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Abstract. We present a model system in H3 for a spin-1 quantum entity. If the state of the
model system corresponds to a '|s| 1'-state of a spin-1 quantum entity, it behaves as a joint
system of two separated spin-^ quantum entities. If it corresponds to a 's 0'-state of a spin-1

quantum entity, it behaves as the joint system of two spin-| quantum entities that are entangled
by correlations of the second kind, i.e., it behaves similar as a joint system of two entangled spin-|
quantum entities in a singlet state.

1 Introduction

In [1] and [3], Aerts shows that the joint system of two separated quantum entities cannot
be described as the projection lattice of the tensor product. As a consequence, alternative
descriptions of joint systems should be reconsidered. In [4], Aerts presents a model system for
a quantum system in a singlet state, subjected to Aspect-like measurements. In this model

system, Aerts introduces the concept of correlations of the second kind, i.e., correlations
created during the measurement process.

In section 3 of this paper, we introduce a model system in IR3 for a spin-1 quantum entity
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subjected to Stern-Gerlach measurements, consisting of a joint system of two entangled1

spin-j quantum entities on which we introduce correlations of the second kind. In section
4, we study the states of this model system, and we'll find out that there are two kinds of
states:

i) If the system is in a state of the first kind, it behaves during the measurement as the joint
system of two separated spin-| quantum entities.

ii) If the system is in a state of the second kind, it behaves during the measurement very
similar as the joint system of two spin-| quantum entities in a singlet state.

We consider a spin-1 entity that is prepared in a first Stern-Gerlach apparatus, and
measured in a second one, and thus, the set of states that we consider is parameterized by
directions in IR3,i.e., we consider a set of coherent spin-1 states. As been shown by Aaberge
in [5], the hypothesis that the rotation invariant parameters of a spin-1 system are redundant
"does not have dramatic consequences for the standard applications of quantum mechanics".

2 Representation of a Spin-| Quantum Entity

In this section, we represent the states of a spin-| quantum entity on a sphere S.

2.1 The Transition Probability for Spin-| Quantum Entity

The transition probability depends only on the relative position of the Stern-Gerlach apparatus

in which we prepare the entity and a second Stern-Gerlach with which we measure the

spin. We represent such a measurement by the Euler angles a, ß, 7, and denote it as eaß,i- R

the initial state corresponds with a spin quantum number s +| we denote it as p\, and if
it corresponds with a spin quantum number s — \ we denote it as p°_. We represent p°+ by
the vector ip^_ (1,0) G C2and p°_ by ip°_ (0,1) € C2.The eigenstates corresponding to a

measurement ea,ßn are the same as the ones we obtain when we rotate the initial states by an
active rotation characterized by the Euler angles a, ß, 7. This active rotation is represented
by a unitary operator acting on C2that corresponds with the following matrix (see [6] and

m .^ >a=i Ble ' 2 cos% -e * 2 sin§\
Ma,ß,-y=[ ja=a i ^ g2 (1)

\ e 2 sm1^ e 2 cos^ J

Thus, for the measurement eQi/g7 we have a set of eigenstates represented by the following
vectors:

r+ßn Maßaii>% (e-^cos^,e^smß-)e-^ (2a)

xIn this paper we call entities entangled whenever they are not separated.
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^ß.-r Ma,ßtlip°_ (-e-'*sin-,elicos-)e^ (2b)

The vectors in eq(2a) and eq(2b) that correspond to different values of 7 (for fixed a and ß)
represent the same states. As a consequence, we omit the superscript 7 in the notations for
the vectors and the measurements. We represent the states corresponding to the vectors in
eq(2a) and eq(2b) respectively by p^ß and p1'ß. Thus we have p°+° p°+ and p°l° p°_. We
also have:

a.ß a+7T,7T—ß /o\p+ p- (3)

We denote the probability to obtain a state p+ in a measurement eaß on an entity in a

state p°+ as P+'+, and the probability to obtain p_ in a measurement eaß on an entity in a

state p°+ as P+|_. Analogously we define Pf + and PÜ£_. We have:

P+«,+ I < ^l^ > I2 cos2\ l-±fl (4a)

paß_
1 + cosß

(46)

p$f_ Pa_i sin2 ß- —1^ (4c)

2.2 Representation of the Spin-| States in 5

The set of states of a spin-| entity is given by (see eq.(3)):

Ei ={p?V€ [0,2*1,0 €[0,7T]} (5)

Let S be a unit sphere in H3 with its center in the origin. We represent every state p" G Ei
by the point in S with coordinates (cosasinß, sinasinß, cosß). It is clear (as a consequence
of the definition of the Euler angles), that the representation of Ei in S is one to one and
onto.

3 A Model System for a Spin-1 Quantum Entity.

In this section we'll introduce the model system for a spin-1 quantum entity. First we

represent the states of a spin-1 quantum entity in S x S, i.e., we represent every spin state
as two points on a sphere2.

2The representation introduced in this paper is not the same as the Majorana representation for all spin-1
states, presented in [8], One can easily verify (by applying the construction for the Majorana representation

presented in [9j) that our representation could not be extended in a continuous way to a one to one
representation of all spin-1 states.
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3.1 The Transition Probability for Coherent Spin-1 States

We proceed along the same lines as in section 2.1. We denote a measurement characterized
by the Euler angles a, ß, j as ea,ß.y If the initial state of the entity corresponds with a spin
quantum number s +1, we denote it as p°+. If s 0, we denote it as p° and if s —1 as

p°_. We represent p°+ by the vector V+ (1,0,0) G <D3,p0 by ip°0 (0,1,0) G C3and p°_ by
ip°_ (0,0,1) G C .The eigenstates corresponding to a measurement ea,p,i are the same as

the ones we obtain when we rotate the initial states by an active rotation characterized by
the Euler angles a, ß, 7. This active rotation is represented by a unitary operator acting on
C3following matrix (see [6] and [7]):

M,cc,ß,y

I 1+cosßc-i=p- _sinß_e-if 1-cosßc-ì^ \

^e-l2 cosß -SJ^ea2
l-cosß ci=^fL sinß eJg 1+cosß çi^+l-

2 V2 2

(6)

Thus, for the measurement eaßa we have a set of eigenstates represented by the following
vectors:

,aßi ,n /1 + cosß .-a sinß 1 - cosß i*\ ,1iP"/-1 Maß^iP% ^e 2,yp 2 r (7a)

</<o MaAlip°0 {—jfe 2, CoSß, -j^e1*) (7b)

^ Maß^_ (l^e^f, _™£, I±|^f )e<I (7c)

As been motivated in section 2.1, we represent the states corresponding to the vectors in
eq(7a), eq(7b) and eq(7c), respectively by p"'ß, pg'ß and pa_f, and we omit the subscript 7
in the notation of the measurement. We have:

p°f paJn+ß (8)

Pa0'ß=Pr+ß (9)

Using similar notations as introduced in section 2.1, we find the transition probabilities
through square of the Hilbert in-product on C3:

Poî 1 < V>o°\i>o'ß > f cos2ß (10a)

paß paß /x™^y (106)

p«f_ P°f+^(l^jpßy (loc)

Pa4 P0af P-i P0aß ^ (lOrf)

Again the transition probabilities depend only on the angle ß.
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3.2 Representation of the Coherent Spin-1 States in 5x5
We define the following two subsets of the set of coherent spin states:

E+={P^|ae[0,27r],j8e[0,7r]} (11a)

Eo={Po"'"l«e[0,27r]Ij9 6[0,7r]} (lib)
We call the states contained in E+ states of the first kind, the states contained in E0 states
of the second kind. The set of all coherent spin-1 states is (see eq(8), eq(9), eq(lla) and

eq(llb)):
E!=E+UE0 (12)

If p% G E+ we represent this state by two identical points in S (one point of S x S) with
coordinates (cosasinß, sinasinß,cosß). If Po G E0 we represent this state by two points
in S with respective coordinates (cosasinß, sinasinß, cosß) and (—cosasinß, —sinasinß,
—cosß). It is clear that this representation of Ej in S x S is one to one (see eq.(9)).

3.3 The Model System

In this subsection we introduce a model system. Then we prove that this model system is a

representation for a spin-1 quantum entity.

Suppose that the states of model system can be represented by the same subset of S x S,
as we used in the previous section for the representation of the coherent states of a spin-1
quantum entity. A state represented as two identical points on the sphere with coordinates
v will be denoted as pvv, and a state represented as two diametrically opposite points with
coordinates v and — v as pv-v. We choose a set of coordinates such v (0, 0,1). We define

a measurement eu on the system in a state pViV in the following way:

i) We consider the system as a joint system of two separated spin-| quantum entities in a

state pv.

ii) On both entities perform a measurement3 with eigenstates pv and p_„.

We define the measurement e„ on the system in a state p-ViV in the following way:

i) We consider the system as a joint system of two spin-| quantum entities that are entangled,
one of them in a state pv, the other in a state »_„.

ii) On one of these two entities, that we denote as Si, we perform a measurement with
eigenstates pu and p_„. Let u (ui,u2,u3). If, as a consequence of this measurement, we

obtain a state pu for Si, then the state of the other entity (denoted as S2) changes to pv>,

where v' (ui,u2, —u3). If we obtain a state p_„ for Si, then the state of S2 changes to pvi.

3We consider measurements on spin-| quantum entities as presented in section 2.
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v=(0,0,l)

«-fwv

V'=(1L,V.,-U

«=(0,0,-1)

Figure 1: Illustration of the e„ measurements on the model system in a state pv-v. In this
illustration, the black spots represent position of Sx.

iii) We perform a measurement with eigenstates pu and p__„ on S2.

There are three possible outcome states for eu: pUiU, p-v-v or p_U]„.. Denote by ß the angle
between the vectors u and v. We can calculate the transition probabilities. Denote the
probability to become a state puy in the measurement eu on the system in a state pVtVi as

P / / We have- P — (l±==ä\2 p — rl-cosß\2 p _ l+cosß l-còs/3
1 v,u ,u,u • vvc nave, i Viv,u,u — V o ' ' u,^,~w,—u — V o / ^111-1 J v,v,v,—u — 2 2

l^^e ¦ i±sp£ ^y^, Following section 3.2, we can identify the state pVtV with the state

p+ € Ei of a spin-1 quantum entity, and the state pUtU with the state y>° G Ei and the
state pu-u with the state p",/3 G Ei- According to eq.(lOb), eq.(lOc) and eq.(lOd), we find
the same transition probabilities for the model system as for a spin-1 quantum entity, for an
initial state contained in E+.

For an initial state pv-v we have to take the two possibilities into account: Si is in a state pv

or S2 is in a state pv. For example: the probability to become a state pUtU in the measurement

e„ on the entity in a state pv-v, if Si is in a state pv, is equal to the the probability to
obtain the state pu in the measurement on Si, multiplied by the probability to obtain a state

pu in the measurement on S2. The probability to obtain pu in this second measurement is

ia + cos[7r-2/?]). We have:
2

p _ 1 1+cosß l+cos\n-2ß] i 1-cosß l+cos\TT-2ß] _ l+cos\-K-20\
rv-v,u,u — 2

'
2

"

2 ~l~2' ' ~~2 2 4 2

p _ 1 l+cos/3 l-co.s[7r-2|91 1 1-cosß l-cos\n-2ß\
rv,-v,u-u — 2

'
2

'
2 i~2'2' 2

1 1-cosß l-cos\n-2ß] 1 l+eos/3 l-cos[7r-2ffl _ l-cos[7r-2/31 _ 2o"r 9 ' 9
' o "r o ' 9 9 9 cuo fj

and

p _ 1 1-cos/j l+cos\-ir-2ß] 1 l+cos/3 l+cos[7r-2/3] _ 1+.
rv,-v,-u-u — 2

'
2

' 2 _l"2'2' 2 —
CQ3[7T—2ß] sin2

2

Thus, if we identify pv-v with the state p° G Ex of a spin-1 quantum entity, we can compare
eq.(lOa) and eq.(lOd) with Pv,_„,,,,u, Pv-VtU-u and Pv_v^u_u. Again we find the same
transition probabilities for the model system as for a spin-1 quantum entity. Thus, this
model system is a representation for a spin-1 quantum entity with Ei as set of states.
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Figure 2: Illustration going with the calculation of the transition probabilities of the model

system for spin-1 for an initial state in Ei.
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Figure 3: Illustration going with the calculation of the transition probabilities of the model

system for spin-1, for an initial state in E0.
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lsl=l s=0

/\

s=0 — s=l

* \First action onFirst action on
black entity grey entity

A \

Figure 4: Two state transitions corresponding with two completely different mechanisms,
but with the same probability of appearence. The symmetry of the transition probabilty
does not necessarly imply a process that is reversibel from a geometrical point of view.
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4 The States of the Model System

As we saw in section 3.3, E+ corresponds to the states of a joint system of two separarted
spin~2 quantum entities, and thus, a spin-1 quantum entity in a state in E+ behaves as two

separated spin-\ quantum entities.

In our model system, the correlations are created during the measurement, and thus,
they are of the second kind. In [4], Aerts shows that due to the presence of correlations of
the second kind, the singlet state is a new state, not contained in H((B2) x 7i(<D2)CH(X) are
the rays of X), but in 7i(C2®C2).Thus, it are these kinds of correlations that are responsible
for the 'quantum nature' of the singlet state. All this indicates a different approach towards
the description of joint systems: if a joint system consists of two separated entities, the
states are represented by the cartesian product of the state spaces of these entities; if due to
the interaction between the measurement apparatus and the joint system, correlations of the
second kind are created, new states occure. The states in our model system, are also new
states: we know that they can be representated in ^(C3)^ subspace of P(C2 ®C2),and one

can verify that, although we have represented the initial states of the model system in S x S,
these states do not correspond to the subset 7i(C2) x P(C2)of H(<£2 <g> C2).

The symmetry of the transition probability of the presented model system seems to be

'accidental', in the sense that the two transitions p+ —* pp (or p+ —> p0' or pi —? p%

and Pq —> p+ (or p0' —> p" or pg —> p0,0) correspond to processes with a completely
different geometry. The geometry of the transition p+ —» Po corresponds to the one of a

measurement on a joint system of two separated spin-| quantum entities. The transition

Po —> P+ corresponds to a measurement on a joint system of two entangled entities.

5 Conclusion

In this paper, we showed that a spin-1 quantum entity can be interpreted as a joint system of
two entangled spin-| quantum entities. Moreover, by introducing correlations of the second

kind on this joint system of two spin-| quantum entities, we find states in Tt(G2 ®C2) that
are not contained in 7i(C2) x "P(C2). Thus, this model system indicates a new way of looking
at a spin-1 quantum entity, and motivates a new approach towards the description of joint
systems.
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