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Abstract

The Wess-Zumino terms for the gauge—non—invariant 0(N) non-linear sigma model and
for the gauge—non—invariant Klein—Gordon theory, both in one—space one-time dimension

are calculated and the Hamiltonian and BRST formulations of the resulting gauge-
invariant theories (obtained by the inclusion of the corresponding Wess-Zumino terms)
are investigated.

1. Introduction

The O(N) nonlinear sigma models in one-space one—time dimension have some striking
qualitative similarities with quantum chromodynamics and have attracted wide interest

in the recent years [1-8]. Some of the common features of both the field theories are e.g.,
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renormalizability and asymptotic freedom [1-8]. The quantum sigma model in (1+1)—

dimension is a non-trivially solvable [5] quantum field theory. Sigma models provide a

laboratory for various nonperturbative techniques e.g., the 1/N expansion, operator-
product expansion and low-energy theorems [7]. They are also of importance in the

context of string theories [6] where they appear in the classical limit. The model exhibits

a nonperturbative particle spectrum, has no intrinsic scale parameter and possesses

topological charges.

The Hamiltonian formulation and Dirac quantization of the gauge—non—invariant O(N)
nonlinear sigma model in (1+1)—dimension has been studied, in particular, by Maharana

[1]. The model is seen to possess a set of four second-class constraints, reflecting a lack

of gauge symmetry. The gauge symmetry, however, when present in a theory has many
beneficial consequences. It is rather well known that the addition of an appropriate Wess-

Zumino kind of term [9—11,2] to the action of a gauge—non—invariant theory possessing a

set of second—class constraints converts it into a gauge—invariant theory possessing a set

of first—class constraints.

Several procedures exist in the literature [9—11,2] for the calculation of the so-called

Wess-Zumino term. One of the simplest and perhaps the oldest procedures (sometimes

called the theta—trick) was introduced originally by Stuckelberg about five decades ago

[10] in the context of a study of the renormalization properties of massive gauge theories

[10]. Another method for reformulating a gauge—non—invariant theory possessing a set of

second—class constraints into a gauge—invariant theory possessing a set of first—class

constraints is due to Mitra and Rajaraman [17,2]. In the present work we employ both of

the above methods, namely, the Stuckelberg method and the Mitra—Rajaraman method,

for constructing two different gauge—invariant versions of the gauge—non—invariant O(N)
non—linear sigma model in (1+1) dimension possessing a set of four second—class

constraints [1—2]. One of the gauge—invariant models so constructed (called model A in our

text) is obtained by calculating the Wess-Zumino term [9,10] (that transforms the

second-class constaints of the theory into the first-class ones) by enlarging the Hilbert

space of the corresponding gauge—non—invariant theory [1—3] using the Stuckelberg

method [10]. This gauge-invariant model (model A) is seen to possess a set of three

first-class constraints. The other gauge—invariant model (called model B in our text) is

obtained by using the Mitra—Rajaraman method [17,2]. The Hamiltonian [12] and

Becchi-Rouet—Stora-Tyutin (BRST) [13,14,15] fomulations of these gauge-invariant
models (model A and model B) are then investigated. Before coming to the sigma model,
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however, we first consider a rather trivial and well known example, namely, that of the

Klein—Gordon theory in one— space one—time dimension in light—cone coordinates (redefined

as space and time coordinates) which is seen to possess one (primary) second—class

constraint. We first construct a gauge—invariant model corresponding to this

gauge—non—invariant Klein—Gordon theory by calculating the Wess-Zumino term [5]

using the Stuckelberg method [10] and then study the Hamiltonian and BRST formulations

of the gauge—invariant Klein—Gordon theory so obtained.

In the context of the nonlinear sigma model it is important to mention (as is also pointed

out in Ref. [1], and as we would see in Sees. 3 and 4), that the constraints of the theory
involve the products of canonical variables in the classical description of the theory as

well as in the calculation of the Dirac brackets. These variables are, however, envisaged as

noncommuting operators in the quantized theory and therefore one encounters the

problem of operator ordering [1,16,17]. This problem can, however, be resolved if one

demands that all the relevant brackets be consistent with the hermiticity of the operators

(i.e. the fields and the momenta canonically conjugate to the fields [1,18]

The work on the Klein—Gordon theory is presented in the next section (Sec. 2), and the

Hamiltonian and BRST formulations of the gauge-invariant O(N) non—linear sigma

models, namely, models A and B are presented in Sections 3 and 4 respectively. Finally,
the summary and discussion is given in Sec. 5.

2. The Gauge—Invariant Klein—Gordon Theory

2A. The Gange—Non—Invariant Theory
We start with the gauge—non—invariant Klein—Gordon theory in one—space one—time

dimension in light-cone coordinates (redefined as space and time coordinates) described

and defined by the Lagrangian density [2] :

£N <j,<j,'-lm2<|>2 (2.1)

Where overdot and prime denote time and space derivatives respectively (i.e., 9n<|) <j>

and 5,<|> f). Throughout this work we would work with the Lorentz metric:

g^ := diag(+l,—1). The momentum canonically conjugate to <|> is
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/)/-N
T:=.2fc_ f (2.2)

N
implying that £ possesses a primary constraint

fi:=(x-f)sO (2.3)

where the symbol (ft) represents a weak equality in the sense of Dirac [12]. The canonical

NHamiltonian density corresponding to £ (2.1) is

<^N 4 -£N 2mV (2.4)

NAfter including the primary constraint fi in the canonical Hamiltonian density J£ with
the help of the Lagrange multiplier field w, one can write the total Hamiltonian density

<^5ji as:

XjP \ mV + (H>')w (2.5)

For the Poisson bracket {,} of two functions A and B, we choose the convention:

Demanding that the primary constraint fi be maintained in the course of time one does

not obtain any secondary constraint but instead gets a condition on the Lagrange

multiplier field w namely,

2w'-m2<|>«0 (2.7)

and therefore the theory is seen to possess only one constraint fi. Also, the Poisson

bracket of fi with itself is

{fi(z),fi(z')}p -2£'(z-z') (2.8)

The matrix of the Poisson brackets of the constraints of the theory is therefore
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Vz'z'):= {no/z)> Vz')}p [-2*'(z-^ hm (2-9)

with the inverse

and
J^')=[-ï^')]llxl (210)

jdz J(x,z) r\z,y) llxl 5(x-y) (2.11)

Here e(z-z') is a step function defined as

<«'>:- {111 («'jiS (2-12)

The nonsingular nature of the matrix Jo implies that the constraint fi is a second-class

constraint. The Dirac bracket {,}j\ of two functions A and B is defined as [12] :

{A,B}D := {A,B}p - jjdz dz' E [{A,rQ(8)}p [A^z,z')]{r^(z'),B}p] (2.13)

where V- are the constraints of the theory and A o(z,z') [:= {T (z), riz')} ] is the

matrix of the Poisson brackets of the constraints T..

The nonvanishing equal—time Dirac brackets obtained for the theory £ (2.1) are:

{<t>(x),x(y)}D 1 *x-y) (2.14a)

{x(x),x(y)}D -^'(x-y) (2.14b)

{<Kx),(Ky)}D=-^(x-y) (2.14c)

2B. The Wess-Zumino Term

In constructing a gauge—invariant Klein—Gordon theory from the gauge—non—invariant

N N
one described by £ [2], we calculate the Wess-Zumino term for £ For this following
the Stuckelberg method [10] we enlarge the Hilbert space of the quantum theory

described by £ [9,10], and introduce a new field 6, called the Wess-Zumino field,
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N
through the following redefinition of field <j> in the original Lagrangian density £ [9,10]

(the motivation for which comes from the gauge-transformations (2.26) under which the

proposed gauge-invariant theory /r (2.16) is expected to be invariant):

<j) » $ $ - B (2.15)

The Wess-Zumino field Sis a full quantum field [9,10]. Performing the changes (2.15) in
N£ (2.1), we obtain the modified Lagrangian density as

/J (<j>-0) (f-0') - 1 m2(<|) - O)2 £N + £WZ (2.16)

£WZ 60' - Of - <j>0' + m2<|>0 -JmV (2.17)

where £ is the appropriate Wess-Zumino term corresponding to £ We shall see later

that £ describes a gauge—invariant theory. In fact, we will be able to recover the physical

content of the gauge-non—invariant theory described by £ under some special choice of

gauge. The Euler-Lagrange equations obtained from £ are:

2(0'-<)>')+ m2(0-<|>) O (2.18a)

2(<j>' -0') + m2(<|>-0) O (2.18b)

2C. Hamiltonian Formulation of the Gange-Invariant Theory

The canonical momenta for the gauge-invariant theory described by £ are:

T:=^- f -0'; (2.19a)

ire-.= QL=0' -$' (2.19b)
d'e



758 Kulshreshtha, Kulshreshtha and Müller-Kirsten

The equations (2.19) imply that the theory l possesses two primary constraints

fix :=(x-f + 0')«O and fi2 := (x^-0' + f) s 0 (2.20)

The canonical Hamiltonian density corresponding to £r is

j£ \m2$-(l)2 (2.21)

After including the primary constraints fi, and fi^of the theory in the canonical Hamiltonian

density J# with the help of the Lagrange multipliers u and v, one can write the

total Hamiltonian density J&* as

c^?I ^m2((t)-0)2+(x-<t)' + 0')u + (x0-0' +f)v (2.22)

The Hamilton's equations obtained from the total Hamiltonian H™ Jdx <^p are:

oHqi 9Hrp „
* -5T=Vi> -^=-4-=m2(<|.-0) + u'-v' (2.23a)

0 -dTT=v> -^=-gx -m2(<}.-0)-u'+v' (2.23b)

aHT: 9HT:
ù -4~ °: -Pu -^u- ('r-<))/ + é'') (2-23c)

9HT: 5HT:
v -^ 0; -pT _^_=(^-tf'+f) (2.23d)

These are the equations of motion of the theory that preserve the constraints of the

theory fi. in the course of time.

Demanding that the primary constraints fi, and fi„ be maintained in the course of time

leads (in both cases) to the condition
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m2^ _ q _ 2u' + 2v' 0 (2.24)

which involves Lagrange multiplier fields u and v. Thus there are no further secondary

constraints and therefore the theory is seen to possess only two constraints fi, and fig.
The matrix of the Poisson brackets of the constraints fi- is

the above matrix K Az') is clearly singular implying that the constraints fi, and fi2

are first class and that the theory described by £ is a gauge—invariant theory. In fact, the

Lagrangian density £ is seen to be invariant under the time—dependent gauge—transformations:

6$ p(x,t), SO p(x,t), Sir 0, 6*e 0, (2.26)

where /*(x,t) is an arbitrary function of the coordinates. In quantizing the theory with
Dirac's procedure [12], we have to convert the first-class constraints of the theory into
second—class ones. This we achieve by imposing, arbitrarily, some additional constraints

on the system, in the form of gauge—fixing conditions. Following the work of Ref. [15],

we go to a special gauge given by 0 0 (or equivalently, 9,0 0' =0), and accordingly
choose the gauge fixing condition of the theory as [15] :

Q 0' » 0; (2.27)

With the gauge—fixing condition (2.27) the total set of constraints of the theory becomes

rx fi1 (x-f + 0')«O; (2.28a)

t2 fi2 (*e - 6' + f) * 0 (2.28b)

r3 Q 0' « 0; (2.28c)

The matrix of the Poisson brackets of the constraints t- is obtained as
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Ma/3(z,z'):={ra(z),r^(z')}p

-2S'(z-z') 2£'(z-z') 0

2£'(z-z') -2 5'(z^z') +S'(z-z')
0 +«5'(z-z') 0

(2.29)

with the inverse

and

M>'z')
Je(z-z') 0 if(z-z')

0 0 +ie(z-z')
ie(z-z') +ie(z-z') 0

Jdz M(x,z) M \mj) l4x4 S(x-y)

(2.30)

(2.31)

Finally, the nonvanishing equal—time Dirac brackets of the gauge—invariant theory

described by £ under the gauge (2.27) are finally obtained as:

5 £(x-y){<t»(x),x(y)}D

Wx),x(y)}D=-^'(x-y)
{<Kx),<|>(y)}D -Je(x-y)

{?«.^»D \ S(x-y); {0(x),x0(y)}D 2S(x-y)

{f(x),Tö(y)}D 2 S'(x-y); {r^x),T^j)}D -^'(x-y)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

Following the sequence of reasoning offered in Ref. [15], where the quantization of a

gauge—invariant theory of chiral bosons (obtained by the inclusion of an appropriate Wess-

Zumino term) has been treated along similar lines, it is easy to see that the above

relations (2.32) - (2.36), together with <3f (2.21) under the gauge (2.27), reproduce

precisely the quantum system described by £ (2.1). It is easy to see that (2.27) when

inserted in (2.20), yields the constraint (2.3) of £ thus implying that under (2.27),

t- ft fi. Also, when (2.27) is inserted in (2.21), one recovers exactly the Hamiltonian
N N INdensity (<% corresponding to £ and thus implying that under (2.27), & ft <%
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Thus under the gauge-fixing condition (2.27), one is able to recover the physical content

of the theory described by £ The difference of the descriptions of the theories given by
t n£ and £ appears in terms of the additional constraint g which serves the purpose of

eliminating 0 and x* In fact, in view of the above, we see that we have succeeded in
finding a gauge (namely (2.27)) which translates the gauge-invariant version of the

theory described by £ into the gauge—non— invariant one described by £ A comparison

of (2.32)-(2.36) and (2.14) reveals that (2.32)-(2.34) coincide completely with (2.14) as

they should. The additional commutators (2.35), (2.36) express merely the dependence on

0 and x«. It is important to observe here that the gauge—non—invariant theory described

N
by £ is equivalent to working in a specific gauge of the corresponding gauge invariant

formulation of the theory [15]. In fact, the physical Hilbert spaces of the two theories (£

and £ are the same. The addition of the Wess-Zumino term £ to the theory (i.e. to

£ enlarges only the unphvsical part of the full Hilbert space of the theory £ without

modifying the physical content of the theory. The Wess-Zumino field 0 itself, infact,

represents only an unphysical degree of freedom and consequently the physics of the theories

with and without the Wess-Zumino term remains the same.

2D BRST Formulation of the Gauge-Invariant Theory

In considering the BRST formulation of the gauge—invariant theory described by £ we

first convert the total Hamiltonian density <%*, into the first-order Lagrangian density:

:I0 4 + X00 + puu + pvv - M^

Puù + Pvv + (T - 0) (f- 0') - \ m2 (f - 0)2 (2.37)

In (2.37), the terms x(<)>-u), and xi0-v) drop out in view of the Hamilton's equations

(2.23a) and (2.23b).
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2D1. The BRST Invariance

We rewrite the gauge-4nvariant theory described by r as a quantum system which

possesses the generalized gauge invariance called BRST symmetry. For this, we first

enlarge the Hilbert space of the quantum theory described by £ and replace the notion of

gauge transformation which shifts operators by c—number functions by a BRST transformation

which mixes operators having different statistics. We then introduce new

anti—commuting variables c and c (called the Faddeev-Popov ghost and anti—ghost fields

which are Grassmann numbers on the classical level, and operators in the quantized

theory) and a commuting variable b called the Nakanishi—Lautrup field (with the

"2
property S 0) such that

6$ c, Se c, St 0, 6*0 0; (2.38a)

Sc 0, S c b, Sb 0 (2.38b)

The transformations for the Lagrange multiplier fields and their canonical momenta need

not be specified as they are not needed. We then define a BRST-invariant function of the

dynamical variables to be a function f(x,Xa,p^,x ,x-,<|),0,b,c,c) such that Sì 0.

2D2. Gange-Fixing in the BRST Formalism

Performing gauge—fixing in the BRST formalism implies adding to the first-order

Lagrangian density (2.37) a trivial BRST-invariant function [14,15]. We could thus

write the quantum Lagrangian density (taking e.g., a trivial BRST-invariant function as

follows) [14,15]:

£BRST £IO+^5(2<Ì,-^ + 2bW

Puû + Pvv + (<j> - 0)(<t>'-0' - \ m2 (f- 0)2 + S[ c(2<j> - 0 + \ b)]
(2.39)

The last term in the above equation (Eq. (2.39)) is the extra BRST-invariant

gauge-fixing term. Using the definition of S we can rewrite -Cgjjorp (with one integration

by parts) as:
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£BRST Puu + Py^ + - W-6' - 5
m2 (<h 0)2 + j b2

+ b(2<t> - 0) + Zc (2.40)

Proceeding classically, the Euler—Lagrange equation for b reads:

- b (2<j> - 0) (2.41)

Also, the requirement Sb 0 (cf. Eq. (2.38b)) implies:

-Sb (2S$-S6) 0 (2.42)

which in turn implies

c 0 (2.43)

The above equation is also an Euler-Lagrange equation obtained by the variation of

^RRST ^**1 resPect to c. In introducing momenta we have to be careful in defining those

for fermionic variables. Thus we define the bosonic momenta in the usual way so that

*=— £BRST f - 0' + 2b (2.44a)

'r0 -£BRST=(?'-<l,'-b (244b)
de

implying that b (x+xA For the fermionic momenta with directional derivatives, we

set

(- -i

\ := £BRST TT c *c := ~ £BRST c ^245)
dc

dc
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implying that the variable canonically conjugate to c is c and the variable conjugate to c

is c. In forming the Hamiltonian density XR(,m from the Lagrangian density in the

usual way we remember that the former has to be Hermitian. Then

4 + x„0 + p ù + p v + x c + ex- - £t

1 _2 /a. fl\2 b2
<(> (x-<t)' + 0'-2b) + 0(^0'+f+b) + j m' (<[> - 6f ~2~ + xcx-

2
m2 (<(, - 0)2 - \ (*+*/ + v~ (2.46)

We can check the consistency of (2.45) and (2.46) by looking at Hamilton's equations for

the fermionic variables, i.e.

-t »-

; af" **BRST' c ^rst af=
c c

c - 73^T <^tRST> C-c^iRST7S~ (2-47)

Thus

in

c ar ^brst *c; c ^rst af= Tc (2-48)
c c

agreement with (2.45).

For the operators c,c,c and c one needs to specify the anti—commutation relations of c

with c or of c with c, but not of c with c. c and c are, in general, independent canonical

variables and one assumes that [14,15] :

{VTc>= "foc>= °; at fcc>= 0; (2-49a)

{c,c} - {c,c } (2.49b)

where {,} means anticommutator. We thus see that the anti—commutators in (2.49b) are

non—trivial and need to be fixed. In order to fix these we demand that c satisfy the

Heisenberg equation of motion [14,15] :
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[c,<^RST] =ic (2.50)

2 -2and using the property c c =0, one obtains

[c,<^RST] {c,c} c. (2.51)

Eqs. (2.49) - (2.51) then imply:

{è,c} =-{è,c> =i. (2.52)

Here the minus sign in the above equation is non—trivial and implies the existence of

states with negative norm in the space of state vectors of the theory [14,15].

2D3. The BRST Charge Operator
The BRST charge operator Q is the generator of the BRST transformation (2.38). It is

o
nilpotent and therefore satisfies Q 0. It mixes operators which satisfy Bose and Fermi

statistics. According to its conventional definition, its commutators with Bose operators

and its anti—commutators with Fermi operators, in the present case, satisfy:

fo.Q] c ; [0,Q] è; {c,Q} (x + x^) (2.53)

All other commutators and anti—commutators involving Q vanish. In view of (2.53), the

BRST charge operator of the present theory can be written as

Q Jdx [-iò(x-<J)' + 0' + X0 + f -0')]
/dx[-ic(x+xö)] (2.54)

This equation implies that the set of states satisfying the condition (x-<j)' + 0')l #> 0

and (xd-0'+(j)')|^> 0 belongs to the dynamically stable subspace of states |^>>

satisfying Q | ip> 0, i.e., it belongs to the set of BRST-invariant states.

In order to understand the condition needed for recovering the physical states of the

theory we rewrite the operators c and c in terms of fermionic annihilation and creation
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operators. For this purpose we consider Eq. (2.43) (namely, ë 0). The solution of this

equation gives the Heisenberg operator c(t) (and correspondingly c(t)) as:

c(t) Gt + F; c(t) G+t + F+
; (2.55)

which at time t 0 imply

e e c(0) F, ce c(0) F* (2.56a)

c c(0) G, ^ e 5(0) G* (2.56b)

By imposing the conditions

c2 c2 {c,c} {c",c} 0; {c",c} i - {c,c } (2.57)

one then obtains

F2 F+2 {F+,F} {G^G} 0 (2.58a)

{G^.F} - {G,F+} i (2.58b)

We now let 10> denote the fermionic vacuum for which

G|0> F|0> 0; (2.59)

Defining 10> to have norm one, (2.58b) implies

/o|FG+|o\ i; /o [ GF+1 o\ — i (2.60)

so that

G+|0> # 0; F^|0>^0 (2.61)

The theory is thus seen to possess negative norm states in the fermionic sector. The
existence of these negative norm states as free states of the fermionic part of ^boof is, however,

irrelevant to the existence of physical states in the orthogonal subspace of the

Hilbert space.
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In terms of annihilation and creation operators the Hamiltonian density is

^BRST \ m2(<t> - ö)2 - 2 (T + *0)2 + °tG (2-62)

and the BRST charge operator Q is

Q Jdx{-i[G(x+xö)]} (2.63)

Now, because Q | ip> 0, the set of states annihilated by Q contains not only the set of

states for which (2.20) holds but also additional states for which G | ip> F | ip> 0 but

(2.20) does not hold. However, the Hamiltonian is also invariant under the anti—BRST

transformation (in which the role of c and — c is interchanged) given by

6$ - c", 66 - c", h=0, 6ir0 0; (2.64a)

Sc 0, Sc - b, Sb 0 (2.64b)

with generator or anti—BRST charge

Q~ /dx [ic" (x + xö)] Jdx {i [Gt(x+xö)]} (2.65)

We now have [Q,H] 0 and [ Q,H] 0, and we further impose the dual condition that

both Q and Q~ annihilate physical states implying that

QIV» 0andQ"|V'> 0 (2.66)

The states for which (2.20) holds strongly satisfy both of these conditions and, in fact, are

the only states satisfying both the conditions since, although with (2.58)

G+G -GG^ (2.67)

there are no states of this operator with G'|0> 0 and F^ |0> 0 (cf. (2.61)), and

hence no free eigenstates of the fermionic part of <^bT>orp which are annihilated by each
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of G,G',F,F'. Thus the only states satisfying (2.66) are those satisfying the constraints

(2.20).

The states for which (x-<|>' + 0')| ip> 0 and (nn-0'+$')\ ip> 0 satisfy both of these

conditions (2.66) and, in fact, are the only states satisfying both of these conditions (2.66)

because in view of (2.57), one cannot have simultaneously c,c and c,c applied to | ip> to

give zero. Thus the only states satisfying (2.66) are those that satisfy the constraints of

the theory (2.20), and they belong to the set of BRST-invariant and

anti—BRST—invariant states.

One can understand the above point in terms of fermionic annihilation and creation

operators as follows: the condition Q | ip> 0 implies that the set of states annihilated by

Q contains not only states for which (x-<|>' + 0')| i\» 0 and (xfl-0'+<|)')| ip> - 0, but

also additional states for which G|ip> F\ip> 0, but (x-<|>' + 0')|^> ^ 0 and

(x«—0'+<|>')| ip> f 0. However Q"| ip> 0 guarantees that the set of states annihilated by

Q contains only the states for which (x-<|>' + 0')|ip> 0 and (x*—0' +<[>')\ip> 0

simply because G^ | ip> # 0 and F^ | ip> t 0. Thus in this alternative way also we see that

the states satisfying Q|$> Q~|^>> 0 (i.e. (2.66)) are only those that satisfy the

constraints (2.20) and also that these states belong to the set of BRST-invariant and

anti—BRST— invariant states.

3. The Gauge—Invariant O(N) Non—Linear Sigma Model (Model A)
3A. The Gange—Non—Invariant Model

We start with the gauge—non—invariant O(N) non—linear—sigma model in one—space

one—time dimension described by the Lagrangian density [1,2] :

£N \ Vk^k + ^IT1); k 1.2.-.N (3.1a)

\ hl - \ ffk2 + A(£rk_1); k 1'2'"'N (31b)

Here a {a, (x,t); k 1,2,...,N} is a multiplet of N real scalar fields in one—space

one—time dimension and A(x,t) is another scalar field. The field a{x,t) maps the
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two—dimensional space—time into the N—dimensional internal manifold whose coordinates

are a, (x,t). The Euler Lagrange equations fo cr, and A are

(7J[-äk + 2Affk 0 (3.2a)

(<r2-l) 0 (3.2b)

The canonical momenta conjugate respectively to a, and A are:

xk := d£N/dak äk; k 1,2,..,N. (3.3a)

PA := ö£N/9A 0 (3.3b)

The last equation (Eq. (3.3b)) implies that the theory possesses a primary constraint:

Xl := PA « 0 (3.4)

NThe canonical Hamiltonian density corresponding to £ is

~N • ; JM

27rk + 2(Tk2-A(<Tk-1) (35)

NAfter including the primary constraint x-i in the canonical Hamiltonian density <% with
Nthe help of a lagrange multiplier w, one can write the total Hamiltonian density <%L as

V \ *k + \ ak ~ A(<Tk"1) + paw (3-6)

demanding that the primary constraint x, be preserved in the course of time, we obtain

the secondary constraint

x2-={xv<%r\ (<\-i)*o (3-7)
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The time evolution of Xo leads to a further constraint

X3 := {X2, ^N}p 2<rkxk « 0 (3.8)

demanding that Xq be also maintained in the course of time one obtains a further
constraint

X4 := {X3,<V)p (2,rk + 4Affk + 2<TkaV * ° (3-9)

the time evolution of Xa does not, however, lead to any further constraint but instead

leads to a condition involving the Lagrange multiplier w, namely:

4<r2w + 2xk<rk<j£' ' + 2xkffj| -^\^l + 16 A<rkxk 0 (3.10)

The theory is thus seen to possess a set of four constraints Xi>Xo>Xq anc^ *4'

The matrix of the Poisson brackets of the constraints X\ namely, T Az,z')
:— {xJ,z),X/i(z')}D) is then calculated. The nonvanishing matrix elements of the matrix
T a(z,z') are (the arguments of the field variables being suppressed):

T14 -T41 -4<7k^z^') (311a)

T23 ~ T32 ^<\S(z-z') (3.11b)

T24 -T42 8Vk5(z-z') (311c)

T34 - T43 t8*k - 16A(rk - Aaka$ 5(z_z') - [44 *"(M') (3-lld)

The matrix To is seen to be nonsingular and therefore its inverse exists. The

nonvanishing elements of the inverse of the matrix T a (i.e. the elements of the matrix

(T— a are (the arguments of the field variables being suppressed again):

2x, - 4Act, - a,aZ -,i 1 r *"i» — woi, — o,o, -, r i n
(T-1)12 -(T-1)21= " * L± «(._<)- -1j]«-(m')

L
4ak(Tk

J L^J
(3.12a)
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(T"1)i3=-(T"1)3i [rfï]««') (312b)

2w
(T_1)14 - (T~\ [-\ 1 *»-,') (3.12c)

(T_1)23--(T_1)32- [tj]«1-') (312d)
4<V

Finally, the nonvanishing equal—time Dirac brackets of the gauge—non-4nvariant theory
Ndescribed by £ are obtained as

{T/x),xm(y)}D - lj [<r/x)xm(y) - ir/x)a (y)] *x-y) (3.13)
ffk

r aix)cxm(y)-i
{-/x).*m(y)>D [V- ^2 ]*x-y) (3-14)

^k

which are seen to be in agreement with the results obtained in Ref. [1].

3B. The Wess-Zrnninr. Term

NIn constructing a gauge-invariant model corresponding to £ (3.1), we calculate the

Wess-Zumino term for £ For this following the Stuckelberg method [10], we enlarge

Nthe Hilbert space of the quantum theory defined by £ and introduce a new field 0

(called the Wess-Zumino field [9,10]), through the following redefinition of fields ak and

A in the original Lagrangian d

gauge transformations (3.24)).

N
A in the original Lagrangian density £ (3.1) (the motivation for which comes from the

<rk -*\ ffk - 0; A — A A + 0 (3.15)

ming the changes (3.15) in £ (3.1), m

(ignoring total space and time derivatives) as:

Performing the changes (3.15) in £ (3.1), we obtain the modified Lagrangian density
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è £N + £WZ (3.16a)

with

£WZ
5 d OPO- d ff^fe + 0(^-1) - (A+0) 0(2<7k-0)

2
P -\ e'2 - \° + ffi9' + ^k-1) " (A+^ ^2crk"^ (316b)

WZ Nwhere £ is the appropriate Wess-Zumino term corresponding to £ We shall see later

that L describes a gauge-invariant theory. Infact, we will be able to recover the physical

N
content of the gauge—non-invariant theory described by £ under some special choice of

gauge [15,19]. The Euler-Lagrange equations obtained from £r (3.16) are:

(JM") - (<Jk-ak') + 2(ak-0)(A+0) 0 (3.17a)

(0"-0) + (ixk-ffk) - 2(<Y~^k+A)= ° (317b)

(cr2-l) - 0(2ak-0) 0 (3.17c)

3C Hamiltonian Formulation of the Gauge—Invariant Theory (Model A)

The canonical momenta for the gauge—invariant theory described by C are

(3.18a)

(3.18b)

Pa:
§/?_

dk
:0;

V
_d£l

_ v
d£l 2

*e — [(*-*k)+(«£-l) - 0(2<7k-0)]
d'e

[- xk + (oj-l) - 0(2ak-0)] (3.18c)

Eqs. (3.18) imply that £ possesses two primary constraints:
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iPx := pA s 0; i>2 := [irg + xfc - (<r2-l) + 0(2^-0)] « 0 (3.19)

The canonical Hamiltonian density corresponding to /T is

*c Vk+ V+PAA_£l

2 Tk + 2 ^k2 + 2
fl'2 - ak6'- A(ffk_1) + Aö (2<Tk_ö) (32°)

After including the primary constraints Vi, V'o *n the canonical Hamiltonian density <&

with the help of Lagrange multipliers u and v, one can write the total Hamiltonian

density JéL as

^ &} + Pau + &6 +wk~ (^k-1) + °(2a\r0ïï v (3-21)

The Hamilton's equations obtained from the total Hamiltonian Hq, J JC, dx are:

anJ rnJ
°k -BIT (V y); - *k - [_ ak + Ö"-2(^k-ö)(A+v)] (3.22a)

k d<rk

A=-gi-=u; -pA=_^-=[-(^-l) + 0(2c7k-0)] (3.22b)

3H.J,1 5HT!

"^f: v5 -*6=-dT= K-6" + 2(^k-Ö)(A+v)] (3.22c)

daJ öHn
*

Ù=-^=0; -Pu=-9f PA (322d)

an 1 air 1

v -jî- 0; - pv -^ [*, + xk -(<r2-l) + 0(2^-0)] (3.22e)

These are the equations of motion of the theory that preserve the constraints of the

theory ip. and V2 in the course of time.

Demanding that the primary constraint ip-. be preserved in the course of time, we obtain

the secondary constraint
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^3 {ipv J&}} (<t2-1) - 0(2<rk-0) * 0 (3.23)

The preservation of ipo for all time does not give rise to any further constraints. The

preservation of ip~ for all time also does not yield any further constraints. The theory is

thus seen to possess three constraints ip*, ip2, ipo- Also the matrix of the Poisson brackets

of the constraints ip- is seen to be singular implying that the constraints ip- form a set of

first—class constraints [12], and that the theory described by £ is a gauge-4nvariant

theory. In fact, the Lagrangian density £ is seen to be invariant under the time-
dependent gauge transformations:

Sak /3(x,t); <5xk 0; k 1,2,...,N. (3.24a)

SX - ß(x,t); S6 ß(x,t); 6px 0; Sr^ 0 (3.24b)

where /3(x,t) is an arbitrary function of the coordinates. The action S \£ dxdt is therefore

gauge—invariant. In quantizing the theory using Dirac's procedure [12], we convert

the first—class constraints of the theory into second—class ones by imposing, arbitrarily,
some additional constraints on the system in the form of gauge—fixing conditions. We go

to a special gauge given by 0 0 and accordingly choose the gauge—fixing conditions of
the theory as [15]):

gx 2<7kxk - (X0 + xk) si 0 (3.25a)

S2 2irk + 4Affk + 2ffkffk s ° (3.25b)

g3 e ft 0 (3.25c)

With the gauge-fixing conditions (3.25) the total set of constraints of the theory becomes

*! *i PA « 0 (3.26a)

£2 1PZ (oj-l) - 0(2<7k-0) « 0 (3.26b)

£3 gi 2<rkxk - (x0+xk) « 0 (3.26c)

£4 g2 2x£ + 4Aff2 + 2<rk<Tk' ft 0 (3.26d)

t5 ip2 (x0+xk) - (ffj-l) + 0(2(rk-0) ft 0 (3.26e)

^ g e s o (3.26f)
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The matrix of the Poisson brackets of the constraints £• namely R ,a(z,z') :=
{£ (z),£o(z')} is then calculated. The nonvanishing matrix elements of the matrix
R ß(z,z') (with the arguements of the field variables being suppressed) are:

R14

R23

R24

R34

R35

R36

R45

R56

-R41 -4<7^z-2')
-RZ2 iok(ak-6)S(zyz')
-R42 8xk(ak-0)£(z-z')

2

(3.27a)

(3.27b)

(3.27c)

-R43 {[8x^-(2crk-l) (8A<7k+2<7p] £(z-z')

- [2<rk (2<rk-l)] tf'(z-z')} (3.27d)

- R53 [2xk + 4^k (<rk-0)] 8(z-*' (3.27e)

-R63= 5(z-z') (3.27f)

- R54 {[8Aak + 2<rk' + 8xk (^-0)] 5(z-z') + 2afc B\z->l')} (3.27g)

-R65 -i(z-z') (3.27h)

The matrix R o is clearly nonsingular and therefore its inverse exists. The nonvanishing

elements of the inverse of the matrix R a (i.e. the elements of the matrix (R— a are

(with the arguments of the field variables being suppressed once again):

(R )12--(R )21

2 2
2xk-lAffk-(7k^-2ffkxk+20xk

ak 4£rkK~ö)

«W^ <5"(z-z')

<5(z-z')

(3.28a)

(R_1)t3 -(R_1)31
-Xi.

2<Tk ^j
<5(z-^')

(R-1)14 (r_1)4i=[tj]^^')
1 4ff, J

(R_1)l5

(R_1)l6 «

-(R_1)51

-(R_1)61

2t7k ak

4Aak-,k-

2(j;

J(z^s')

(5(z^s') +

fe] *"<•-'>

'k ffk
<5(z-^')

(3.28b)

(3.28c)

(3.28d)

(3.28e)
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(R )23-

(R_1)25

(R"1)
26

(R"1)
56

-<a~V[i5^]<~'>
-(RA2=[î^^]^')
-(R"1)62=[1 + î^tfT]^(z-,)

-(R-1)65=^-z')

(3.28f)

(3.28g)

(3.28h)

(3.28i)

with

jdz R(x,z) R (z,y) lgx6 S(x-y) (3.29)

The nonvanishing equal—time Dirac brackets of the gauge—invariant theory described by

£ under the gauge (3.25) are finally obtained (with the arguments of the field variables

being suppressed) as:

{T/x),xm(y)}D

{*/x),xm(y)}D

{""flM.x^yftjj

'*TnT«/)-( l^/X^,c m-Vm)
"

ak«xk-0)

'"(Ym" Vm)'
*(x-y)1 4 J

Sba +
6a .-a ,am

'

lim «(x-y)[ \^k-^\

L ak -

^x-y)

2a2(ak-0) + akxk
- *(x-y)2

ffk

«(x-y)

2okak + Vk 5(x-y)

{A(x),xö(y)}D
'-4Aff.

*x-y)

(3.30a)

(3.30b)

(3.31a)

(3.31b)

(3.32a)

(3.32b)

(3.33)
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The results for the Dirac brackets expressed by (3.30a) - (3.32a), are valid throughout

the phase space of the gauge-invariant theory /r (3.16), except for the constraint surface

or on the submanifold of the constraints, where they are given by (3.30b) — (3.32b). This

is a simple consequence of the fact that the constraints vanish identically on the

constraint surface or on the submanifold of the constraints. On the other hand the result

for the Dirac bracket expressed by (3.33) is valid throughout the phase space of the

gauge-4nvariant theory.

Further the relations (3.30) - (3.33), together with Jt~ (3.20) under the gauge (3.25),

reproduce precisely the quantum system described by £ (3.1) [5]. The gauge (3.25)

translates the gauge-invariant version of the theory described by £ into the gauge—non-

invariant one described by £ A comparison of (3.30) - (3.33) and (3.13) - (3.14) reveals

that (3.30b) - (3.31b) coincide completely with (3.13) and (3.14) as they should. The

additional commutators (3.32) and (3.33) express merely the dependence on 0 and x* In

fact, as explained in Sec. 2, the physical Hilbert spaces of the two theories (£ and £ are
\KTr7

the same. Also as observed in Sec. 2, the addition of the Wess-Zumino term (£ to

the theory (i.e. to £ enlarges only the unphvsical part of the full Hilbert space of the

N
theory £ without modifying the physical content of the theory.

For the later use for considering the BRST formulation of the gauge- invariant theory

described by £ we convert the total Hamiltonian density JéL into the first-order

Lagrangian density:

£I0 Vk + PaA + V + Puù + pv^ - *î
Vk + Puù + Pv* - 2 4 - 2 °k~ 2

0,2+ °k0' + A<'t"1) - X^k-°)

- [xk - (a2-l) + 0(2<rk-0)] 0 (3.34)
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3D The BRST Formulation of the Gange-Invariant Theory (Model A)
3D1 The BRST Invariance

We now rewrite the gauge—invariant theory of nonlinear sigma model (model A) as a

quantum system which possesses the generalized gauge invariance called BRST

symmetry. For this, we first enlarge the Hilbert space of our gauge—invariant model and

replace the notion of gauge transformation by a BRST transformation (as in Sec. 2, in

terms of the new anti— commuting variables c and c and a commuting variable b) (with

S2 0) such that:

Sa, — c, SX — c, 89 c, Sw, 0, 5p, 0, Sir* 0; (3.35a)

Sc 0, 6 c b, Sb 0 (3.35b)

The transformations for the Lagrange multiplier fields and their canonical momenta again

need not be specified as they are not needed. We now define a BRST-invariant function

of the dynamical variables to be a function f(ir,,p» .x^.p. ,ir,n-,ff,,X,0,b,c,c) such that Sì

0.

3D2 Gauge-Fixing in the BRST Formalism

Performing gauge—fixing in the BRST formalism implies adding to the first-order

Lagrangian density (3.34) a trivial BRST-invariant function [14]. We thus write the

quantum Lagrangian density (taking, e.g., a trivial BRST-invariant function as follows)

[14,15]:

£BRST 4o " *[ ÏÏ(A+ 2 b - ak - W

Vk + Puù + Pv* -2 \ "2 °k -2 9'2+ °k6' + A(ffk"1)

+ X(ê-2ffk6) - [xk-(a2-l) + 0(2ak-0)] 0

- S[ c(À+ j b - (7k-0)] (3.36a)

The last term in the above equation (3.36a) is the extra BRST-invariant gauge-fixing

term. Using the definition of 8 we can rewrite 'Crro-p (with one integration by parts):
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£BRST Vk + Puù + V-ïV2ffr^'2+ ak6' + A(4-1) + X(<?-2°k6)

- [Tk-<flJ-l) + ö(2(Tk-0)] 0

- 2
b2 - b(Ä-(7k-0) + cc - 2cc (3.36b)

Proceeding classically, the Euler—Lagrange equation for b reads:

- b (À - ffk - 6) (3.37)

Also, the requirement 8b 0 (cf. Eq. (3.35b)) implies:

-8b=(s'X-8ffk-86) 0 (3.38)

which in turn implies

- c 2c (3.39)

The above equation is also an Euler-Lagrange equation obtained by the variation of

^BRST w'tb respect to c. In introducing momenta we have to be careful in defining those

for fermionic variables. Thus we define the bosonic momenta in the usual way so that

PA —£BRST -b (34°)
dX

but for the fermionic momenta with directional derivatives, we set as before

*c :~ £BRST T ~ C ' *c :~ "7 £BRST ~ c (3'41)

implying that the variable canonically conjugate to c is c and the variable conjugate to c

is c. In forming the Hamiltonian density XRct fr°m the Lagrangian density in the

usual way we remember that the former has to be Hermitian. Then
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<*BRST Vk + V + pAA + Puù + Pv* + V + C7rc - £BRST

S *k+ 2 ak2 + 2
e'2~ ake'~ A(V1) + A °i2ak-^ + 2 PA + ?A<V*)

+ xcx- + 2cc (3.42)

We can check the consistency of (3.41) with (3.42) by looking at Hamilton's equations for

the fermionic variables, i.e.

c - ar <*brst> c - **brst ar= (3-43)
c c

Thus

c ar <*brst wc ' c= ^brst a^ \ (3-44)
c c

in agreement with (3.41). Further, the Eqs. (2.49) — (2.52) hold in the present case also.

3D3. The BRST Charge Operator

The BRST charge operator Q is the generator of the BRST transformations (3.35).

According to its conventional definition, its commutators with Bose operators and its

anti—commutators with Fermi operators in the present case satisfy:

[ffk,Q] [A,Q] [0,Q] c (3.45a)

[irk,Q] - [X0,Q] 2(c-c) (ffk-6) (3.45b)

{c,Q} PA + xk + wg - (ff2-l) + 0(2<rk-0) (3.45c)

{Z,Q} - (<r2-l) + 0(2<7k-0) (3.45c)

All other commutators and anti—commutators involving Q vanish. In view of (3.45), the

BRST charge operator of the present gauge—invariant theory can be written as
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Q Jdx[ic{(<r2-1) - 0(2crk-0)} -ic{pA+ r0 + xk-(<r2-l) + 0(2ak-0)}] (3.46)

This equation implies that the set of states satisfying the conditions (3.19), and (3.23)

belongs to the dynamically stable subspace of states \ip> satisfying Q|#> 0, i.e., it
belongs to the set of BRST-invariant states.

In order to understand the condition needed for recovering the physical states of the

theory we rewrite the operators c and c in terms of fermionic annihilation and creation

operators. For this purpose we consider Eq. (3.39) (namely, — c 2c). The solution of

this equation gives the Heisenberg operator c(t) (and correspondingly c(t)) as:

c(t) i^ B + e"*^* D ; c(t) e^B* + e^D* ; (3.47)

which at time t 0 imply

c c(0) B + D, c c(0)=bU D^ (3.48a)

c c(0) ivJ(B-D), Z e c"(0) -iyJ(B+ - D*) (3.48b)

By imposing the conditions

c2 c2 {c,c} {c",c} 0; {c",c} i - {c,c } (3.49)

one then obtains

B2 + {B,D} + D2 B+2 + {B^D*} + D*2 0 (3.50a)

{B,B+} + {D,Df + {B.DÎ} + {B+,D} 0 (3.50b)

{B.ßt} + {D,D+} - {B,üt} - {B+,D} 0 (3.50c)

{B,B+} - {D,Dt} - {B,Dt} + {D,ßt} - 1//J (3.50d)

{B,ßt} - {D,üt} + {B,D+} - {D,B+} - 1/V2 (3.50e)

with the solution
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B2 D2 B+2 D+2 {B,D} {B+,D} {B,D+} {B+,D+} 0 (3.51a)

{Bt)B}=-L_; {Dt)D} + L- (3.51b)
2V5 2fl

We now let 10> denote the fermionic vacuum for which

B|0> D|0> 0; (3.52)

Defining 10> to have norm one, (3.51b) implies

<fo | BB+1 o\ - i—; /o|DD+|o\=+^— (3.53)
\ / 2v2 \ / 2fl

so that

Bt|0>*0; D+|0> ^ 0 (3.54)

As usual the theory is thus seen to possess negative norm states in the fermionic sector.

The existence of these negative norm states as free states of the fermionic part of Xp™
is, however, again irrelevant to the existence of physical states in the orthogonal subspace

of the Hilbert space.

In terms of annihilation and creation operators the Hamiltonian density is

<*BRST 2 \ + 2 °k + 2
6'2- °k6'- A( V1) + A ^2V*) + 2

P2+ Pa(V*)
+ 4(BÏ"B + D+D) (3.55)

and the BRST charge operator Q is

Q jdx[+ iB [{(<r2-l) - 6(2ffk-6)} - iyJ {pA+^ +xkfaa2-l) + 0(2^-0)}]

+ iü[{(a2-l) - 6(2ffk-6)} + ifi {vx+*9 +\-<4-^ + ^2V^]] (3-56)

Now, because Q | ip> 0, the set of states annihilated by Q contains not only the set of

states for which (3.19) and (3.23) hold but also additional states for which B | ip> D | ip>

0 and for which the conditions (3.19) and (3.23) do not hold. However, the Hamiltonian
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is also invariant under the anti—BRST transformation (in which the role of c and — c is

interchanged) given by

8<Tk c, SX c, SB - c, Swk 0, '6-Kq 0, ÄpA 0; (3.57a)

'8Z 0, 8c - b, fl) 0 (3.57b)

with generator or anti-BRST charge

Q Jdx|-ic{(a2-l) - 0(2<7k-0)} + ij {pA+xö+xk -iff\-l) + 0(2<rk-0)}]

- jdx[-iB+[{>2-l) - 0(2ak-0)} + ivJ {PA+X0+xk ~{ffl-\) + 0(2ak-0)}]

-ÌD+ [{(<r2-l)- 6(2ffk-6)} - iV5 {vx+*g+\ ~(<r2-l) + 0(2^-0)}]] (3.58)

We again have [Q,H] 0, and [ Q~,H] 0, and we also impose the dual condition that

both Q and Q~ annihilate physical states implying that

QIVo OandQlV» 0 (3.59)

The states for which (3.19) and (3.23) hold strongly, satisfy both of these conditions and,

in fact, are the only states satisfying both conditions since, although with (3.51)

4(B+B + D^D) -4(Bßt + DD+) (3.60)

there are no states of this operator with ßT|0> 0 and dT|o> 0 (cf. (3.54)), and

hence no free eigenstates of the fermionic part of XpcT which are annihilated by each

of B,B',D,D'. Thus the only states satisfying (3.59) are those satisfying the constraints

(3.19) and (3.23).

o
Also, the states for which pJ ip> 0, [(xa+xJ - (^k~l) + 6(2a-^-6)\ \ ip> 0 and

o
[((Tj-1) — 0(2ffk—0)] |ip> 0 satisfy both of these conditions (3.59) and, in fact, are the

only states satisfying both of these conditions (3.59) because in view of (2.57), one can not
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have simultaneously c,c and c,c applied to \ip> to give zero. Thus the only states

satisfying (3.59) are those that satisfy the constraints of the theory (3.19) and (3.23), and

they belong to the set of BRST-invariant and anti—BRST—invariant states.

As in the preceeding section, one can also understand the above point in terms of annihilation

and creation operators of the theory in the following way. The condition Q | ip> 0

implies that the set of states annihilated by Q contains not only the states for which

PAI i» 0, [(V*k) - (oj-l) + 6(2ffk-6)] | iP> 0 and [(<72-l) - 0(2^-0)] |£> 0,

but also additional states for which B\ip> D|ip> =0, but pA|^> f 0, [(x«+xk) -
(ffk-l) + 0(2ak-0)] | ip> i 0 and [(ff\-\) - 0(2^-0)] |V> ^ 0. However, Q~|V>=0

guarantees that the set of states annihilated by Q~ contains only the states for which

PA| iP> 0, [(xö+xk) - (ff\-\) + 0(2ak-0)] | i» 0 and [(<r2-l) - 0(2^-0)] | ip> 0,

simply because B ' | ip> ï 0 and Tr\ip> tQ. Thus in this alternative way also one finds

that the states satisfying Q| ip> Q~| ip> 0 (i.e. (3.59)) are only those that satisfy the

constraints of the theory (3.19) and (3.23) and also that these states belong to the set of

BRST-invariant and anti—BRST—invariant states.

4. The Gauge-Invariant O(N) Non—Linear Sigma Model (Model B)
4A. Construction of Gange—Invariant model (Model B) using Mitra—Rajaraman Method

and its Hamiltonian Formulation

Mitra and Rajaraman [2] have constructed a gauge-invariant version of the gauge—non-

invariant O(N) nonlinear sigma model £ (3.1) considered in Sec. 3 (using their

procedure of gauge—invariant reformulation [2] described by the total Hamiltonian

density [2]:

2 \ + 2 'k' - M4-1) + PA» - [ fj|] (*•*) (4.1)

and the associated first-order Lagrangian density [2] :

4 Vk -Ì *l + W + A(^-l) + f M} (**) + P.(A-u) (4.2)k\" ï * + ï *i + A(V1) +m\ M + Pa(A-u)
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Now (4.1) and (4.2) define the new gauge—invariant theory, namely, the model B. The

Hamilton's equations obtained from the total Hamiltonian HT jdxJiL, are:

9Hrp f j if 1 ^T ff x 2 -t -»

K -a*i=(v [ 2% J 2ffk); - K -^ - ak -2Av ôjij [vrt^-*H
(4.3a)

OHrp
_

ÔHrp «
A -^=u; -pa=-^=-K-1) (43b)

dErJ dïlJ
ù -^- °; -Pu= -cfu- PA (43c)

The second-order Lagrangian density corresponding to JéL with the help of (4.3) could

be written as [2] :

£l
2 3A^k + M-Î-1) + [ gf ] W (4-4)

As observed in Ref. [2], it is not possible to eliminiate x in the last term of (4.4). In view

of this the authors of Ref. [2], introduce a new field (called 77 here) defined by [2] :

*:-[8f] (4-5)

In view of (4.5), the gauge—invariant second-order Lagrangian density equivalent to (4.4)

could now be written as [2] :

cI
2 Vk^ffk + A(V1) + ^2Vk) (46)

In the following, we would, however, work only with the gauge—invariant model B defined

by (4.1) and (4.2) (and not with (4.6)).

The gauge—invariant model B defined by (4.1) and (4.2) is seen to possess two first-class

constraints [2]:
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Xi PA * 0 ; (4.7)

X2 <\-l * 0 (4.8)

where Xi is a primary and x2 is a secondary constraint. The matrix of the Poisson

brackets of X; is seen to be a 2» 2 null matrix implying that £Ìq describes a bonafide

(pure) gauge— invariant theory. Further, £Jq is seen to be invariant up to a total

divergence [2]:

*ro at Wr1)] (4-9)

under the time—dependent gauge transformations [2] :

8ffk =0, SX ö(x,t), Sr] o(x,t), (4.10a)

5xk 2ffka(x,t), 8px 0, (4.10b)

where a(x,t) is an arbitrary function of the coordinates. The corresponding first—order

action is therefore gauge—invariant.

In order to quantize the gauge—invariant theory using Dirac's procedure [12], we convert

the set of first-class constraints of the theory X: into a set of second—class constraints, by

imposing, arbitrarily, some additional constraints on the system as gauge—fixing conditions.

One acceptable set of gauge-fixing conditions under which the above theory could

be quantized is [2] :

"l 2Vk ~ 0; (411a)

v2 (2x2 + 4A<rk + 2ffkffkv) « 0 (4.11b)

Corresponding to the above choice of gauge-fixing conditions, one obtains the following
set of constraints

Px Xi PA * 0 (4.12a)

P2 X2 (oj-l) « 0 (4.12b)

/?4 u1 2ffkwk ft 0 (4.12c)
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pA v2 (2x£ + 4A<rk! + 2ffkff§ « 0 (4.12d)

The above set of constraints p. is evidently identical with that of the set of constraints X\

Nof the gauge-non-invariant theory £ (cf. Sec. 3A). The nonvanishing equal—time Dirac

brackets of the gauge—invariant theory under the gauge (4.11) are obtained to be identical

with those of gauge-non-invariant theory £ (3.1) and are given by (3.13) and (3.14).

This is what one expects because the gauge-invariant system under the gauge (4.11) is

N
equivalent to the system £ (3.1) [2]. The main idea of the Mitra-Rajaraman method

[2] lies in suitably modifying the total Hamiltonian and correspondingly the Lagrangian
of a particular gauge-non-invariant theory possessing a set of second-class constraints

(where at least one or more of the constraints are secondary) in such a way that all or

some of the secondary constraints do not arise at all in the modified theory. The

constraints of the modified theory obtained in this way then form a set of first-class
constraints and consequently the resulting modified theory becomes a gauge—invariant

theory. The secondary constraints which did not appear in the modified theory (but were

otherwise present in the original gauge—non—invariant theory) could now be imposed on

the modified (gauge—invariant) theory as gauge—fixing conditions, so that the total set of

constraints again becomes a second-class set. The Dirac quantization of the modified

gauge—invariant theory under such gauge—fixing conditions remains identical with that of
the original gauge—non-invariant theory. Consequently the physical content of the

modified gauge—invariant theory under such gauge—fixing conditions remains the same as

that of the original gauge—non-invariant theory. The physical equivalence of the modified

and the original theory is therefore transparent.

4B BRST Formulation of the Gauge-Invariant Theory (Model B)
4B1 The BRST Invariance

We now rewrite the gauge-invariant theory namely, the model B [2] as a quantum

system which possesses the generalized gauge invariance called BRST symmetry. For this,

we again enlarge the Hilbert space of our gauge—invariant model and replace the notion of

gauge transformation by a BRST transformation (with c,c and b having the meanings as

in Sees. 2 and 3) (with 8=0) such that

8ffk 0, SX c, àxk 2ork c, £pA 0, (4.13a)
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Sc 0, Sc b, Sb 0 (4.13b)

In this case also the transformations for the Lagrange multiplier field and its canonical

momentum are not required to be specified because they are not needed. We now define a

BRST-invariant function of the dynamical variables to be a function

f(xk,PA,Pb,xc,x-,<7k,A)b,c,c) such that 6i 0.

4B2 Gauge-Fixing in the BRST Formalism

Performing gauge—fixing in the BRST formalism implies adding to the first—order

Lagrangian density (4.2) a trivial BRST-invariant function. We thus write the quantum

Lagrangian density (taking, e.g., a trivial BRST-invariant function as follows) [14,15]:

-BRST - "10£]n+ S[Z(X + lb + (Ifl'i
1 2 1 ,2 w 2 ,x f ff-xl ,-> -K

Vk - 2 V 2 ak + A(V1) + [ YÒJ J ('• *)

+ Ä[c(A+2b+[^])] (4.14)

The last term in the above equation (Eq. (4.14)) is the extra BRST-invariant

gauge—fixing term. Using the definition of S we can rewrite £drst (with one integration

by parts):

£BRST - *k ffk "J *k ~5 ffk + A(V1) + [ 2% J ('¦*) + 2" + b [A + äj-J

(4.15)+ cc — 2cc

Proceeding classically, the Euler-Lagrange equation for b reads:

.[>A + m (4.16)

Also, the requirement ^b 0 implies:
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-&>«[&+*(f£]]-0 (4.17)

which in turn implies

- c 2c (4.18)

The above equation is also an Euler—Lagrange equation obtained by the variation of

^BRST w*tb respect to c. We define the bosonic momenta in the usual way so that

PA —£BRST + b (419)
ax

but for the fermionic momenta with directional derivatives, we again set

»- -t

*c := £BRST T C ' *c := ~ £BRST c (420)
dc

dc

implying that the variable canonically conjugate to c is c and the variable conjugate to c

is c. In forming the Hamiltonian density ^roti from the Lagrangian density in the

usual way we remember that the former has to be Hermitian. Then

<^BRST Vk + PaA + V + C7rc " £BRST

1 2,1 ,2 w 2 ,n fff-xl ,-.-.<> 12 „ fff-ifl
2Tk + 2ak -A(V1)-[2%J(<r-T)-2PA-PA[^-J
+ xcx- + 2c"c (4.21)

We can again check the consistency of (4.20) with (4.21) by looking at Hamilton's equations

for the fermionic variables, i.e.

c - ar <*brst> c - **brst a= (4-22)
c c
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Thus

0 ar ^brst *z; c <^brst af= \ (423)
c c

are again in agreement with (4.20). The Eqs. (2.49) — (2.52) hold again in the present

case.

4B3 The BRST Charge Operator

The BRST charge operator Q in this case is the generator of the BRST transformations

(4.13). According to its conventional definition, its commutators with Bose operators and

its anti—commutators with Fermi operators (in the present case satisfy):

[xk,Q] 2<rkc ; [A.Q] è (4.24a)

{c,Q}=PA; {c-,Q}=-(<r2-l) (4.24b)

All other commutators and anti—commutators involving Q vanish. In view of (4.24), the

BRST charge operator of the present gauge—invariant theory can be written as

Q=jdx{ic(<r2-l)-ièpA} (4.25)

This equation implies that the set of states satisfying the condition pA | ip> 0 and

2
(a,—1)|ip> 0 belongs to the dynamically stable subspace of states \ip> satisfying

Q | ip> 0, i.e., it belongs to the set of BRST-invariant states. Also because the equation

of motion (4.18) is identical with (3.39), the Eqs. (3.47) - (3.54) hold in the present case

also.

In terms of annihilation and creation operators the Hamiltonian density is

12,l,2w2,\ f(T-xl/-t-t\ 12 fa-x<%tST 2 *k + 2 ak - A( V1) - [ 2^J^-T) _2pA _pA [^-.
+ 4(B^B + D+D) (4.26)
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and the BRST charge operator Q is

Q Jdx{+i [B(ff2 - 1 - iV5pA) + D(<r2 - 1 + i^pA)]} (4.27)

Now, because Q | ip> 0, the set of states annihilated by Q contains not only the set of
2

states for which PA 0 and (ffk~1) 0 but also additional states for which B\ip>
o

D\ip> =0 with PA # 0 and (a,—1) # 0. However, the Hamiltonian is also invariant

under the anti—BRST transformation (in which the role of c and — c is interchanged)

given by

8ffk 0, 8X - c, 8wk - 2crkc, £pA 0, (4.28a)

Sc 0, 8c -b, 8b 0 (4.28b)

with generator or anti—BRST charge

Oj Jdx{-ic(a2-l)+iïïpA}

|dx{-i [B.ffl - 1 + ivJpA) + DV2 - 1 - ivJpA)]} (4-29)

In this case also [Q,H] 0 and [ Q,B] 0, and as in the previous cases, we again

impose the dual condition that both Q and Q~ annihilate physical states implying that

Q|#> 0andQ~|ifc> 0 (4.30)

2The states for which PA 0 and (<Ti—1) 0 satisfy both of these conditions and, in fact,

are the only states satisfying both conditions since, although with (3.51)

4(B*B + D^D) - 4(Bßt + DD*) (4.31)

there are no states of this operator with B ' 10> 0 and D^ 10> 0 (cf. (3.54)), and

hence no free eigenstates of the fermionic part of Xt,™ which are annihilated by each
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of B,B',T),D*. Thus the only states satisfying (4.30) are those satisfying the constraints

PA 0 and (<rk-l) 0.

Also, the states for which pA | ip> 0 and (ffk—1) | ip> 0 satisfy both of these conditions

(4.30) and, in fact, are the only states satisfying both of these conditions (4.30) because in

view of (2.57), one cannot have simultaneously c,c and c,c applied to | ip> to give zero.

Thus the only states satisfying (4.30) are those that satisfy the constraints of the theory

(4.8), and they belong to the set of BRST-invariant and anti—BRST—invariant states.

Once again, one can understand the above point in terms of annihilation and creation

operators of the theory as follows. The condition Q | ip> 0 implies that the set of states

2annihilated by Q contains not only the states for which pJ ip> 0 and (oj—1)| ip> 0,

2but also additional states for which B|^> D|^> 0, but px\ip> # 0 and (ffk—l)\ip>

f 0. However, Q| ip> =0 guarantees that the set of states annihilated by Q contains only
2 +

the states for which pA|V"> 0 and (<Jk—l)\ip> 0, simply because B1 \ip> # 0 and

DT | ip> f. 0. Thus in this alternative way once again we see that the states satisfying

Q|ip> Q\ip> 0 (i.e. (4.30)) are only those that satisfy the constraints of the theory

(4.8) and also that these states belong to the set of BRST-invariant and anti—

BRST-invariant states.

5. Summary and Discussion

The transition to quantum mechanics is made in general, by the replacement of the Dirac

brackets by the operator commutation relations [ ], according to the Dirac quantization

rule [12]:

{A,B}D (-i) [A,B] (5.1)

where the classical dynamical variables A and B after quantization become quantum
mechanical operators on some Hilbert space. In view of this, the equal—time commutators

for the Klein—Gordon theory considered in Sec. 2, can be obtained immediately from the

corresponding Dirac brackets by the above replacement (namely, using (5.1)).



Kulshreshtha, Kulshreshtha and Müller-Kirsten 793

For achieving the canonical quantization of the non—linear sigma model, we encounter the

problem of operator ordering while going from Dirac brackets to commutation relations.

This problem can be resolved, as explained in Ref. [1,18] by demanding that all the fields

e-g) \(x)> A(x), and 0(x); and all the canonical momenta e.g., xk(x), PA(x) and x«(x)

are now hermitian operators and that all the canonical commutation relations be consistent

with the hermiticity of these operators [1,18].

In the usual Hamiltonian formulation of a gauge—invariant theory (like the ones considered

in the present work) under some gauge—fixing conditions, one necessarily destroys

the gauge-4nvariance of the theory. However, in the BRST formulation when we imbed a

gauge-invariant theory into a BRST-invariant system, the new (BRST) symmetry which

replaces the gauge invariance is maintained even under gauge—fixing and hence projecting

any state onto the sector of BRST and anti-BRST-invariant states yields a theory which

is isomorphic to the original gauge-4nvariant theory. The unitarity and consistency of the

BRST^nvariant theory described by £gT>of is guaranteed by the conservation and

nilpotency of the BRST charge Q.
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