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Abstract

The Hamiltonian and BRST formulations of the Schwinger model are investigated.

1. Introduction

Electrodynamics in one—space one—time dimension with massless fermions, known as the

Schwinger model [1] has been studied by several authors [1—7] in various contexts. In

1962, Schwinger was able to obtain the exact Green's functions for the theory [1] and

since then many authors have obtained solutions of the theory in various gauges [2]. The

path- integral solutions and operator solutions have also been studied [4,2]. The various

solutions have been helpful in elucidating many properties (often nonperturbative) of the

Schwinger model [1—7]. Further, the model is exactly solvable [3]. The solvability of the

model is due to a remarkable property of one—dimensional fermion systems, namely, that

they can be completely described in terms of canonical one—dimensional boson fields [3].
In fact, a study of the two—dimensional field theories in general, and of the Schwinger
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model, in particular, has led to the conclusion that any fermion (plus bosons if desired)

field theory has its boson—equivalent field theory [3]. As a consequence of this, many

surprising features of field theories (at least in two dimensions) have been revealed [1—7].

The Schwinger model is well known to describe a bonafide (pure) gauge—invariant theory

possessing two first—class constraints. In the present work we study the Hamiltonian

[8,9] and Becchi—Rouet—Stora—Tyutin (BRST) [10—13] formulations of the bosonized

Schwinger model. The Hamiltonian formulation is considered in Sec. 2, and the BRST

formulation in Sec. 3.

2. The Hamiltonian Formulation

The Schwinger model in one-space one—time dimension is described by the Lagrangian

density [1]:

£ ^(%+gV*-ïVF/iI/ (21)

which is equivalent to its bosonized form [3] :

C \ BflK - ge^A, - \F^ (2.2a)

g^:= diag (+1,-1); J» - e^; e01 +1; Ä„ - 0,1. (2.2b)

In (2.1) ((2.2)) the first term corresponds to a massless fermion (boson). The second term

represents the coupling of this fermion (boson) to the electromagnetic field A The last

term is the kinetic energy term of the electromagnetic field. In component form (2.2)

could be written:

L \ (*2 - <t>'2) + g(*' A0 - ?A1) + \ (Aj - A^)2 (2.3)

where overdots and primes denote time and space derivatives respectively. The Euler-
Lagrange equations obtained from £ (2.3) are:

($-<t>") g(A1-A5) (2.4a)
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-gJ1:=(Ä1-A5) -g(j) (2.4b)

-gJ0 := (À£-A») -g<()' (2.4c)

It is easy to see from (2.4) that the vector current (J is conserved, i.e.,

d/=-\ fyy^= (Jo - JP =(*' -<*,,) ° (25)

implying that the theory possesses (at the classical level) a vector-gauge symmetry.

We now study the Hamiltonian formulation [8,9] of the bosonized model described by C

(2.2). The canonical momenta obtained from C are:

V=^-=0; E:=^-=(A1-Aó);T:=^-=(<Ì.-gA1) (2.6)

9Aq dA, d|>

Here Tq, E z and t, are the momenta canonically conjugate respectively to Aq, A,
and $. The first equation in (2.6) implies that the theory possesses a primary constraint

ni := tt0 « 0 (2.7)

The canonical Hamiltonian density corresponding to L is

<^= T0À0 + EÀ1 + atj) - C

\ (E2 + ¦? + if'2) + EA5 + gTAx + £g2A2 -g<t>'A0 (2.8)

After including the primary constraint ii., in the canonical Hamiltonian density <% with
the help of Lagrange multiplier u, one can write the total Hamiltonian density JiL, as

[8,9]:

*j, \ (E2+7T2+<()'2) + EA£ + g7rA1 + \ g2k\ - g<|>'A0 + tqu (2.9)
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The Hamilton's equations obtained from the total Hamiltonian H™ J J&^ dx are:

9HT <9HT

* -y? (* + sAi); - * ~4 (gAó " r) (210a)

5HT 3HT
Ao -g^ u; -^o=-^ -(E'+s<t)') (2-10b)

ÔHrp dH.rri

Ai= -gè (E + Ao); - E -as- " 8(* + 8Ai) (210c)

ÔHT <9HT
Ù ypt=0; -*kaJTs,0 (210d)

These are the equations of motion of the theory that preserve the constraints of the

theory in the course of time. For the Poisson bracket {,} of two functions A and B, we

choose the convention:

<AW,BW)p:=j«Ji^§$-^f$,] <iii>

Demanding that the primary constraint Ü. be preserved in the course of time, we obtain

the secondary constraint

n2:={ni,«^}p (E'+g*')«0 (2.12)

The preservation of fi„ f°r ^ ^me does not ß^ve rise t0 any further constraints. The

theory is thus seen to possess only two constraints fi-, and fi„. The matrix of the Poisson

brackets of the constraints fi. is a 2x2 null matrix and therefore singular implying that
the set of constraints fi. is first-class and that the theory described by £ is a bonafide

(pure) gauge—invariant theory. In fact, the Lagrangian density £ is seen to be invariant
under the time—dependent gauge transformations:

SAQ + /?(x,t), 6Al + ß'(x,t), &t> 0, fii 0 (2.13a)

ftr0 0, (5E 0, 6z -ß'(x,t), Spu 0 (2.13b)
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up to a total divergence:

sc^gP'ajjjdjfì (2.14)

where /?(x,t) is an arbitrary function of the coordinates. The action S j£ dx dt is therefore

gauge—invariant. The reduced Hamiltonian density of the theory (<^t>), obtained

from <^C after the implementation of constraints fi-, is finally given by [8,9]

where
Jfa \ (E2+ *2+ <|>'2+ g2A2 + 2g5rA1) \ tf2 + J2_ + 2E2) (2.15)

^± ^0±,71 <j.'±(5r+gA1) (2.16)

are the U(l) kac—Moody currents. c^U is thus seen to be positive semi—definite.

In order to quantize the theory using Dirac's procedure [9], we ought to convert the set

of first—class constraints of the theory fi. into a set of second—class constraints, by

imposing, arbitrarily, some additional constraints on the system called gauge—fixing

conditions or the gauge-constraints. For the theory under condsideration, we could

choose, for example, the gauge—fixing conditions: A0 0 and Ai 0. Corresponding to

this choice of the gauge— fixing condition, we have the following set of constraints under

which the quantization of the theory could be studied [8,9] :

if)-. fi, 7Tq 8 0

^2 fi2 (E' +ri')"0
^3 AQ « 0

1*4 A{ s 0

(2.17a)

(2.17b)

(2.17c)

(2.17d)

We now calculate the Poisson brackets among the constraints ip- and obtain the matrix:

A^'):=ttttW.^')}p

0 0 -6(z-2') 0

0 0 0 tf'(z-z')
tf(z-z') 0 0 0

0 -S"(z-z') 0 0

(2.18)

with the inverse
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0 0 ^z-z') 0

^M')-
0 0

-6{z-z') 0

0 -i|z-z'|
0 0

0 i|z-z'| 0 0

(2.19)

and

Jdz A(x,z) A \z,y) l4x4 £(x-y) (2.20)

The Dirac bracket {,}D of the two functions A and B is defined as [8] :

{A,B}D := {A,B}p-J|dzdz' S [{A.rjz)^ [a^J(z,z')] {r^').B}p] (2.21)
Ot,p

where T. are the constraints of the theory and A o(z,z') [:= {r (z), YÄz')} ] is the

matrix of the Poisson brackets of the constraints Ifa The transition to quantum
mechanics is made by the replacement of the Dirac brackets by the operator commutation

relations according to

{A,B}D—.(-i)[A,B]; i yCT. (2.22)

Finally, the nonvanishing equal time commutators of the theory in the gauge AQ 0 and

Ai 0, are obtained as:

2[<K*)>*(y)] =Ì [E(x),*(y)] [A^Efr)] 2i*x-y) (2.23)

For the later use (in the next section), for considering the BRST formulation [10,11] of

the theory described by C, we convert the total Hamiltonian density JUL into the

first-order Lagrangian density [11,12]:

£I0 H + EAX + rQA0 + puu- Jgj,

7ttj> + EAX + Puu-^(t2 +<j)'2 + E2 + g2A2) -EA^ -g7rA1 + g<j>'A0

(2.24)
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In (2.24) the term %JAQ-u) drops out in view of the Hamilton's equation (2.10b).

3. The BRST Formulation

3A. The Schwinger Model and BRST Invariance

Following Ref. [11], we rewrite the gauge-invariant theory of Schwinger model [1] as a

quantum system which possesses the generalized gauge invariance called BRST

symmetry. For this, we first enlarge the Hilbert space of our gauge-invariant model [1]
and replace the notion of gauge transformation which shifts operators by c—number

functions by a BRST transformation which mixes operators having different statistics.

We then introduce new anti-commuting variables c and c called Faddeev-Popov ghost

and anti—ghost fields respectively (Grassmann numbers on the classical level, operators in

the quantized theory) and a commuting variable b called the Nakanishi-Lautrup field

suchthat [11,12]:

6$ 0, 6AQ c, «A1 c/, 8r=-c', ~6E 0, 6irQ 0; (3.1a)

Sc 0, S c b, Sb 0, 6u 0, 5pu 0 (3.1b)

*2with the property S 0. We now define a BRST—invariant function of the dynamical

variables to be a function f(7r,7r0,E,p, ,tt ,ir-,$,A0,AH,b,c,c) such that Sl 0.

3B. Gauge-Fixing in the BRST Formalism

Performing gauge—fixing in the BRST formalism implies adding to the first-order

Lagrangian density (2.24) a trivial BRST—invariant function [11,12]. We could thus

write the quantum Lagrangian density (taking e.g., a trivial BRST—invariant function as

follows [11,12]:

£BRST £IO + *[ 5(A0+ 5 b + Al + *K

Trtj) + EA:+ puu - \ (7T2+<|>'2+E2+g2A2) - EA^ - g5rA1 + gf'AQ

+ 5[c(A0+^b + A1+7r)] (3.2)
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The last term in the above equation (Eq. (3.2)) is the extra BRST^nvariant gauge—fixing

term. Using the definition of S we can rewrite LR™ (with one integration by parts):

£BRST *?+ EA1+ Puu - 5 (T2+<t»,2+E2+g2A2) - EA£ -g^ + g<J.' AQ+ \ b2

+ b(À0+A1+ t) + cc (3.3)

Proceeding classically, the Euler-Lagrange equation for b reads:

-b (A0 + A1+ it) (3.4)

Also, the requirement Sb 0 (cf. Eq. (3.1b)) implies:

-Sb {SAQ + 6A1 + Sit) 0 (3.5)

which in turn implies

c 0 (3.6)

The above equation is also an Euler-Lagrange equation obtained by the variation of

^BRST ^k resPect t0 c-

In introducing momenta we have to be careful in defining those for fermionic variables.

Thus we define the bosonic momenta in the usual way so that [11,12]

^-£BRST + b (37)

dAQ

but for the fermionic momenta with directional derivatives we set [11,12]

i- ^
fi — Fi

*c := £BRST AT c ; Tc := — £BRST c (38^
dc

dc

implying that the variable canonically conjugate to c is c and the variable conjugate to c
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is c. In forming the Hamiltonian density ^topc-p from the Lagrangian density in the

usual way we remember that the former has to be Hermitian. Then [11,12]

*%RST 7rtj> + EÀj + 7T0À0 + puù + *j + ct- - £BRST

\ (x2+<|,'2+E2+g2A2)+ EA£ + gxA1 - g<|)' A0 - \i^ - wq(A1+t) + *c*- (3.9)

We can check the consistency of (3.8) with (3.9) by looking at Hamilton's equations for

the fermionic variables, i.e. (cf. Ref. [12]

c - ar <%tST' c - <^BRST Wfi (31°)
c c

Thus

0
Wc <*BRST "c ; c <*BRST Zf5= Tc (311)

in agreement with (3.8).

For the operators c,c,c and c, one needs to specify the anti—commutation relations of è

with c or of c with c, but not of c with c. c and c are, in general, independent canonical

variables and one assumes that [11,12] :

{tc,t-} {c,c} 0 ; gj {c,c} 0 (3.12a)

{è,c}=-{è,c} (3.12b)

where {,} means anticommutator.

We thus see that the anti-commutators in (3.12b) are non-trivial and need to be fixed.

In order to fix these we demand that c satisfy the Heisenberg equation [11,12] :
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[c,^RST] =ic (3.13)

2 -2and using the property c c =0, one obtains

[c,^RST] ={c,c} c. (3.14)

Eqs. (3.12) - (3.14) then imply:

foc} - {è,5} i (3.15)

Here the minus sign in the above equation is non—trivial and implies the existence of

states with negative norm in the space of state vectors of the theory [11,12].

3C. The BRST Charge Operator

The BRST charge operator Q is the generator of the BRST transformation (3.1). It is
o

nilpotent and therefore satisfies Q 0. It mixes operators which satisfy Bose and Fermi

statistics. According to its conventional definition, its commutators with Bose operators

and its anti-commutators with Fermi operators in the present case satisfy:

W,Q] - c ; [A0,Q] c ; [E,Q] c (3.16a)

{c,Q}=-7T0; {è,Q} -(E'+g<t>') (3.16b)

All other commutators and anti-commutators involving Q vanish. In view of (3.16), the

BRST charge operator of the present gauge—invariant theory can be written as

Q Jdx[ic(E' + gf - ic7T0] (3.17)

This equation implies that the set of states satisfying the condition ir01 ip> 0 and

(E'+g<|)')| ip> 0 belongs to the dynamically stable subspace of states |^>> satisfying

Q | V> 0» i-c, it belongs to the set of BRST—invariant states.
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In order to understand the condition needed for recovering the physical states of the

theory we rewrite the operators c and c in terms of fermionic annihilation and creation

operators. For this purpose we consider Eq. (3.6) (namely, c 0). The solution of this

equation gives the Heisenberg operator c(t) (and correspondingly c(t)) as:

c(t) Gt + F ; c(t) G^t + F+
; (3.18)

which at time t 0 imply

c c(0) F, c c(0) F* (3.19a)

e e c(0) G, e" e 5(0) G+ (3.19b)

By imposing the conditions

c2 c2 {c,c} {c",c} 0; {c",c} i - {c,c } (3.20)

one then obtains

F2 Ft2 {F+,F} {G^G} 0 (3.21)

{G+,F}=-{G,F+}=i (3.22)

We now let 10> denote the fermionic vacuum for which

G|0> F|0> 0; (3.23)

Defining |0> to have norm one, (3.22) implies

/o|FGt|o\ i; /o | GF+ j o\ - i (3.24)

so that

Gt|0>#0; F't"|0> # 0 (3.25)
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The theory is thus seen to possess negative norm states in the fermionic sector. The

existence of these negative norm states as free states of the fermionic part of <^ùt>ct is, however,

irrelevant to the existence of physical states in the orthogonal subspace of the

Hilbert space.

In terms of annihilation and creation operators the Hamiltonian density is

<*BRST \ (*2+<t>'2+E2+g2A2) + EA0 + gxAx - gf AQ - £ x2 - x0(A1+x) + G+G

(3.26)

and the BRST charge operator Q is

Q=Jdx{+i[F(E'+g(|)')-Gx0]} (3.27)

Now, because Q | ip> =0, the set of states annihilated by Q contains not only the set of

states for which wQ\ip> 0 and (E'+gf)! ip> 0 but also additional states for which

G|V> F |V» 0 with XqIV» t 0 and (E'+g<j>')| ip> # 0. However, the Hamiltonian is

also invariant under the anti—BRST transformation (in which the role of c and — c is

interchanged) given by

&j) 0, SAQ - c, SAl= - c', Sw c', SE 0, SwQ 0; (3.28a)

Sc 0, Sc - b, Sb 0, Su 0, Sj>u 0 (3.28b)

with generator or anti—BRST charge

Q |dx[-ic(E' +gf)+icx0]

|dx{-i[Ft(E'+g(|)')-Gtx0]} (3.29)

Like we had [Q,H] 0 before, we now have [ Q~,H] 0, with all other commutators and

anti—commutators also vanishing. We can thus impose the dual condition that both Q

and Q" annihilate physical states implying that
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Q | i» 0 and Q~| ip> 0 (3.30)

The states for which xJ ip> 0 and (E'+gf )|^> 0 satisfy both of these conditions

and, in fact, are the only states satisfying both conditions since, although with (3.21) and

(3.22)

G+G -GG+ (3.31)

there are no states of this operator with G'|0> 0 and F*|0> 0 (cf. (3.25)), and

hence no free eigenstates of the fermionic part of X^c™ which are annihilated by each

of G,G',F,FT. Thus the only states satisfying (3.30) are those satisfying the constraints

x0 0and(E'+g<|>') 0.

Further, the states for which wA[ip> 0 and (E'+g<|>')|ip> 0 satisfy both of these

conditions (3.30) and, in fact, are the only states satisfying both of these conditions (3.30)

because in view of (3.20), one cannot have simultaneously c,c and c,c, applied to | ip> to

give zero. Thus the only states satisfying (3.30) are those that satisfy the constraints of

the theory (2.7) and (2.12), and they belong to the set of BRST-invariant and

anti—BRST— invariant states.

One can understand the above point in terms of fermionic annihilation and creation

operators as follows. The condition Q | ip> 0 implies that the set of states annihilated

by Q contains not only the states for which iCç.\ip> 0 and (E'+g<j)')|ip> 0, but also

additional states for which G| i» F| ip> 0, but xJ ip> ^ 0 and (E'+gf)! ip> t 0.

However, Q~| ip> 0 guarantees that the set of states annihilated by Q~ contains only the

states for which x0|^> 0 and (E'+g<t>')|ip> 0, simply because G'\ip>t0 and

F* I ip> ì 0. Thus in this alternative way also we see that the states satisfying

Q| ip> Q~| ip> 0 (i.e. satisfying (3.30)) are only those that satisfy the constraints of

the theory (2.7) and (2.12) and also that these states belong to the set of BRST-invariant
and anti—BRST—invariant states.

In the usual Hamiltonian formulation of a gauge-invariant theory (like the present one)

under some gauge—fixing conditions, one necessarily destroys the gauge—invariance of the
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(£) into a BRST-invariant system, the new (BRST) symmetry is maintained even under

gauge—fixing and hence projecting any state onto the sector of BRST and anti—BRST-

invariant states yields a theory which is isomorphic to £. The unitarity and consistency of

the BRST-invariant theory described by ^drct is guaranteed by the conservation and

nilpotency of the BRST charge Q.

Towards the end, we like to make an important observation that some interesting work

exists in the literature [6] where a bosonic version of the Schwinger model which couples

a Dirac fermion to a U(l) gauge field has been proposed and Dirac quantized in a reduced

phase space formalism [6]. This model has further been shown to be equivalent to the

fermionic massless Schwinger model considered in our present work. For the details of this

work we refere to the work of Ref. [6].
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