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Abstract. We suggest a quantum stabilization method for the SU(2) cr-model based on the constant-
cutoff limit of the cutoff quantization method developed by Balakrishna et al, which avoids the
difficulties with the usual soliton boundary conditions pointed out by Iwasaki and Ohyama. We

investigate the baryon number B 1 sector of the model and show that after the collective
coordinate quantization it admits a stable soliton solution which depends on a single dimensional
arbitrary constant. We then derive the results for isovector exchange magnetic moment operators
for two-nucleon systems in the constant-cutoff approach to the SU(2) cr-model using the product
Ansatz for the soliton field operator.

1 Introduction

It was shown by Skyrme [1] that baryons can be treated as solitons of a nonlinear chiral
theory. The original Lagrangian of the chiral SU(2) cr-model is

F2

16

where

[Tr dßUd"U+ (1.1)

U ~(o + ìt-tv) (1.2)
Ft,

is a unitary operator (UU+ 1) and F„ is the pion-decay constant. In (1.2) a o(r) is a

scalar meson field and w ir(r) is the pion-isotriplet.

1Present correspondence address : Björkvägen 55. S-147 33 Tumba, Sweden.
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The classical stability of the soliton solution to the chiral cr-model Lagrangian requires
the additional ad-hoc term, proposed by Skyrme [1], to be added to (1.1)

£sk iTr [U+d»U> U+d-U}2 (L3)

with a dimensionless parameter e and where [A, B] AB — BA. It was shown by several
authors [2] that, after the collective quantization using the spherically symmetric Ansatz

Uo(r) exp [ir ¦ rF(r)\ r r/r (1-4)

the chiral model, with both (1.1) and (1.3) included, gives a good agreement with the
experiment for several important physical quantities. Thus it should be possible to derive
the effective chiral lagrangian, obtained as a sum of (1.1) and (1.3), from a more fundamental
theory like QCD. On the other hand it is not easy to generate a term like (1.3) and give a
clear physical meaning to the dimensionless constant e in (1.3) using QCD.

Mignaco and Wulck (MW) [3] indicated therefore a possibility to build a stable single
baryon (n 1) quantum state in the simple chiral theory, with the Skyrme stabilizing
term (1.3) omitted. MW have shown that the chiral angle F(r) is in fact a function of
a dimensionless variable s \x"(fyr, where x"(ß) is an arbitrary dimensional parameter
intimately connected to the usual stability argument against the soliton solution for the
non-linear cr-model Lagrangian.

Using the adiabatically rotated Ansatz U(r,t) A(t)U0(r)A+(t), where U0(r) is given
by (1.4), MW obtained the total energy of the nonlinear cr-model soliton in the form

7T 1 1[X"(0)}3
E-4K^W)a + -2^F2b-J{J+1)' (L5)

where

a=rdsfr2(f)2+8sm2(i^ (1.6)

/>f*W(^), (1.7)

F(s) -nit + -f(s) (1.8)

The stable minimum of the function (1.5), with respect to the arbitrary dimensional scale

parameter x"(0), is
1/4

(1.9)

and ^(s) is defined by

E -F
3 " 2V4< ^J+i:

Despite the non-existence of the stable classical soliton solution to the nonlinear cr-model,

it is possible, after the collective coordinate quantization, to build a stable chiral soliton at
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the quantum level, provided that there is a solution F F(r) which satisfies the soliton
boundary conditions, i.e. F(0) —mr, F(oo) 0 such that the integrals (1.6) and (1.7)
exist.

However, as pointed out by Iwasaki and Ohyama [4], the quantum stabilization method
in the form proposed by MW [3] is not correct since in the simple cr-model the conditions
F(0) —nir and F(oo) 0 cannot be satisfied simultaneously. In other words if the
condition F(0) —n is satisfied Iwasaki and Ohyama obtained numerically ^(oo) —? —n/2,
and the chiral phase F F(r) with correct boundary conditions does not exist.

Iwasaki and Ohyama also proved analytically that both boundary conditions F(0) —nir
and F(oo) 0 can not be satisfied simultaneously. Introducing a new variable y 1/r into
the differential equation for the chiral angle F F(r) we obtain

d2F 1^ 4sin(2F) (1.10)
dy y2

There are two kinds of asymptotic solutions to the equation (110) arround the point y 0,

which is called a regular singular point if sin2F « 2F. These solutions are

mir
F(y) b cy2 m even integer (1-H)

mir
F(y) -^- +v«/cos — ln(q/) + a odd integer (1-12)

where c is an arbitrary constant and a is a constant to be chosen adequately. When F(0)
—mr then we want to know which of these two solutions are approached by F(y) when y —> 0

(r —? oo)? In order to answer to that question we multiply (1.10) by y2F'(y), integrate with
respect to y from y to oo and use F(0) —mr. Thus we get

y2F'(y) + / dy2y[F'(y)}2 1 - cos[2F(y)} (1.13)

Since the left-hand side of (1.13) is always positive, the value of F(y) is always limited to
the interval mr — n < F(y) < mr + ir. Taking the limit y —> 0, (1.13) is reduced to

/Jo
dy2y[F'(y)}2 l-(-l)m, (1.14)

o

where we used (1.11-12). Since the left-hand side of (1.14) is strictly positive, we must choose

an odd integer m. Thus the solution satisfying F(0) —mr approaches (1.12) and we have

F(oo) / 0. The behaviour of the solution (1.11) in the asymptotic region y —» oo (r —> 0) is

investigated by multiplying (1.10) by F'(y), integrating from 0 to y and using (1.11). The
result is

W ^?+fdy2-^pl. (1.15)
y2 Jo if
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From (1.15) we see that F'(y) —> constant as y —> oo, which means that F(r) ~ 1/r for

f —+ 0. This solution has a singularity at the origin and can not satisfy the usual boundary
condition F(0) mr.

In [5] the present author suggested a method to resolve this difficulty by introducing a
radial modification phase tp tp(r) in the Ansatz (1.4), as follows

U(r) exp [ir ¦ r0F(r) + itp(r)} (1.16)

Such a method provides a stable chiral quantum soliton but the resulting model is an entirely
non-covariant chiral model, different from the original chiral cr-model.

In the present paper we use the constant-cutoff limit of the cutoff quantization method
developed by Balakrishna, Sanyuk, Schechter and Subbaraman [6] to construct a stable chiral
quantum soliton within the original chiral cr-model. Then we apply this method to derive
the results for isovector exchange magnetic moment operators for two-nucleon systems in the
constant-cutoff approach to the SU(2) cr-model using the product Ansatz for the soliton field
operator [7]. Such an approach avoids very lengthy algebraic manipulations and complicated
final results [7]. On the other hand it allows the same physical description of the isovector
exchange mechanisms.

The reason why the cutoff-approach to the problem of chiral quantum soliton works is

connected to the fact that the solution F F(r) which satisfies the boundary condition
F(oo) 0 is singular at ?" 0. From the physical point of view the chiral quantum model is

not applicable to the region about the origin, since in that region there is a quark- dominated
bag of the soliton.

However, as argued in [6], when a cutoff e is introduced then the boundary conditions
F(c) — mr and F(oo) 0, can be satisfied. In [6] an interesting analogy with the damped
pendulum has been discussed, showing clearly that as long as e > 0, there is a chiral phase
F F(r) satisfying the above boundary conditions. The asymptotic forms of such a solution
are given by Eq. (2.2) in [6], From these asymptotic solutions we immediately see that for
e —» 0 the chiral phase diverges at the lower limit.

Different applications of the constant-cutoff approach have been discussed in [8].

2 Constant-Cutoff Stabilization

The chiral soliton with baryon number n 1 is given by (1.4), where F F(r) is the radial
chiral phase function satisfying the boundary conditions F(0) —ir and F(oo) 0.

Substituting (1.4) into (1.1) we obtain the static energy of the chiral baryon

M *f2 r2 *U
rOO

9 (dF^ r,/ dr r hr + 2 sin2 F
e(t) \drj

(2.1)
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In (2.1) we avoid the singularity of the profile function F F(r) at the origin by introducing
the cutoff e(t) at the lower boundary of the space interval r G [0, co], i.e. by working with the
interval r G [e, oo]. The cutoff itself is introduced following [6] as a dynamic time-dependent
variable.

From (2.1) we obtain the following differential equation for the profile function F F(r)

with the boundary conditions F(e) —ir and F(oo) 0, such that the correct soliton
number is obtained. The profile function F F[r; e(t)\ now depends implicitly on time t
through e(t). Thus in the nonlinear cr-model Lagrangian

L H /a*xTr (dßUd»U+) (2.3)

we use the Ansätze

U(r, t) A(t)Uo(r, t)A+(f) U+(r, t) A(t)U+(r, t)A+(t) (2.4)

where

U0(r,t) exp[ir ¦ r0F(r;e(t))\ (2.5)

The static part of the Lagrangian (2.3), i.e.

L=^fd3xTr (W ¦ W+) -At (2.6)

is equal to minus the energy M given by (2.1). The kinetic part of the Lagrangian is obtained

using (2.4) with (2.5) and it is equal to

L ^l j d3x Tr (d0Ud0U+) bx2Tr (d0AdQA+) + c [x(t)}2 (2.7)

(2.8)

where
27T ^9 r°° _,

27T „9 y00 ofdF\2

with x(t) [e(t)]3/2 and y r/e. On the other hand the static energy functional (2.1) can
be rewritten as

M ax213 a=-F2l dy *lf)+***F (2.9)

Thus the total Lagrangian of the rotating soliton is given by

L cx2 - ax213 + 2bx2àvàv (2.10)
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where Tr (d0Ad0A+) 2àvà" and au (v 0,1, 2, 3) are the collective coordinates defined as
in [9]. In the limit of a time-independent cutoff (x —> 0) we can write

dL
H -—àv -L ax2'3 + 2bx2àvàv ax2'3 + —- J(J + 12/3

1

(2.11)dà» 2bx2

where (J2) J(J + 1) is the eigenvalue of the square of the soliton laboratory angular
momentum. A minimum of (2.11) with respect to the parameter x is reached at

ob

3J(J+1)

3/8 ab

3J(J+1)

1/4

The energy obtained by substituting (2.12) into (2.11) is given by

E -

3 a3

2~b J(J+1)
1/4

(2.12)

(2.13)

This result is identical to the result obtained by Mignaco and Wulck which is easily seen

if we rescale the integrals a and b in such a way that a —» \F2a, b —> \F2b and introduce
fn 2~2>3FW. However in the present approach, as shown in [6], there is a profile function
F F (y) with proper soliton boundary conditions F(l) —n and .F(oo) 0 and the
integrals a, b and c in (2.9-10) exist and are shown in [6] to be a 0.78 GeV2, b 0.91 GeV2,

1.46 GeV2 for F„ 186 MeV.

Using (2.13) we obtain the same prediction for the mass ratio of the lowest states as

Mignaco and Wulck [3] which agrees rather well with the empirical mass radio for the A-
resonance and the nucléon. Furthermore using the calculated values for the integrals a and b

we obtain the nucléon mass M(N) 1167 MeV which is about 25% higher than the empirical
value of 939 MeV. However if we choose the pion decay constant equal to Fn 150 MeV we
obtain a 0.507 GeV2 and b 0.592 GeV2 giving the exact agreement with the empirical
nucléon mass.

Finally it is of interest to know how large the constant cutoffs are for the above values of
the pion-decay constant in order the check if they are in the physically acceptable ball park.
Using (2.12) is is easily shown that for the nucléons (J \ the cutoffs are equal to

'
0.22 fm for Fw 186 MeV
0.27 fm for Fn 150 MeV

Clearly, the cutoffs have to be smaller than the nucléon size (0,72 fm), and from (2.14) we

see that it is the case. It should, however, be noted that the simple Skyrme model discussed
here is at variance with some physical constraints since the isoscalar charge radius (~ 0.8

fm) is identical to the baryon charge radius (~ 0.5 fm).

(2.14)

3 Isovector Magnetic Moment in the B 1 Case

The isovector component of the nuclear electromagnetic current in the Skyrme model is

a Noether current associated with the symmetry of the Skyrme Lagrangian density. The
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isoscalar component is, however, proportional to the topological baryon current and it is not
directly related to the Skyrme Lagrangian density. Thus only the isovector curent provides
a possible tool for testing the quality of the Skyrme Lagrangian.

The study of the two-nucléon system (5 2), in the original Skyrme model [1], gives a

good description of the isovector exchange mechanisms, e.g. the long-range tensor nucleon-
nucleon interactions and spin-orbit interactions [7], On the other hand, the Skyrme model
does not provide a satisfactory description of the isoscalar exchange mechanisms, e.g. isospin-
independent central interaction [7],

The isovector current is the Noether current associated with the symmetry of the
Lagrangian density (1.1), without the pion mass term, under the transformation

U —* exp -iVVj [/exp I — -iér3 J (3.1)

where eJ (j 1, 2, 3) is the set of three infinitesimally small Noether parameters. As eJ —? 0,

we obtain
U -> U + ieJ

2 ' U + £35Uj (3.2)

The Noether current associated with the transformation (3.2) is

(3.3)V--2Trlâ|fe)^j=OTr(^) lU.

i-^-Tr (t3[/+W + t3c7W+) (3.5)

The third component (j 3) of the vector current (3.3) is the isovector electromagnetic
current given by

J,, V3ß -i^Ti (r3U+dßU + T3UdfiU+) (3.4)

In the present paper we consider only the space part J of (3.4), given by

¦EI
16

Using the rotational Ansatz U(t) A(t)UoA+(t) and the projection theorem [7]

(N'\ AtA+ \N) -Ì (N'\ ctn(t ¦ rN) \N) (3.6)

we obtain from (3.5)

J(r) 1er xrr3F^. (3.7)

The isovector magnetic moment m is obtained from the definition J — m x r and is given
by

1 „o sin2 F ,„ „.m üaT3F'^- ¦ {3-8)

The total magnetic moment is given by

pL ^jd3rr2m(r) ^QT3(T, (3.9)
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where fi be3 is the moment of inertia of the rotating soliton with fe and e defined by (2.8)
and (2.12) respectively. From (3.9) we obtain the isovector <?s-factor

9s 2-^n (3.10)

4 The Exchange Magnetic Moment Operator for B
2 Soliton

In order to describe a two-nucleon system we use the product Ansatz suggested by Skyrme
[1] for the 5 2 field operator

U(Ri,R2; r) U(r - Rx)U(r - R2) UXU2 (4.1)

where Ri and R2 are the coordinates of the centers of the two solitons. The unitary operator
(4.1) has the correct 5 2 soliton form for Ri R2.

Using (4.1) we obtain the space part of the isovector current

J Ji(r - Ri) + J2(r - R2) + JEX(RuR2;r) (4.2)

where Ji and J2 axe single soliton current operators of the form

Jk -i^Tt (nU+VUk + r3UkVU+) k 1,2 (4.3)

and Jex is an irreducible exchange current operator given by

Jex i^Tr [u+VUi (U2T3U+ - r3) + <72W+ (u+r3Ui - r3)] (4.4)

The soliton fields Ui and U2 are rotated using the expression

Uk -* Ak(t)UkAt(t) Ak(t)Uo(r - Rk)A+(t) k 1,2 (4.5)

where U~o is the static soliton field defined by (1.4).

Since the product Ansatz (4.1) does not possess a definite symmetry under interchange
of the particle coordinates, JEX contains both a physical symmetric part and an unphysical
antisymmetric part which has no nonzero matrix elements between any two antisymmetric
two-nucleon states. The symmetric part is, on the other hand, reduced to a form which
contains only Pauli spin and isospin for the two nucléons.
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Using (4.5) and the projection theorem (3.6), (4.4) becomes

'EX 5 J
16 I

sin Fi cos Fi sin F2 cos F2

nr2
((tr2 ¦ r2)<Tl - (a1 • rj)<r2

/dFi sin Fi cos Fr \ sin F2 cos F2
+ (a1 ¦ r,

\dri n y n^
dF2 sin F2 cos F2 \ sin Fi cos Fi

-(o~L -ri)(<r2-r2
dr2 r2 J nr2

)(cr2-r2)^

r2

-2 sin2 Fi sin2 F2 -^((T1 x r^Tg1 + 3(o-2 x r2)r32 }¦
(T1 X T2)

(4.6)

where ri r - i?! r2 r - R2 Fi F(ri) and F2 F(r2).

The magnetic dipole moment operator is defined by the following expression

tiEx \jd3r'r'xJEX(r'-Ri,r'-R2) (4.7)

where Jex is the exchange magnetic moment operator defined by (4.6). Introducing relative
and center-of-mass coordinates

1.
r Ri-R2 and R ^(Ri + R2) (4.8)

respectively, the exchange magnetic moment operator splits into two terms as follows

PeX — Pr + PCM. I

where

Pr -jd3ppx JEx(p - r/2, p + r/2)

Pcm. -Rx J d3p JEX(p - r/2, p + r/2)

In (4.10) and (4.11) the vector p is defined by

p r' -R.

(4.9)

(4.10)

(4.11)

(4.12)

In the present paper only fir, depending solely on the relative coordinate r, is of interest.

In order to calculate ßr we shall perform the variable transformation p —» — p, which
amounts to changing the sign of the relative coordinate r since Jex is odd in the variables

t*i r' — Ri and bp2 r' — R2. Furthermore we make a multipole expansion of the radial
functions occuring in ptr, using

f(ri,r2) Xl/((ri,r2)F(T'i ¦ r2)
1=0

(4.13)
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where Pi(x) are Legendre polynomials and the multipole factors fi(ri,r2) are defined by

21 + 1 /•+!
fi(ri,r2) ¦j dzPl(z)f(n,r2;z)

2 J-i
Thus we obtain the standard form for the exchange magnetic moment

Pr
1

4MN

+

già1 x a2 + g2 ((a1 x a2) ¦ r0)r0 - -er1 x er2

M*1 - a2) + h2 ((a1 - a2) ¦ r0)rQ - -(a1 - <r2]

(r1 X T2):

(r1 - r2

fcl V + <r2) + k2 (((a1 + a2) • r0)r0 - ^(a1 + a2))] (r1 + r2)3}

where the radial functions gx, g2, hi, h2, kx and k2 are given by

2jtMn 2 Z"00 2 /"
/ dpp dz

+1 f sin Fi cos Fi sin F2 cos F22 / „2

nr2
P + 2rPz

1 / ciFi sin Fi cos Fi \ sin F2 cos F2

6r2 \ ciri n r2
l-r2p2(l-P2(z))\

(4.14)

(4.15)

(4.16)

g2(r) --ffi
ttMa

cdppAj dz
sin Ft cos Fi sin F2 cos F2

rir2 l-F (*))} (4.17)

r+! sin2 Fi sin2 F2 / 1

hi(r) fci(r) -^F2jypp2j_dz '"" J;r - * p2 + ^rpz (4 18)

,n >.
3 t^Mn^T, 4 F1-1., sin2 Ft sin2 F2 ^/i2(r) fc2(r) --fci 5—^/ dpp* dz j (1-p2(^))

(4.19)

Using now the constant cutoff method, we obtain the results for the radial functions (4.16-19)

siM
2?rM,N*2

27 Fhi(r/e) 2ab
J(J+1) (4.20)

I \
3

I \
WMn t-,2 I I s

92 (r) --Ji(r) -—F7r72(r/£)
.2afe

J(J+1) (4.21)
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hi(r) ki(r)
2ttM,Ht?1.

27
Km(r/e) 2ab J(J+1) (4.22)

h2(r) fc2(r) -^fci(r) - ^F^r/e) 2ab J(J+1) (4.23)

where a and fe are dimensionless integrals defined by (2.9) and (2.8) respectively, and J.
J(J + 1) is the eigenvalue of the square of the soliton collective angular momentum. In
(4.20-23) we introduced the dimensionless integrals 71, 72, «i and rj2, defined by

/00
/-+1

ida7 idz
+1 f sin Fi cos Fi sinF2cosF2 / 1

S1S2 V 2

1 dFi
_

sinFcosFA sinF2cosFVe2 _
1

6sf \dsi si I s2 I

72
f+1 sin Fi cos Fi sin F2 cos F2

(6') j~dt?j_dz —^-^±^J.^ll± (1 _ paW)
S1S2

(4.25)

/00
/¦+

1 ^7 id2
+1 sin2 Fj sin2 F2

s2si
e + „atz (4.26)

»?2 (a)=JidÇ?]_dz
+1 sin2 Fi sin2 F2

s2si
(1 - Fi(z)) (4.27)

In (4.19-22) we used the notation Fk F(sk) (k 1, 2) where F F(s) is the chiral phase
function and

»=-, •* - (fc l,2), Ç=^. (4.28)
e e e

As the Skyrme model reproduces the usual one-pion exchange potential at large internu-
elear separations, the exchange magnetic moment operator (4.9) agrees with the usual pion
exchange magnetic, moment operator in the asymptotic region when r —> 00. The form of
the magnetic moment operator in the pion physics is well known, and the relevant radial
function g2(r) and g2(r) are given by

0» 2MW/2NN
3 m,, 47T

(2mnr - 1) (4.29)

g2(r)
m„ 4-K

(mnr + 1) (4.30)
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This important consistency test of the Skyrme model remains valid even in the case of the
constant-cutoff approach to the SU(2) cr-model, since in the asymptotic region when r —+ oo,
the behaviour of our expressions (4.20-23), with the integrals (4.24-27), is the same as that of
the expressions (4.29-30). This consistency was discussed in the case of the complete Skyrme
model in [7], However the present approach makes the algebraic manipulations easier and

final results simpler and much easier to handle.

Finally the numerical comparison of our radial functions gi(r), g2(r), hi(r) fci(r) and

h2(r) k2(r) with the corresponding radial functions obtained using the complete Skyrme
model in [7] is made in Figs. 1, 2, 3 and 4, respectively, for Fn 186 MeV and for r > e ~
0.22 fm. From Figs 1, 2, 3 and 4 we see that there is a good qualitative agreement between our
radial functions and the corresponding radial functions obained using the complete Skyrme
model in [7], for large and intermediate separations. The product Ansatz to describe the

5 2 soliton is, of course, limited to large and intermediate separations. For very small

separations (r < e) the comparison is not possible anyway, since our radial functions are
defined only for r G [e, +oo].

0,4 3,6

0,1

rfm0,1

0.3-

0.5

Figure 1: The radial function gi (r) given by the expression (4.20) for nucléons (solid line)
compared to the corresponding radial function obtained using the complete Skyrme model
[7] (dashed line).

5 Conclusions

In the present paper we have derived the expression for the isovector exchange magnetic
moment in the constant-cutoff approach to the SU(2) cr-model. Thus we have shown that
the long-range behaviour of the isovector exchange magnetic moment agrees with the usual
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r(fm)

04 2 36

-0,1 - sf"'

-0,3 ¦

' \ 'y s^
-0,5-

Figure 2: The radial function g2(r) given by the expression (4.21) for nucléons (solid line)
compared to the corresponding radial function obtained using the complete Skyrme model
[7] (dashed line).

r(fm)

0,4 1 1.75
0 -

-0.1 -

-0.2-
,y

-0.3- ,,¦¦/
-0.4 • ¦^/
-ns -

Figure 3: The radial function hi(r) fci(r) given by the expression (4.22) for nucléons (solid
line) compared to the corresponding radial function obtained using the complete Skyrme
model [7] (dashed line).
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Figure 4: The radial function h2(r) k2(r) given by the expression (4.23) for nucléons (solid
line) compared to the corresponding radial function obtained using the complete Skyrme
model [7] (dashed line).

pion-exchange magnetic moment. This agreement is due to the manifest chiral invariance of
the SU (2) cr-model Lagrangian without the pion mass term, which leads to predictions that
satisfy the soft-pion theorems based on the chiral invariance.

We have however not investigated the short-range behaviour of the isovector magnetic
moment, which is not well understtod in the complete Skyrme model (with the Skyrme
stabilizing term included). We shall return to that matter in the coming studies.
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