ZT4 + a3ZnA L~*

J(8A)2dx J(8A)2Gdx } a4A2/fa 4- a5ln\ L~4

JsAGdx, J 8AGGdx V J SAGdßGdßGdx } a7lnA L~2

(aj const.). To see that we can not permit all these terms to occur with arbitrary
coefficients, it suffices to look at the contributions oc L-4 i.e. oc gl : like in the 3 dimensional

case, the only counter terms with the same volume dependent prefactor that enter £3 are

uniquely determined from the 2 loop level.

A possibility to regularized the power singularities without eliminating all of them is

provided by the Pauli-Villars regularization. Referring to the Fourier decomposition the

propagator is manipulated to take the form:

°"W-7Ç'tè+?Afaf]^ (A25)

(the ci are constants and the Mi are heavy regularization masses that go to infinity in the
final limit). We only regularize G(x) and do not try to construct a correspondingly extended

Lagrangian. 29

This is a proper regularization in the above sense. To regularize a singularity of power
A2n we have to introduce at least n + 1 different regularization masses. If we choose this

28This can be understood from the fact that in the Laplacian expansion of GA every step corres-ponds to
2/(d — 2) loop orders.

29Such a construction is not to be feasible: the only way to introduce masses Mj is to break again the

O(N) symmetry. After angular integration we do not end up with the desired form.
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minimal number, the appropriate coefficients are given by:

/
fcx\

\ck }

1

M\
M4

M22

M4

\ M2* MÌ

1

M2

Mt

M2k-2

Y -i\
0

0

1 { o j
(E. ci —1 is the minimal condition to have a regularization at all). Since the strongest
divergences (to 3 loops) are of order A3, A6 for d 3, 4, respectively, we have to introduce
at least 2 rsp. 4 different masses.

It turns out, however, that the Pauli-Villars regularization does not obey the constraints
listed above. To illustrate this we consider eq. (A.15) for d 4: we find the difference

Gipy — / 8^y(x)Gpv(x)dx - J2 jjfi + t^-2 E c^Mi
MjlnM} - MllnMl

Ml Mf

which diverges quadratically. For renormalizability it is not sufficient that this difference is

volume independent: as we saw the counter terms are overdetermined and have solutions

only because their constraints are not independent. In the presence of such discrepancies,
the additional terms would have to match in a very special manner to keep the regularization
applicable.

At last we give a brief illustration, why a sharp cutoff in momentum space turns out not
to be a suitable regularization. More precisely: the sharp momentum cutoff does not even
deserve the name "regularization" because its limit A —» oo does not always reproduce the
non-regularized quantities.

This can be illustrated by considering the contribution to a scattering amplitude at low

energy, illustrated in figure 6.

Figure 6: 2 loop contribution to a scattering amplitude at low energy

If we apply a sharp momentum cutoff A >> [k[ and require that the incoming momentum
at every vertex vanishes, this contribution will include

J J dxe'kxGA(x)d2GA(x) oc / \dàp
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where B {p|(|p| < A) A ([p — k[ < A)} is the intersection of the balls with radius A and
the centers 0 and k. In the 0th approximation (k 0) we get

1-Kdl2
J ,\d~2

0
T(d/2)(d - 2)

The "moon" to be subtracted from this is to first order in \k\ proportional to the sphere of
the ball B\k=o, hence

J Jo-aA^lfcl-fOOfcl2) (a>0)

In particular we find for d 4 :

4ir 1

J 7T2A2 A|fc|--7T2|A:|2 + 0(|fc|/A)
«J 4

Remembering that the available counter terms have magnitudes A'd_2'n (n € IN), we see

that already the second term is not renormalizable for d > 3, i.e. this term is an artifact of
the sharp cutoff ("echo effect"), which destroys locality.

The troublesome difference J — Jo stems from the difference SA(x) — S(x); the occurrence
of odd power differences in the expansion of J shows the violation of the basic symmetry
properties that the correctly regularized GA(x) must have.

For the free energy the situation is a little different since the diagrams have no external
legs. The role of the perturbation [k[ has to be played by 1/L. Note that e.g. eq. (A.15)
holds in this case; however we run into trouble of the kind illustrated above on the 3 loop
level when dealing with the integrands that contain more than 2 momenta: the cutoff acts

on each of them, hence also on the sums of them but one.

B Generalization of the Polyakov measure

In section 3 we have calculated the measure according to the definition (3.1) containing
only the simplest invariant term. The application of this measure in the following sections
has been successful, particularly in view of the the perturbative renormalization (section 7,

appendix A), which could only be performed due to cancellations of singularities stemming
from the measure and from the Lagrangian.

We repeat that from a physical point of view, it is reasonable to require the following
properties for terms entering the measure:
a) locality
b) Euclidean translation invariance
c) rotational invariance in isospin space

- just like the terms in the Lagrangian. Now we are going to generalize the measure by
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adding an arbitrary linear combination of all additional terms fulfilling these conditions.
The generalized measure takes the form:

<* 3: ds] ±J{(dS)2[l + bf-6(HS)} + -^(dßdS)2 + ...}dx (B.l)

<f 4: ds] ±J{(dS)2 + ^(dßdS)2 + f2(dS)2(dßS)2 (B.2)

+ fi(d2dS)2 +

+biy4(dS)2(HS) + b2y6(dßdS)2(HS) ...}dx

where we wrote down the terms that might contribute to our three loop result, with
dimensionless coefficients. The selection of these terms has to be performed with some care, paying
attention to the relations

(SdS) -d(S2) 0 (SdßS) and dßS üdßi? oc L~d/2

It appears quite natural to include the further invariants that can be built purely from S

(with a coefficients), whereas the source dependent terms (with 6 coefficients) might surprise
a little. To us it seems useful to observe the consequences of such terms too. We consider it
physically plausible that an external field might influence the metric in configuration space.

Moreover the reduction to the first term is a priori not acceptable since we have exploited
the freedom of choice of the fields already when simplifying the Lagrangian in section 2. We
recall that we got rid of three coupling constants by suitable redefinitions of the fields. Two
of the redefinitions included the magnetic field, which also supports the consideration of the

source dependent terms in the measure.

To be explicit, let us start from the generalized measures (B.l), (B.2) and perform the
substitutions (2.11), (2.12) and (2.13) of section 2. Then the coefficients of ds2 change in
terms of the dimensionless parameters a, ß, A as follows:

{a,b} -> {a -2a, b -2/3} (B.3)

{ai,a2,a3,fci,&2} —? {fa — 2a, a2 + 2a, a3 + a2 — 2oia,
6i - 2/3, b2 - 2A - 2(oi - 2a)/3} (B.4)

We see that for d 3 the full generalization (B.l) has to be considered. Also for d 4 all
the parameters of ds2 get activated, but the changes in the three //-independent parameters
depend only on a, thus they are not independent. 30 Nevertheless we consider the completely
generalized form (B.2).

30If we want to eliminate non-leading couplings in the maximally generalized measure instead of the
Lagrangian, we can reduce it with these transformations to Polyakov's form for d 3, whereas for d 4

there remain two of the a; coefficients.
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In his original paper [18], Polyakov did not consider such a generalization. He had
renormalizable models in mind and there it is not motivated to include additional invariants, not
in the Lagrangian nor in the measure. The two dimensional non-linear cr-model corresponds
to the renormalizable case Polyakov refers to. There he mentions that his measure (for
bosonic strings composed of two terms) is unique, where he requires locality in a stricter
sense than it is done here, i.e. in the sense that also derivative couplings are excluded.

Here the situation is different: non-leading couplings are needed and instead of adding
them only in C (as it is usually done), we can do so in [dS] as well. In which way those
extensions are related to each other is not evident and will be discussed explicitly.

Of interest is, how far this generalization is physically permissible and to which extent
the non-leading coupling constants ki in the Lagrangian can be replaced by new parameters
from the measure. At last, for d > 2 those terms were included in order to enable a

perturbative renormalization. It will be observed if we need less of them for this purpose after
generalizing the measure.

Now we are going to consider the maximal generalization mentioned above. If we insert
the collective variables introduced in section 2, expand everything in terms of the transversal
fields 7l(x) and consider that non-diagonal elements of the metric tensor only enter the
determinant quadratically, we arrive at the form:

d 3: ds) S ^Jdx^dit-^^l + b^HU^ + ^d^)2} (B.5)

d 4: ds] a 1J dx{(dif - u,*)2[l + j^d&ßtf. (B.6)

+bxy4H(n°0[l - l-K2] + fi°V)] + y2[(dßdK)2 + (dß(Kdz))2}

+b*im°0(dßdK)2 + ^(d2d*)2}

We begin with d 3. For the generalized determinant gg we get :

VTe Vë exp{b^-6Hn00(N - 1)V8A(0) 4- a^VDA(0)} (B.7)

where ^ is given in (3.13) and we have defined DA(x) in (6.2).

The most important property displayed by eq. (B.7) is that the non-leading couplings in
the measure do not yield any physically relevant contribution. To be explicit: in dimensional

regularization the determinants simply obey the relation:

gs g • (B.8)

We recall that there are relevant measure terms, but they are all included in the leading
term that defines Polyakov's measure (3.1).
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If we apply our ansatz for the renormalized non-leading coupling constants also on the
parameters of the measure, the new counter terms do not enter the renormalizability conditions
because they do not multiply any regular term. Thus the non-leading coupling constants
of the measure do not contribute new degrees of freedom to the set of counter terms,
constrained by renormalization.

For completeness we also show the renormalizability of the leading power divergences
involved in this generalization:

DA(0) oc Ad+2 can be absorbed by the normalization constant N of the partition function.

The 6-contribution shifts in the final result (5.17) e3 in the following way:

£3 - e3 + ^(N - 1)8A(0) (B.9)

Qualitatively this term is not new: a term oc 8A(0) was already found with kx- So we can

interpret 6 as a shift of kx, where k2 has to perform the same shift in order to keep the regular
term (kx — k2)/V unchanged. We conclude that indeed a and 6 are completely arbitrary,
even if we include the leading power divergences.

To be explicit, we just have to replace in eq. (A.5)

_b_

2F'
CT3 - ^3 + 4?(tf - i)5»

Let us consider the more complicated case d 4. We find:

r— 1 1
2

Iny/gg -treg - -treg
1 1

2—tre tre
2 4

+ax^VDA(0) + ai + ^F;1)a28A(0)Jd^dß7Ldx

+(2a3 - a2)^VAA(0) 4- bx^(N - 1)8A(Q) (l - ± J *2dx)

-vO00

+(b2-axbx)^rDA(0) (B.10)

AA is also defined eq. (6.2), and eg is the generalization of the matrix e g — 1 introduced
in section 3. We note that there occur three cancellations in the considered order from the
trace of the linear and the quadratic matrix eg. They concern the terms

h^Vtr£ ' ^hI{9"K)2dx and W2D\0) J K2dx (B.ll)
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Eq. (B.10) reveals that our central observation of d 3 - that the non-leading measure
couplings do not contribute any physically relevant term - still holds for d 4. Here eq.
(B.8) for the dimensionally regularized system is confirmed on a highly non-trivial level. In
particular the first two terms of the list (B.ll) would have destroyed this property.

Hence it was justified to evaluate only the leading measure term in section 3.

Since none of the non-leading coupling constants in the measure multiplies any regular
term, its meaning is already exhausted with their contributions to the (powerful) counter
terms. In particular the measure can not provide any counter terms that enter the renormalization

equations (they behave like k6), so the number of non-leading coupling constants in
the Lagrangian required for the renormalization of the three loop result remains unchanged
(as we observed for d 3 before).

Concerning the power divergences, we note that the last term of the cancellation list
(B.ll) would have been forbidden by perturbative renormalizability.

The factor

e*P(^MA(0) + ^VAA(0)]
of y/g^ can be absorbed by N. The rest changes e2, e3 in the following way (referring to
(6.6), (6.8))

e2 - e2 + 6!^fa-^A(0) (B.12)

e3 -* £3 - ^^ [{ax + (TV - l)(a2 4- bx/2)}8A(0)Gx + (ai6i - b2)DA(0)]

(B.13)

where again a forbidden term (oc V(8A(0))2Gx) cancels in e3.

The singularities in the additional terms can be renormalized by generalizing the formulas
(7.8). The counter terms of the leading coupling constants receive the following additional
summands (with respect to eqs (A.8) and (A.13)) :

T2 - cr2 + ^Albx8A(0)

<r3 -> <T3-^^[{a14-(TV-l)(a2 + fei/2)}5A(0)GA+(ai61-62)öA(0)]

Î2 - /2-^{a1 + (TV-l)(a2 + 61/2)}5A(0)

Since an important motivation for considering d2sg was given by the transformations
(2.11).. .(2.13), let us at last take a look at their actual effect, i.e. we want to observe the
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outcome if the three terms

g^(d2S)2 ; h$(Hd2S) ; h$(HS)(d2S)2

are included in the Lagrangian. From power counting we see that for d 3 all the three
terms can affect our result only to the third order, unlike d 4 where g\ and h\i2 could

appear already to the second order.

/~\
Next we recall that the elimination of the h\ 2-term is only motivated by the possibility

of a space-dependent magnetic field H(x). In the case of a constant external field considered

here, this term does not contribute to the action.

Let us discuss the influence of the remaining two terms, provided with dimensionless

coupling constants Kx, K2 (we recall that we choose F to be the only dimension-carrying
coupling). We modify the Lagrangian of section 2 as follows:

C - C + Kx~(d2Sf (d 3)

C -, C+l-Kx(d2S)2-K2y6(HS)(d2S)2 (</ 4)

For d 3 only the Äi-term is relevant to 3 loops. In the final result, this alters the

argument of the Bessel function such that

e3^e3+l-Kx(N-l)(sA(Q)-^)

The same kinds of terms were also found with the ki couplings. In dimensional regularization
the singularity structure does not change due to Kx ¦ However, in contrast to the non-leading
couplings in the measure, Kx creates a regular contribution.

As a consequence, the new counter term introduced by Kx rises the degree of freedom of
the set of logarithmic counter terms from 1 to 2.

Referring to the renormalization of the leading power divergences we first note that a

forbidden term oc (TV — l)VGiZ3A(0) cancels in e3. Hence it suffices to replace cr3 —>

a3 + \Kx(N - 1)8A(0).

For d 4 the action to three loops changes as follows:

S->S + -KxJ [(ö2tt)2 + (dß7LdßTr + Kd2K)2]dx - K2~^— J d2^d2Ttdx

Here the modifications are much more complicated, mainly because the .KVterm is of first
order. A lengthy calculation - along the lines of section 6 - yields:

S2 - £2 + ^i(TV - 1) (>(0) - Ì)
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83 -» 83 - Kx Gx

£3 -? e3 + (N-l){Kx([N+l]V8A(0)-3N + 5)^Gx+2KxGß„Gß„

+(Kx[kx-^Kx] + K2)DA(0)}

The result for e3 in d 3 is shifted down to e2 here, since 1/V is classified in the second

order now. Also for d 4 only Kx is relevant in dimensional regularization. K2 does not
contribute to the considered order, i.e. it behaves like k6 and all the non-leading couplings
in the measure. Also the observation still holds that Kx does not change the singularity
structure but it does change the regular part. Its associated (logarithmic) counter term rises

again the degree of freedom of the logarithmic counter terms from 1 to 2. (Note that this
counter term enters constraint (7.7) - which was identically imposed by e2 and S3 - both
times in such a way that the constraints due to e2 and 83 remain identical.)

In the notation used at the end of section 5 and 6, the terms occurring in the intermediary
results and cancelling at the end are:

e2 : (TV2,TV,l)/s:1G1VOA(0)

S3 : (TV3,TV2,TV,1)VDA(0)G2, (TV2, TV, 1)DA(0)G2, (N2,N,l)SA(0)Gly TV2Gi/V

e3 : Kn (N3,N2,N,l){GxV(8A(0))2,V28A(0)DA(0)G2x,VDA(0)G2x,G2DA(0)},

(Afa TV, l)VDA(0)c7A(0)G2, N3{Gx/V, SA(0)Gx}

Kl: (N3,N2,N,l)Gx(VDA(0))2, (N2,N,l){GxVAA(0),V8A(0)DA(0)},
N2DA(0)

Kxkx: (N2,N,1)V8A(0)DA(0), N2DA(0)

Most of these cancellations are required by renormalizability of the structure with power
divergences (in particular there are no counter terms available with volume-dependent pref-
actors, whose powers of L are larger than zero; in the 5-sector even pure singularities are

forbidden.)
The exceptions are TV2Gj/V in 83 and TV3{Gi/V, 5A(0)Gj}, N2DA(0){K2, Kxkx} in e3: here

the singularities could be absorbed, but each of these terms would be a strange novelty
to compare with section 6, 31 whereas existing terms just shift the regular and the power
divergent contributions of the coupling constants ki. About the renormalization we remark
that since the singular contributions associated with Kx and K2 consist of terms we found
before in section 6, their renormalization - along the lines of appendix A - works without
any problems.

The transformations (2.11). (2.13) alter the non-leading coupling constants of the
Lagrangian like this:

kx —» kx - a - ß k2 —» k2 - ß k3 —> k3 + ß

Such terms would not permit the field transformation invariance of Z, pointed out below.



684 Bietenholz

ki -> k4 + 4a k6 -* k6 + a2 - 2a/G. (B.14)

Kx -* Kx - 2a K, -*• /C2 - -a2 + 2a*:! + ßKx - 2aß + A

and we can confirm our claim of section 2 that Kx and Üfj can be chosen to be zero, as well
as k2 or k3.

If we include in the partition function (for d 3 and d 4) all possible couplings
in the Lagrangian and in the measure and apply the transformation rules for both sets of
couplings, we observe that Z(5, H, ki, Ki, aj, 6j) - including the leading power divergences

- is invariant under the transformations (2.11) (2.13) for arbitrary a, ß and A. 32 This is

a very sensitive consistency test for our results.

Thus we have found an other remarkable aspect that supports that the structure with
all the leading divergences still fulfills the important properties. This invariance is due to an

exchange of terms among all the non-leading coupling constants, except for k5.

As a corollary we can conclude that the overall invariance of Z under the discussed field
transformations also holds for the dimensionally regularized system. There, however, the
consistency test is less sensitive; only kx ¦ ¦ ki and Kx participate in an exchange of regular
terms and transformation (2.13) is irrelevant.

The conclusion of this appendix is that the maximal generalization of the measure -
including all the terms fulfilling the three physical properties listed in the beginning of
this appendix - is permitted by perturbative renormalizability and only affects the power
divergences in the Lagrangian, i.e. in dimensional regularization they do not yield any
contribution at all. Hence they do not reduce the number of required non-leading coupling
constants in the Lagrangian.

Since the coefficients for the non-leading terms are completely arbitrary, there is an
infinite set of equivalent measures of the path integral for our model - each measure
corresponding to a particular type of quantization - that all yield the same physically relevant
contributions. The Polyakov measure belongs to this set and has the advantages of its
simplicity and its compatibility to renormalizable theories.

Without the transformations eliminating some terms in the Lagrangian, in the regular
part the coupling constants kx ks would have been shifted. The singularities, which are

present in dimensional regularization, however, are not affected by these transformations.
The leading power singularity structure would have been altered without destroying its
perturbative renormalizability.

To the considered order there occur no mixed products of non-leading coupling constants from the
measure and from the Lagrangian. So to verify this invariance one just has to insert the transformation rules
in the results given above.
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C Identification of the terms by massive expansion

If we assume the GB to be massive, their Green functions take the form

1 „iPfiX

V^m2+pl
For small masses we can expand this in terms of the massless G(x):

1 • m4 ••

Gm(x) 7y^ + G(x) - m2G(x) + —G(x) + ¦¦¦Vm l
where G -^Gm|m=0 etc.

In our case we have to insert m2 W j£y so: — m2-^\m=0 oc -^L2~d lowers the
magnitude by one unit.
Thus we get e.g. the series ^j-Gi, ^yG2, jèyîG3 (index order).

Gerber and Leutwyler carried out a 3-loop calculation with Gm for d=4 [9]. There only
the temperature was finite, not the spatial box, but still the type of terms ought to coincide
with ours. They found, except for Gi, G2, G3 the terms:

m fir 1

jiJGldx, —J(d„GmdßGm)2dx, —(dß„Gm(x)[x=0)2

We want to show that this corresponds to the type of terms we found up to the 3rd order.

</(?£
4

(/ 2+G-m2G + ^-G...\ dx
Vm2 2

1 6 „ 4m2,. 3 „ s 4
+ -G2 + —(J, - —G3) + 0(m*)

V3m4 V V v 2V

If we proceed one order by —m2-^ and put m 0, we can identify J3 as a 3rd order term,
which is relevant for us since m2 introduces an //-dependence. (The singularity at m 0

corresponds to the 0-mode.)

w) J ô#,GmÔMGmÔ1/Gmo„Gmdaî J2 + 4m2r3 + 0(m4)

Here we can confirm in exactly the same way the term T3.

iu) For d 4 : jr(Gß„)2 oc L~8, so j;GßuGßv can enter the 3rd order, but not with a
factor m2. As we know from section 6, it does occur, with factors jkkj instead of m2. For
d 3 this term is only of 1th order, in contrast to the results of i) and ii) that are classified

equally for d 3 and d 4.
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To look at iii) one might wonder if one couldn't include terms of even lower orders that
one gets by further dot-derivatives.

But introducing such terms - or also the corresponding terms that could be produced
in i) and ii) - would contradict our low energy expansion based on two leading coupling
constants as well as the perturbative renormalizability.

D Transformation to the modified Bessel function

The differential equation (4.2) and its first derivative state:

JdSlezn°°[z2n002 + (N-l)zn00-z2} 0 (D.l)

JdnezÇ,m[z3n003 + Nz2n002-z3n0O-z2] o (d.2)

We apply on 33

/¦^Qe7n00(i+c<,+a2+c«3)-K-,n00)2(/32+/33)+(7n00)S3

=* Jdfie*1" [l 4- 7n00(ax + a2 + a3) + fr«00)^«!«» + ß2 + ß3)

+(7ft°°)3(ìa3 + ai/32 + 73)]

the transformations enabled by (D.l) and (D.2) with the factors —a, —b respectively:

/ dQe^°° [l + 72(a + 6) + 7000(ai + a2 + a3 - (TV - l)a + 726)

4-(7n00)2(^ + axa2 +ß2+ß3-a-Nb)
+(7fi°°)3(^ + ai/32+73-6)]

This shall take the form: e*I+*2+f:» /</ne7n°0(1+ei+<r2+e^. Expanding this and comparing the
coefficients to the orders of (7fi00) we get four equations for the unknown a,b,8,e. On the
3 levels these are 12 variables to be determined by the 3 levels of the 4 equations, which
impose 12 constraints, a and 6 we don't need to know explicitly, so we first eliminate them.
From the remaining 2 equations we can determine on the level £ : 8t and e/.

#i=0 ei ai
82 72/32 e2=a2-(N- l)/32

*3 72(/33 - (TV - 1)73) £3 a3 + (TV - l)(ai/3, - ß3) + 73(72 4- TV(TV - 1))

This has been inserted in sections 5 and 6 in order to transform the row result for the
partition function into the desired form.

3As usual the index coincides with the order of magnitude.
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Corresponding transformations into this form are possible for results to any order.
For the order £ we derivate (4.2) £ — 2 times, get a differential equation of degree £ that
allows to eliminate the term with (~/Q00)1, etc. Thus we arrive inductively at the desired
from.

E Conclusions about the non-linear tr-model in lower
dimensions

For the three and the four dimensional case that we discussed in the main part of this paper,
all the 0(TV)-invariant terms had to be included in order to enable a perturbative renormalization.

This is different for the lower dimensions; there it is sufficient to include the leading
coupling constants S and F. Thus in one dimension all singularities disappear (in the source
dependent part we consider); in two dimensions all the singularities become logarithmic and

can be renormalized solely by these two couplings.

E.l The one dimensional case

Since we expand generally in powers of Ld~2 /F2, here the quantity that has to be small to
permit our expansion is L/F2, i.e. in contrast to the higher dimensions L must be small
(one could imagine it to be a time slice) or/the energy must be high when we translate our
considerations to a scattering process. With respect to the partition function we deal with
a high temperature expansion. Thus physics is turned upside down (note also that there are

no GB's any more) but the mathematical methods remain applicable. In particular the zero
mode is not weighted strongly any more, but its contribution still diverges and its treatment
with collective variables is still a solution of this problem.

The explicit, finite terms that remain if we include only S and F are easily obtained:

G ± *C _
L2 LG _

L* (Ell1
223 ' V 2

24325 V2 3 24335 -7 K ' '

VJi 2V^°3 ' Ti 4V^3

Clearly, including non-leading derivative couplings - or higher powers of the magnetic field

- does not make sense if we expand in positive powers of L. (This concerns also non-leading
couplings in the measure.)

Hence we let fcj 0 and find the partition function to be of the form (5.17) with
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_(tf-l)(tf-3),2 (K3)
273 -5

(TV-l)(5TV2-440TV + 843-1672)
3 "

210345-7 l ' '

82 "ke12 <E-5>

(TV-l)(13TV-43)
28345-7 v ;

This model describes a free quantum mechanical spin 0 particle moving on a TV dimensional
unit sphere where L is the inverse temperature (or the time for a short time transition
amplitude). Turning on the external magnetic field means geometrically a shift of the center
of the sphere away from the origin. (Higher powers of H in C1-'^ would additionally deform
the sphere).

E.2 The two dimensional case

This case has attracted very much attention in the literature because it is renormalizable
and it represents an interesting toy model for QCD, see below.

We consider again the simplification ki 0. Then the three loop partition function can
be taken from section 5 or 6. The only terms that remain singular in two dimensions are Gi
and r3.

Here dimensional regularization looses its special meaning since all the divergences are

logarithmic. In particular:
GA c-ln(A/p)

where A refers to the regularization parameter introduced in section 7, c is a positive constant
and p. determines the mass scale. Gi is independent of this scale, so

*Tfî—»h* • (E-7)

r3 contains a term quadratic and a term linear in InA, so it can be written in the form:

r3 CylGA2 + cB5iGA4-73

where c&, cb are constants and 73 is regular. Analogously to (E.7) we find

p—73 -c-cBgx (E.8)

2cA ca (E.9)
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Now we come to the renormalized coupling constants Sr and $r, where we rename
$ — 1/F2. They can be taken from appendix A with slight modifications:

£ o

_(TV-l)(TV-3)(3TV-7)$3G^3 _ ^ _ ^ _ 2)^#3gA2 + o(«*)l
48 J

$r $ [l 4- (TV - 2)$GA + (TV - 2)2$2Gf2 -f 2(TV - 2)cB$2GA -f 0(*3)]

Hence their /3-functions are :

h M^ ;^-c-Sr$P + 0($4) (E.10)

ßi At-^ =-(TV - 2) • c • $2 - 2(TV - 2) • c • cs*3 + 0($4) (B.ll)

The cancellation of the second and third order in the /3-function of S is a consequence of
our choice of the renormalization prescription.

If we include only the leading order of /3$ we find the solution:

*'M i + (W-2)*fa>W,.) (E12)

where p, is a particular scale (i.e. the choice of one among the trajectories that solve the
differential equation) and $f], $r(p,)

For TV > 2 this solution has a "Landau pole" at

pL p,exp(-[(N - 2) ¦ c ¦ ^r,,}-1)

but of course in this regime the perturbative expansion is not applicable.

For large p, however, $r goes asymptotically to zero and perturbation theory becomes
reliable. We clearly recognize asymptotic freedom for high energies (large p), just as in
QCD.

For higher orders in $, the fact that the /?-functions must be independent of A yields in
Sr, $r immediately the 2, 3 counter terms (respectively), which are leading in the power of
MA/»-

The renormalization group equation also provides us with some knowledge about the

partition function itself. Z has to be independent of p and a variation of the quantity
7 — S//V shows that this independence holds separately for the argument of the modified
Bessel function and the exponent of the ^-independent prefactor. Also there it determines
the coefficients of the leading divergences to higher orders of $.
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But in this way we do not get any information about the regular contributions of the
multiloop terms, which are actually of physical interest. Work about the way to deduce such

information and its limits is in progress.
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