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Abstract.

We study Schrödinger operators with potentials not decaying at infinity. For these we

prove a limiting absorption principle and the absence of singular spectrum. This is done by
an abstract method, relying on the positivity of a commutator, related to the Kato-Putnam
and Mourre methods.



14 Boutet de Monvel, Kazantseva and Mantoiu

0 Introduction

This article is devoted to the study of the spectral properties of some anisotropic Schrödinger
operators H A + V acting in the Hilbert space JS? L2(Rn).

Much is known on the spectrum when V is A-relatively compact. The essential spectrum
is [0, oo) and, under some mild extra conditions (essentially on the large-distance behaviour
of V), the singular continuous spectrum is absent and the point spectrum in any compact
subset of R \ {0} is discrete. The case when V is not relatively compact is less understood.
Detailed spectral informations are available when V has some special properties: repulsivity,
quasi-periodicity, a iV-body structure or monotony as in the Stark effect problem. We do
not give details or references. Let us mention that — except in the quasi-periodic case —
methods using the positivity of a commutator, as Mourre's approach [5] or the Kato-Putnam
theory [4], [6] are fit.

Our intention is to show that some classes of V's which are not relatively compact can
also be studied by means of the positivity of a suitable commutator. To give an idea, let us
look at the operator H A + V. We have i[H, A] 2A - V where A §{(P, Q) + (Q, P)}
is the generator of dilations in Rn, P,Q are the momentum (resp. position) operators and

V (x, VU). It is known that, for N > 3, A > (^)2|Q|~2; hence, if we require

\V(x)\ < ^, with CN < ^=^ (0.1)

we get i[H, A] > 0. This seems to be a good starting point for studying the spectral properties
of H in the anisotropic case, because (0.1) allows a rather general behaviour of V at infinity
(roughly V must have radial limits, which may depend on the direction, and a 0(r~2) type
of convergence towards them). But the existing commutator methods are not able to exploit
the situation above in a suitable generality. First, in the Kato-Putnam theory, the weak

positivity i[H, A] > 0 is enough, but one needs strong regularity properties for H and A.
Secondly, suppose that one aims at a Mourre estimate for the interval J:

EH(J)i[H, A]EH(J) > aE„(J) + K (0.2)

where En is the spectral measure of H, a is a strictly positive number and K a compact
operator. In our case i[H, A] does not dominate a strictly positive constant (except in some

very restricted circumstances). Hence the best we can do is to adopt a perturbative point of
view and write

i[H,A] 2H-(2V + V).

One can try to get some positivity out of the first term and a compact operator out of the
second by using suitable spectral projections Eh(J)- But this requires some compactness
assumptions on V, which are not implied by (0.1) and which we would like to avoid. Therefore,

one aims at a result relying on the condition B i[H, A] > 0, but with less regularity
required on H and A. This will be done in the first section. The main result is Theorem
1.1. It is shown roughly that if i[H, A] is positive, injective and .ff-bounded and the second

commutator [B, A] is not too singular (in a sense to be specified), then the spectrum of H is
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purely absolutely continuous. We also get some estimates on the behaviour of the resolvent
of H close to the real axis (the limiting absorption principle and smoothness estimates). In
Corollaries 1.1 and 1.2 we reformulate these as criteria for the existence and unitaxity of the
wave operators.

1 The Method of the Weakly Conjugate Operator

Let us consider a self-adjoint operator H in the Hilbert space Jf (with scalar product (¦, •)

and norm || • ||). We denote by 'S2 its domain and by if1 the form-domain. Endowed with
the corresponding graph norms, they are also Hilbert spaces. By identifying Jf with its
topological anti-dual (its adjoint) M", one has the following continuous, dense embeddings:

^c^c^cr'c y~2

where, for example, if-1 is the adjoint of if1. Notice that H extends to a bounded operator:
if1 —> if-1 (denoted by the same letter), which is symmetric with respect to the duality
between <£1 and if-1.

We shall study the spectrum of H by means of another self-adjoint operator A, which
will be now introduced through its unitary group {W(£) e,tA | t € M}. We assume that
all operators W(t) leave if2 invariant. It is a standard fact that W will induce Co-groups in
the spaces ifs (s ±1, ±2). They act in a coherent manner, hence no notational difference
will be made between them, neither between their infinitesimal generators, but it is useful
to distinguish between their domains by writing D(A; X), where X stands for one of the

spaces above.

Definition 1.1 We will say that H £ Cl(A;if2, JT) if the mapping

lati-» W(-t)HW(t) £ B(if2,Jf) (1.1)

is strongly C*\ i.e. for any / £if2,t^> W(-t)HW(t)f £ J? is C1 in norm-sense.

The strong derivative of the function (1.1) at t 0 will be denoted by B. It belongs to
B(ff2, Jif), the space of all linear, bounded operators: if2 —? Jf. By duality and interpolation,

we can think of B as a symmetric element of B(fSx,^~x).

Definition 1.2 We say that A is weakly conjugate to H ii H £ C1(A;'é2,M') and B > 0

(i.e. B > 0 and the kernel of B is trivial).

Definition 1.3 (a) We denote by 3ë the Hilbert completion of if1 for the norm ||/||^
</,5/}1/2.

(b) We denote by 3ê* the Hilbert completion of Bif1 for the norm \\g\\^. (g, B~lg)112.
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It is easy to see that B extends to a unitary operator: SS —> SS*. SS* can be identified
with the adjoint of SS (this explains the notation). The duality form of the couple (S3,38*)
coincides with the scalar product of 34? on 'S1 x Bif1 and will therefore also be denoted by
(•, •). In general, 34? is not comparable with SS or SS*. Note that we have dense embeddings
if1 C SS and Se* C if'1. If the C0-group W in 'S'1 leaves Se* invariant, we get C0-groups
respectively in Se* and in SS, also denoted by W. Hence, two new Hilbert spaces appear:
D(A;S§*) and D(A;SS). Since D(A;SS*) will play a distinguish role, we use the short
notation sé D(A; SS*). It carries the Hilbert norm

ll/IU (11/11* + P/ll*)1/2 (</, B-'f) + (Af, B-'Af))lß
We finally assume B £ Cl(A;SS,SS*). As explained before, this means that the map

R3t^ W(-t)BW(t) £ B(SS, Se*) (1.2)

is strongly C1. Equivalently the sesquilinear form

D(A; Se) x D(A; SS) 3 (f, g) ~ i(f, BAg) - i(Af, Bg) £ C (1.3)

is continuous with respect to the topology of SS x Sé. A rough way to say this is i[B, A] £
B(S§, Se*), where the second commutator i[B, A] is either the operator associated with (1.3)
or the derivative at t 0 in (1.2).

We may now state our main result:

Theorem 1.1 Suppose that A is weakly conjugate to H and that B £ C1(A; Sé, SS*).

(a) |(/, (H -Xt »aO_1/)I < CH/H2^, with C independent of X £ R, p > 0 and f £ sé.

(b) Any operator T £ B(sé*, 3t?) is H-smooth where 3t? stands for an arbitrary Hilbert
space.

(c) H has purely absolutely continuous spectrum.

Remark that (H - X q= iß)'1 belong to B(if-\if:) C B(SS*, SS) C B(sé, sé*), hence the
uniform estimate (a) (the "limiting absorption principle") makes sense. The point is that
it cannot be true in B(fê~x,ifx) if À belongs to the spectrum of H. The precise statement
of the point (b) is that a closed operator To in 3f, talcing values in 3tT, which extends to
an element of B(sé*,3(?) is H-smooth in the usual sense (see [7]). This also makes sense,
because if T0 is if-smooth, its domain must contain the domain of H, which is dense in sé*.

Proof of Theorem 1.1. (b) and (c) follow from (a) in a standard way. We shall divide the
proof of (a) into several easy steps. The same letter may denote different constants from
line to line.

Lemma 1.1 There exists e0 > 0 such that for all X £R,p> 0 and e £ (0, eo), the operators

H - X =F iß T ieB : if2 -> 31?

are isomorphisms.
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Proof. As a consequence of the open mapping theorem, one needs only to show that the
operators H — X^iß + ieB, which are elements of B(if2,34?), are bijections: if2 —* 34?. For

f£if2
\\(H -X + ipT ieB)f\\2 p2\\f\\2 + \\(H - X + ieB)f\\2

+2Re((H - X + ieB)f,Tißf)
>ß2\\f\\2 + 2eß\\f\\%

>m2II/II2.

In particular, for ß ^ 0 the operators H — A + iß + ieB :if2^>34?axe injective. But,
setting £o s ll\\B\\y2^3f and restricting to e G (0, eo), it is easy to see that they are closed

operators in 34? and adjoint to each other. This gives immediately the surjectivity and this
finishes the proof.

(ii) Now, let us set

Gf Gf(X, p) (H-X + iß + ieB)'1. (1.4)

They are in B(34?,if2), hence in Bfê-^if1) and in B(SS*,SS) too. One can easily show
that

(/, Gfg) (Gff, g) for all /, g £ if'1. (1.5)

This is why one sometimes uses the notations Gf Ge and G~ G*. In the next lemma we
give the crucial a priori estimates satisfied by Gf. Note that, for lack of a better positivity
of B, one cannot avoid the new spaces SS and SS*.

Lemma 1.2 (a)

(b)

(c)

-.irli ^
1 \/f ^±t\\1/2iiGr/iu<^K/.G?/>r. (1.6)

l|G*/!U<^ll/IU. (1.7)

libili s C{*) (i o\Cr c#—l_^l < (1.8J
ß

Here X £ R, ß £ (0, co) and e £ (0, eo); in (c) the constant c(X) does not depend on ß nor e.

Proof, (a) We write G+ - G~ 2ißG+G~ + 2isG+BGj, which, combined with (1.4), gives
for f £SS* <Z if'1:

i(/, [G+ - G;]f) > (G;f,BG;f) \\G;f\\%

and this is stronger than one of inequalities in (1.5). The other one is obtained in the same
way.
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(b) follows from (a) and from \(f,g)\ < \\f\\„\\g\\a (f £ SS* and g £ SS).

(c) is straightforward.

(iii) We set Fe FC(X, ß; f) (f, GJ), where A £ R, ß > 0, e £ (0, e0) and f £ sé. Our
strategy is to differentiate with respect to e, to use the a priori estimate (1.5) in order to get
a differential inequality on \Fe\ and integrate this. We will obtain (a) in the end by letting
e —> 0. In fact, a formal calculation gives easily

Fi (G*J,Af) - (Af,GJ) - ie(G*J, [B,A]GJ).

We give no details about the rigorous proof which can be easily supplied. By (1.5) we get

i^'i < ^n/iLi^r/2+ii[5,/i]iu^,iFe|. (1.9)

(iv) By a version of Gronwall's lemma which is proven in [2], Appendix B and by (1.6)
we conclude from (1.8) that the limit F0 lim.e^QFe exists and satisfies

\F0\ < C{\Feo\ + \\fO < C {^11/11* + \\f\t} < C\\f\t-

(v) To finish the proof we need only to show that F0 is the right object, i.e. that
(/, Ge(X, ß)f) converges to (/, (H — X — iß)~xf) when e —» 0. For this we write

\(f,Ge(X,ß)f) -(f,(H-X- ip)'1/)] < \\Ge(X,ß) -(H-X- iß)-l\\ss.^3g\\f\\%..

This goes to zero when e —> 0 because of the second identity of the resolvent and of (1.7).

As consequences of Theorem 1.1 (b) and Theorems XII.24 and XIII.26 from [7], we can
state the following scattering results:

Corollary 1.1 For j 1,2, let Hj,Aj be self-adjoint operators in the Hilbert space 3f.
Assume that Aj is weakly conjugate to Hj and that Bj i[Hj,Af\ £ C1(A;SSj,SS*) (the
objects if2,SSj and séj are as explained before). Assume also that Hx — H2 £ B(séx*,sé2) in
the sense that there exists HX2 £ B(séx, sé2) such that for fj 6 iS2

{Hih,f2) - (h,H2f2) (Hi2fi,f2)

((•,¦) denotes here different but coherent pairings). Then the wave operators

0± s-lim e'tH> e-UH* (j, k 1,2, j ± k)
•> t—*±oo

exist and are unitary. In particular, H\ and H2 are unitary equivalent.
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Corollary 1.2 Assume that A is weakly conjugate to H and that B £ C1(A; SS, SS*). Let U
be self-adjoint, such that \U\ll2 extends to an element of B(sé*,34?). Assume either that H
is bounded below or that U is H-bounded in operator-sense. Then there is a constant Y > 0

such that for any 7 £ (-T, T), H^ H + yU is self-adjoint, purely absolutely continuous
and unitary equivalent to H through the wave operators.

The constant T is proportional to || [U]1!2]]^,^^,. For the self-adjointness of Hy for small
7 we use K.L.M.N. or Rellich's theorem. Note that |£/|1/2 £ B(^,34?), because if1 C sé*.
Neither of the two corollaries is stronger than the other. In the first, it is important that
ifi 7^ if2 and sèi 7^ sèi are allowed. The second is fit to situations when the weak conjugation
is easy to get only for one of the operators involved.

2 Schrödinger Operators

Let us consider an euclidean space X, i.e. a finite-dimensional, real vector space equipped
with a scalar product (•,•)• The corresponding norm is | • |. For each subspace Y we denote
by 34? (Y) the Hilbert space L2(Y; dy) and by 34?S(Y) the usual Sobolev space of order seR
associated to Y. 34?(X) will be identified freely with 34?(Y) <g> 34?(YL) and we write {-, •)

for the scalar product in any 34? (Y). By QY we denote the usual multiplication operator by
the free variable in 3f?(Y). PY —iVY will be the corresponding momentum. The index
X will be usually dropped.

We intend to study Schrödinger operators H A + V(Q), where V(Q) is the
multiplication by a real Borei function V defined on X and A is the Laplace-Beltrami operator
assigned to X, with the convention A \P\2 (it is positive). We also set Ay |Py|2; it
acts in 34?(Y), with domain 34?2{Y). Ay- Ay ® 1 is an operator in 34?(X) defined in
34?2(Y) <g> 34?(YL).

Let us also set AY \{(PY,QY) + (QY,PY)}, the generator of dilations in Y. As a
weakly conjugate operator we shall try Ay AY <g> 1, for some suitable Y. It generates in
3i?(X) the unitary group WY(-) WY(-) ® 1, where WY is the dilation group in 34?(Y).
Namely

Wv(t)f](x) e^tf(etxY, xz) for all t £ R, x £ X and / £ 34?(X).

Here ny is the dimension of Y, Z Yx and (xY, xz) is the decomposition of x with respect
to the splitting X Y © Z. Let us advocate the use of AY- We have

B s i[H, Ay) 2Ay - (DYV)(Q), (2.1)

where the notation DYV (xY,VYV) will be systematically used. Suppose that V is

Y-homogeneous of degree 0, i.e.

V(XxY, xz) V(xY, xz) for all A > 0, (xY, xz) £ X. (2.2)
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Then DYV 0 and B 2Ay > 0. In fact, under some mild conditions (we may suppose for
simplicity that V is bounded), Theorem 1.1 may be applied to show that H has no singular
spectrum and this is not trivial if Y ^ X.

The discussion above suggests the introduction of the homogeneous Sobolev space of order

1 on Y, denoted by 34?l(Y), which is the completion of 3>(Y) C%°(Y) in the norm

U/H » =(/,Ay/)1/2 |||Py|/||. It is a Hilbert space and 3f1(Y)c3f?1(Y). 3î?l(Y)
o

is not comparable with 34?(Y). Its adjoint may be identified with 3f _1(y), the homogeneous
Sobolev space of order —1, defined by the norm \\g\\ ¦> || \PY\ g || (here we may start

Jif-1(Y)
with g belonging to the Fourier transform of C™(Y \ {0}); if nY > 3, one might simply take

g in 2>(Y), since | ¦ I"1 will be in L2oc. We also set 34? y1 3t?±l(Y) ® 34?(Z), with the
scalar products (/, g) « ±1 (/, Ay1^}. Of course, these two Hilbert spaces stay in duality

in a natural way.

o
In the same way, only by changing PY into QY, we define 34?±i(Y), the homogeneous

o o

Lebesgue spaces with weight of order ±1, as well as the spaces 3f±iy 3f?±i(Y) ®3f(Z).

We shall rely heavily on the classical inequality

AY>(T^-)2\QY\-2, (2.3)

valid on S>{Y) if nY > 3. Obviously, it extends on 34?1(Y). As an immediate consequence,
we have

34? \Y) C 3t?_i(Y), 3t?i(Y) C 34? ~\Y),
O O O O

24? 1 *— ?/& 2^ r— 0*P "I^t y C ^T-17, iTtjy C Je y

It is possible now to give the main result of this section.

Theorem 2.1 Assume that V(Q) is A-bounded with subunitary relative bound and that there
is a subspace Y C X, with dimension nY > 3 such that

(i) (DYV)(Q) £ B(34?2(X),3t?(X)\

(ii) \(DYV)(x)\ < ^, where CY < &=&-, (2.4)

(iii) \(DYDYV)(x)[ < r^- (2.5)

Then

(a) H has purely absolutely continuous spectrum,

(b) \(f,(H- X + iß)~1f) | <C||/||20 forallX£R, p>0 andf£3f?hY,
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(c) Any closed, densely defined operator in 34?(X) which extends to an element of
B(3tp^Y(X),34?(X)) is H-smooth.

Proof. The proof consists in verifying (straightforwardly) the assumptions of Theorem 1.1
o o

mainly by making use of (2.3). We only note that the choices SS 34?Y and SS* 34?Y1
o

are possible (with equivalent norms) and that 34? i_y is obviously embedded continuously in
o

D(AY; 34? y1). We shall not make explicit the assumption that V(Q) is A-small, neither the
assumption (i); since our main purpose is to master potentials which behave anisotropically
at infinity, there is not a great loss to suppose that V and DYV are bounded.

Remark 2.1 It is easy to see that there is no monotony in Y, neither in the hypothesis nor in
the conclusion. It is an important fact that one is allowed to take Y ^ X. For example, if V
is F-homogeneous of degree 0 (see (2.2)), it seems that the absence of the singular spectrum
is known only for Y X (case treated by I. Herbst in [3] in great detail; he emphasizes
the asymptotical property of e~ltH, obtaining refined informations). The examples covered
by setting Y ^ X have unexpected generality. Choose for example V:X->Ra function
which is C2 outside the origin, whose derivatives of order < 2 do not grow at infinity and
which depends only on (xY\xY[~1,xz). This is is already quite anisotropic inside Y. With
respect to the variables in Z it is "arbitrary" ; in particular, there is no need of radial limits.
Even the factorizable case

V(x) VY(J^jVz(xz) (2.6)

is remarkably wild. But if V does not depend on xY, the situation becomes trivial; the
operator H AY®1 + 1® (Az + VZ(QZ)) is, of course, purely absolutely continuous.
It might happen, however, that the global resolvent estimates be new. The smoothness
condition imposed on V is there for simplicity and can be relaxed. In (2.6) for example, Vz
may be any L°° function.

Remark 2.2 Let us make some comments on the dimension nY. The trouble is that (2.3)
is not true for nY 1 or nY 2. Generally, there is no way out; if V £ C%°(RN) with
N 1,2 and V is negative, then H — A + eV has bound states for any e > 0. But there
are also good particular cases. For instance, if V is F-homogeneous of degree 0, the use of
(2.3) is avoided and nY may take any value.

Remark 2.3 It is obvious that one may replace (2.4) by some repulsivity condition. This
does not give a very attractive result for Y X, because of the extra assumptions needed.

Using the Kato-Putnam theory and a more intricate A, R. Lavine obtained a better result
(see for example Theorem XIII. 29 in [7]). However, the present approach has also some
pleasant features: one needs no tedious calculations and "the repulsivity inside a proper
subspace" is enough.
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Remark 2.4 We now make some considerations on the behaviour of V at infinity allowed
in Theorem 2.1. We add a mild regularity assumption: for almost every xz £ Z, V is C1 in
the radial variable outside a compact set. Specifically, suppose that there is a negligible set
M <Z Z such that, for any xz £ Z\M, there is a rx > 0 such that the map (rx oo) 3 r i—»

V(r ¦ ojy,xz) £ R is C1 for all wy £ SY, where SY is the unit sphere in Y. From (2.4) we
infer by means of "an integration of the derivative procedure" that the radial limits

V(oo ¦ u)Y, xz) lim V(r ¦ ujy, xz)
r—>oo

exist and one has the following estimate on the convergence rate

|V(oo • wY, xz) - V(r ¦ ujy, xz)\ < ^-r~2. (2.7)

Hence, roughly:

(i) V must have radial limits in the directions included in Y,

(ii) V must have a r_2-convergence (with a small constant) to those limits,

(iii) (drV)(rujY, xz) 0(r~3) when r —» oo (with a small constant),

(iv) (d2V)(rujY,xz) 0(r~A) when r -> oo.

There is no extra restriction on the Z-behaviour. The strength of Theorem 2.1 is shown

even by the special case V(x) VY(xY) ¦ Vz(xz). Vz may be any L°° function and (2.4)
(for example) reads now:

Up to our knowledge, neither of the two simple situations (a) Y X, (b) VY(xY) —» 0 when
|xy| —? oo, with Y ^ X was known before.

Remark 2.5 Let us work in the representation 34?(X) 3f(Y; 34?(Z)). One justifies easily

the identification of 3)?^X(Y)®34?(Z) with 3f^(Y; 3t?(Z)), the completion of C%°(Y; 34?(Z))
(the smooth functions: Y —> 34?(Z) having compact support) under the norm

1/11° jClI'MIfirwÄ
-,1/2

Taking into account this and the point of (c) of Theorem 2.1, we see that any measurable
function F : Y —> B(34?(Z)) which satisfies \\F(y)\\B(je{Z)) — ^l^l"1 defines in an obvious

way a smooth operator.

We particularize now Corollary 1.1 for the case of Schrödinger operators.
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Corollary 2.1 Let Vi,V2 : X —» R two Borei functions such that the corresponding
multiplication operators in 34?(X) are A-bounded with bounds < 1. For j 1,2, let us set

Hj A + Vj(Q) and assume that there is a subspace Yj of X, of dimension Uj > 3 and a

constant Cj < J~ - such that

\(DYiVi)(x)\ < -^3, DYV3 £ B(3f2(X),3f(X)), (2.8)

\(DYWYtVj)(x)\ < -%, (2.9)

\Vi(x)-V2(x)\<
C

(2.10)

Then the wave operators

exist and are complete. In particular, Hx and H2 are unitary equivalent.

n±(i/2> Hx) s-lim eitli2 ¦ e~tm
t—*±CG

Proof. The proof consists in checking that the assumptions of Corollary 1.1 are fulfilled
with Aj AYj. Note that (2.10) says precisely that VX(Q) — V2(Q), defined at least as a
continuous form on i$l 3f1(X), i.e. as a bounded operator: 34?1(X) —> 3f~1(X), extends

o o

to an element of B(34?-i:Yl,3$?i y2).

Remark 2.6 Let us take a look at the case Yx — Y2 Y, taking into account Remark
2.4. Vi and V2 will be supposed regular in the sense described there. Obviously, in order to
satisfy (2.10) when (2.8) is true, it is enough to ask that Vi(qo-uiy,xz) V2(oo-u>Y,xz) for
all ujy £ SY and almost all xz £ Z. The unitary equivalence criterion we get can be roughly
described as follows: Take two potentials satisfying (i),...,(iv) in Remark 2.4. Assume that
they have the same radial limits in the directions included in Y. Then they define unitarily
equivalent Schrödinger operators. This seems to be interesting in both the particular cases
"Y X" and "Y ^ X and V}(oo • wY,xz) 0". To illustrate the second situation, let us
take Vj(x) ~j3VY(xY) ¦ V^(xz). Then

\Vi(x) - V2(x)\ |Uy(xy)| ¦ \lxVzx)(xz) - l2V(%(xz)\

and it suffices, for example, to require that VY be a symbol of order —2, with small enough
rZ \-rZpositive constants 71 and 72, and V,z,, VÂ bounded, but otherwise arbitrary.

Remark 2.7 Let us set YX2 Yx + Y2. It follows at once from (2.10) and (2.7) (written
alternatively for Yi and Y2) that the limits Uj(oo ¦ ujYi2,xy") lim,..^«, Vj(r ¦ wYl2, xY^) exist
for any wYl2 £ SYl2,xY™ £ Yx\, j 1,2 and are equal (we assumed some regularity on the
dependence of Vj of the variable xYl2).

Corollary 1.2 is even more interesting in our context, because it extends the result on the
absence of the singular spectrum to some potentials satisfying less than what was needed in
Theorem 2.1.
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Corollary 2.2 Let H A + V(Q), where V satisfies the hypotheses imposed in Theorem
2.1. Let U : X —* R a Borei function such that

\U(x)\ < -SL (2.11)
\xY\

and set Hy H + jU(Q). There exists F > 0 such that for all 71,72 £ (—r, F), Hlx and
H^2 are unitary equivalent through the corresponding wave operators. All H^ 's are purely
absolutely continuous.

Remark 2.7 shows how to control the case when U is, more generally, a suitable function
from Y to the self-adjoint elements of B(34?(Z)).

By means of Corollary 2.2 we cover a large class of perturbations with no condition on
the derivatives. Let us take for example Y X and V : X —» R homogeneous of degree 0.

Its radial limits are U(oo • of) V(aj) (w £ Sx). If one superposes a potential which obeys
(2.11), there follows a result which is worth mentioning:

Corollary 2.3 Let W : X —> R be a function which is smooth (outside a compact set).
Assume that it has radial limits W(w) limano W(r ¦ ui) for any u) £ Sx such that

\W(u>) - W(r ¦ u)\ < \ for all r > 0, u £ Sx.

Then, for y small enough, H A + W(Q) is a closed form on 3f1(X) and it has no singular
spectrum.
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