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Abstract. In this article, we prove exponential localization for wide classes of Schrödinger operators,
including those with magnetic fields, at the edges of unperturbed spectral gaps. We assume that
the unperturbed operator Ho has an open gap Iq s (B-,B+). The random potential is assumed

to be Anderson-type with independent, identically distributed coupling constants. The common
density may have either bounded or unbounded support. For either case, we prove that there exists

an interval of energies in the unperturbed gap for which the almost sure spectrum of the family
Hu Ho + Vu is dense pure point with exponentially decaying eigenfunctions. We also prove that
the integrated density of states is Lipschitz continuous in the unperturbed spectral gap Iq.
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1 Introduction

The phenomenon of exponential localization for various families of random Schrödinger
operators Hw H0 + Vu on L2(Rd), d > 1, near the bottom of the almost sure spectrum is now
reasonably well understood, see for example [5],[22], [20], [11], [12], [19], [24]. The results for
lattice Schrödinger operators on P(Zd) can be found in the book of Carmona and Lacroix
[4] and Pastur and Figotin [27]. Recently, there have been several results [6], [23], [13],
[14], [15], [31], [20], [1] concerning band edge localization, i.e. the existence of pure point
spectra near the edges of the spectral bands of the deterministic, unperturbed operator Hq.
In this paper, we prove that band edge localization is a rather general phenomenon. We

study the perturbation of fixed, background Schrödinger operators H0 (—iV — A)2 + V0

on L2(lRd),d > 1, with an open spectral gap I0 (B-,B\.), by random potentials Vw of
Anderson-type

Vu(x)='£Xi(u>)u(x-i). (1.1)

The coupling constants {A,(a;)|z € "Ld} are assumed to be independent and identically
distributed with common density h. We assume u > 0 and supp u is compact. There are three
main results. First, we assume that supp h is compact and that the almost sure spectrum
E of the family H0 A K, has an open spectral gap (B_,B+) with #_ < B_ < B+ < B+.
We prove that near the band edges £?_ and B+, the spectrum E consists of only pure point
spectrum with exponentially decaying eigenfunctions. This result requires that h decays
sufficiently rapidly near the edges of its support.

Secondly, we consider the case when supp h is unbounded so there is no spectral gap
in E near /0. We add a coupling constant g > 0 and let T,(g) denote the deterministic
spectrum of Ho A <?K,. For any energies E± with ß_ < E- < E+ < B+, we prove that there
exists gQ > 0 such that E(g) D (E^,E+) is pure point for all 0 < g < go, with exponentially
decaying eigenfunctions. Thirdly, we prove that the integrated density of states for each of
the families //w and Hw(g) is Lipschitz continuous in the spectral gap Io of Ho in both cases.

In the case of bounded perturbations Vu, the localization result follows from the fact that
the spectrum is "thin" near the band edges B± (provided the density h decays sufficiently
rapidly). In fact, for local Hamiltonians H\u H0 + (K,|A), associated with bounded
regions A C Rd, we prove that the eigenvalues remain at a strictly positive distance from B-
and B+ with a good probability. This fact allows one to apply the Combes-Thomas argument
[8] in order to prove decay estimates on the resolvent of H\tUI with a good probability. This
initial scale estimate, together with an improved Wegner estimate, are the starting points for
the multiscale analysis of [5] which results in almost sure decay estimates for the localized
resolvent of the infinite volume Hamiltonian. When the density h has unbounded support,
we must add a coupling constant g and work in the weak coupling regime.

We also prove in this paper an improved version of the Combes-Thomas estimate [8] on
the decay of localized resolvents. This result may be of independent interest. Suppose H
is a self-adjoint operator with a spectral gap (B-,B+). The usual Combes-Thomas result
gives an upper bound on the spatial decay of the resolvent (H — E)-1, E e (B-, B+), with
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a decay constant proportional to dist(E,a(H)). We prove here that the decay constant is

proportional to ^A+(E)A-(E), where A+(E) dist(£, {X e <r(H)\X > B+}) and A_(£)
dist(£, {X e a(H)\X < B_}). Note that when E is close to cr(H), the decay is approximately
[d\sl(E,o-(H))}1/2. This is similar to the case when E < inf cr(H) and the decay constant is

proportional to [dist,(E,a(H))}i/2.

In [23], Klopp studied localization induced by random perturbations of a periodic
Schrödinger operator H0(h) —h2A + V0 in the semiclassical regime. He proved exponential
localization near the band edges of the first band of Ho(h) for h small. Figotin and Klein
[13] studied band edge localization for perturbations of periodic lattice Schrödinger operators

H(g) Ho A gv, on i2(Zd), in the weak coupling regime. In [14], these results were
extended to lattice models of acoustic and electromagnetic waves propagating in random
media. These results for wave propagation were extended to continuum models in [15]. In
all these cases, the random perturbation is Anderson-type. Aizenman [1] gave an elementary

proof of band edge localization on the lattice in the weak disorder regime. He studied
Anderson-type perturbations Hw H0 A XV^, of a background operator H0 T + Uo, where
T is a bounded self-adjoint operator with exponentially decaying matrix elements and Uo

is periodic. Aizenman proved that the a.s. spectrum of Hw is pure point near a(H0) for A

in a certain regime of small values. He utilized an extension of the ideas of Aizenman and
Molchanov [2] which avoids multiscale analysis (Unfortunately, it is not clear how to extend
[2] to continuous models). Our own interest in band edge localization originated with our
study of localization for the randomly perturbed Landau Hamiltonian on L2(R2) ([6]. [3],
[31], [11], [12]). We discuss this model in Example 2.1 of the next section.

This paper is organized as follows. In section 2, we present the main hypotheses and
results. We provide several examples of models satisfying these hypotheses. An improved
version of the Combes-Thomas estimate is presented in section 3. Section 4 contains a

new proof of the Wegner estimate which can be applied to models with unbounded random
potentials (see [3]). In section 5, we give estimates on the location of the spectrum of the
finite-volume Hamiltonians Hs, with good probability. These results, with those of section
3, allow us to verify the initial decay hypothesis [Hl](7o, to) of [5]. By the multiscale analysis
and perturbation theory of [5], we then establish band edge localization when supp/) is

bounded. The case of supp h unbounded is discussed in section 6. We present certain
technical trace ideal estimates in the appendix, section 7.
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2 The Models and the Main Results

We study random families of Schrödinger operators Hw H0 A Vu on L2(Rd), d > 1. The
unperturbed Schrödinger operator H0 has the form

/Y0 (-tV - A)2 + V0 (2.1)

where A is a vector potential and V0 is a background electrostatic potential. We first list
the assumptions on H0 and present our main results. We then discuss the assumptions and

give several examples. Let Ro(z) (H0 — z)~l denote the resolvent of Ho-

(HI) The operator H0 is essentially self-adjoint on C0x(Rd).

(H2) The spectrum of H0, a(Ho), is semibounded and contains an open gap, that is, there
exist finite constants Co > 0 and —Co < B- < B+ < oo such that

flr(ffo)C(-Co,B_]u[£+>oo).

(H3) The operator H0 is strongly locally compact in the sense that for any / € Lco(Rd)
with compact support, the operator f(Ho A Co + 1)_1 € Jq, for some even integer q,
1 < q < oo.

(H4) Let p(x) (1 + ||.r||2)1/2. The operator

H0(a) eia>Hoe-ia>

defined for a G R, admits an analytic continuation as a type-A analytic family to a

strip
S(a0) {x + iy 6 C | \y\ < a0}

for some Qo > 0.

We now describe the random perturbations Vu. We assume Vu is Anderson type of the
form

K,(ï)=£A,-Mu(i-i). (2.2)
•eZ"

The coupling constants {A,(u>)} and the single-site potential u are assumed to satisfy the

following conditions.

(H5) The coupling constants {A,-(w) | i S Zd} form a family of independent, identically
distributed (iid) random variables. The common distribution has a density h satisfying
0 < h e L°°(R) nC(R). There exist not necessarily finite, positive constants 0 < m, M
such that supp h C [—m,M] and h(0) > 0.
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(H6) The density h decays sufficiently rapidly near —m and near M in the following sense.

If 0 < m < M < oo, then

3d/2+00 < P{|A + m| < e} < e

0<F{\X-M\<e}<e3d/2+ß,
for some ß > 0. In the case that either m or M is infinite, we require that for some

r > max(q,d/2).
Ch supxh(X)\X\T+2 < oo.

We take Ji [supp h] to be the probability space equipped with the probability measure
P induced by the finite product measure. The single site potential u in (2.2) is assumed to
satisfy.

(H7) The single-site potential u has compact support and 0 < u e Lco(Rd).

At the level of generality maintained so far, we need some hypotheses on the spectral
properties of the random family Hw.

(H8) The family {H^\w £ Çl} has deterministic spectrum E in the sense that 3$in C Çl with
P(fì0) 1 such that for w G fio, <r(Hu) E.

According to whether supp h is bounded or unbounded, we need to consider the nature
of E near the unperturbed spectral gap (B-, B+).

(H9) Suppose supp h is bounded, i.e. 0 < m, M < oo. Then, 3 constants B'± satisfying
5_ < B'_ < B'+ < B+ such that

En{(B-,B'_)U(B'+,B+)}yt(D.

We remark that in the presence of ergodicity (H8) is known (cf.[27]). In the unbounded
case (H5) and (H7) imply that, the deterministic spectrum E fills the gap (B_, B+) entirely
(see Proposition 6.4). Given (H9), we define the perturbed band edges B±, satisfying fl_ <
ÎL < B'_ and B'+ < B+ < B+ by

ß_ sup{£<E E | E < B'_) (2.3)

and

B+ \nl{Ee E | E>B'+] (2.4)

We can now state our main results.
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Theorem 2.1

Assume (HI) - (H9) and that supp h is bounded, i.e. 0 < m, M < oo. There exist
constants E± satisfying B_ < E- < B_ and B+ < E+ < B+ such that E n (E-,E+) is pure
point with exponentially decaying eigenfunctions.

In the case that supp h is unbounded, we must introduce a coupling constant g and work
in the weak disorder regime of small g.

Theorem 2.2

Let Hul(g) Ho A gVu. Suppose that supp h is unbounded and assume the hypotheses
(HI) - (H8). For any energies E± satisfying B_ < E_ < E+ < B+ 3 g0 go(E±) > 0

¦such that for all 0 < g < go, we. have E D (E-, E+) is pure point with exponentially decaying
eigenfunctions.

Finally, the Wegner estimate of section 4 provides the following regularity result for the
integrated density of states (IDS) in the unperturbed spectral gap.

Theorem 2.3

Assume (III) - (H9) and supp h bounded or (HI) - (H8) and supp h unbounded. In either
case, the integrated density of states is Lipschitz continuous on (B_,B+).

We remark that if h e Ck, then we believe that the IDS N(E) G Ck((B_,B+)). Such

a result for k > 3d/2 would allow us to remove hypothesis (H6) in the case that supp h is

compact.

Let us make a few remarks on the hypotheses. We refer to the review of Simon[29] and
the book by Cycon, Froese, Kirsch and Simon[9] for further details. A theorem of Leinfelder
and Simader[25] states that if V G L20C, V_ G Kd, and A G Lfoc, then C0x'(Rd) is a core
for H0, which is condition (HI). Let Ha (—iV — A)2 be the pure magnetic Hamiltonian.
If A G C2(Rd,Rd), it is easy to see (cf [29]) that D(HA) C H2(Rd) D(-A). Let us

suppose also that V0 is relatively — A-bounded with relative bound < 1. Then, (—A + Vó)

is semibounded by some — C0 > —oo. The diamagnetic inequality (see [29]) implies that H0
is also semibounded with the same constant. The strong local compactness condition (H3)
is immediate under these conditions. Indeed, it suffices to prove that for all / G L°° with
compact support, the operator /( — A + Co + 1)_1 G Jq, for all q such that oo > q > [d/2] as

in (H3). This follows from the standard estimate (see [30]):

f(x)g(-iV) £ J, if f,geL"(Rd) for oo > q > [d/2]

The analyticity condition (H4) is also satisfied for general (A, Vo). For a G R, we have

H0(a) e'apH0 e"'°" H0 - 2aVp ¦ (-ÌV - A) + laAp + a2\Vp\2
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with \Vp\ and Ap bounded. Assuming that V0 is relatively //^-bounded, it suffices for
analyticity in a to show that for some z G p(HA), the operator

{-2aVp ¦ (-iV -A) + iaAp + a2\Vp\2} (HA - z)~l (2.5)

is bounded with norm less than one for some z G p(HA). Since the operator in (2.5) is

bounded above by

Aist(a(HA), z)~l {2\a\ \Vp\ max {l, \z\"2} + |a| |Ap| + a2\Vp\2}

it follows that for any fixed a0 > 0, this bound can be made < 1/2 by taking z —ia, <r > 0

sufficiently large. This shows that H0(a) has a continuation to any strip S(qo), a0 > 0.

We now present several examples satisfying these conditions and hypotheses (H2), (H8)
and (H9).

Example 2.1

Landau Hamiltonians in d 2 dimensions. We take V0 0 and A y(—i2,ii). In
this case, the unperturbed spectrum of HA is pure point <r(HA) — {En(B) (2n -f T)B,
n 0,1,2,...}. When supp h is compact, the existence of localized states away from a region
of size Ö(B~X) centered at the Landau energies En(B), and for B, large was proved in [6].
Theorem 2.1 applied to this case avoids the restriction that B is large. The analog of Theorem

2.2, when supp h is unbounded, is proved in [3].

Example 2.2

Periodic Schrödinger Operators. We set A 0 so H0 —A + Vo and assume that V0

is a real, bounded, periodic function with an open gap (see [28]). The random family Hw has

deterministic spectrum provided the lattice group ofV0 is commensurate with 1/. In the case

of supp h bounded, condition (H9) can be guaranteed by writing HLJ(X) HqAXV^ and taking
A small enough.

Example 2.3

Pure Magnetic Field Hamiltonians. We take Ho HA(X) (—iV — XA)2 with A G R,
and A G C1 (Rd,Rd). Amongst other questions, Hempel and Herbst [17] studied the case when

the magnetic field B dA is periodic with respect to 7Ld(d > 2). Let Mb {x\B(x) 0}
and MA {x\A(x) 0}. Under the condition that \Mb\Ma\ 0, they show that HA(X)
converges in the norm resolvent sense as A —? oo to the Dirichlet Laplacian on M. Based on

this, they construct examples of pure magnetic hamiltonians HA(X) in dimensions d>2 with
periodic magnetic fields and with open spectral gaps for all X sufficiently large. As discussed

above, our hypotheses hold for these models.
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Example 2.4

Magnetic Hamiltonians with periodic Potentials. Nakamura [26] (inspired by [17]) studied
the existence of open spectral gaps for more general magnetic Schrödinger operators, for
d > 2, of the form

Ho(X) (-ÌV - XA)2 + V0

with A e C(R R and Vq real and bounded. The result of [26] of interest to us is the

following. Suppose B dA and V are periodic with respect to a lattice subgroup T of 7Ld

with bounded fundamental domain Qp- Let H[f(X) be the restriction of H0(X) to fir with
Dirichlet boundary conditions on dÇlr-. The spectrum E(A) of Hg(X) is discrete. Under the

assumption that the largest eigenvalue of the matrix (Bi3(x)) restricted to ôfip ts strictly
positive, Nakamura proves that for all A large a(H0(X)) lies in neighborhoods of size 0(e~a
for some a > 0, about S(A). Hence, there are open spectral gaps in cr(H0(X)) and Theorems
2.1 and 2.2 apply to random perturbations of these operators. Note that if A is periodic, the

operator Hq(X) has band spectrum and the width of the bands is 0(e~aX).

Example 2.5

Combes-Hislop model revisited. Theorem 2.1 can be applied to the Anderson type models
studied in [5] improving the result proven there. Let Hw —A + Vu, where Vu is given in
(2.2). In [5], we assumed (H5) with m 0, M < oo, and that u > CoXa0, where \Ao is
the characteristic function on the unit cube. The present work allows us to remove this last

assumption on the single-site potential u. We choose a constant C\ > 0 satisfying C\ < Al
and write

Hu {-A + £ ClU,} + £ (A,-- dH
.eZd teZ"

H0 + Vw, (2.6)

where u,(x) u(x — i). The operator Ho is a periodic Schrödinger operator with a positive
potential, and hence inf a(H0) E0 > 0. The potential Vw is an Anderson-type potential
with coupling constants X,(ui) A,(u>) — C\. The density of these random variables has

support in [—Ci, M — Ci]. Theorem 2.1 now shows that there is a small interval of energy
of the form [Q,Eo], for some Eo > 0, in which the spectrum is pure pont almost surely.
Theorem 2.3 guarantees the Lipschitz continuity of the integrated density of states in the

interval [0, Eo].

3 Improved Resolvent Decay Estimates

In this section, we present an alternative form of the Combes-Thomas method [8] which
allows an improvement on the rate of decay of the resolvent which is of independent interest.
The basic technical result is the following.
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Lemma 3.1

Let A and B be two self-adjoint operators such that d± dist(cr(A) D R^O) > 0, and
\\B\\ < 1. Then,

(i) For ß G R s.t. \ß\ < \y/d~fJZ, one has 0 G p(A + ißB),

(ii) For ß G R as in (i),
Il (A-H/SB)"1 II < 2sup(d-\dZ1).

Proof:

Let P± be the spectral projectors for A corresponding to the sets a(A)C\R±, respectively
and define u± P±u. By the Schwarz inequality one has

||u|| \\(A + ißB)u\\ > Re ((u+ - u_), (A + ißB)(u+ + u_))
> d+\\u+\\2 + d-\\u_\\2-2ßIm{u+,Bu-) (3.1)
> \(d+\\u+\\2 + d-\\u-\\2),

where we again used the Schwarz inequality to estimate the inner product. It follows that

\\(A + ißB)u\\>l-m'm(d+,d-)\\u\\,

and since this is independent of the sign of ß, the lemma follows.

Proposition 3.2

Let H be a semibounded ?e!f-ndjomt operator with a spectral nan G (F-.F+) c_ n(H).
Let W be a symmetric operator such that D(W) D D((H + C0)*) and \\(H + C0)~* W(H +
Co )— 5 11 < 1, for some Co such that H -{-Co > 1- For any E G G, let A± dist(i?±, E).Then,
we have

(i) The energy E G p(H + ißW) for all real ß satisfying

m<V a+a-
2 {(E+ + C0)(E- + Co

(ii) for any real ß and energy E as in (i),

E+ + Co E- + Co
(H + ißW - E)~l\\ <2sup

A+ ' A.
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Proof:

Let E e G and Co be as above. Define a self-adjoint operator A (H + Co)~l(H — E)
and B (H + Co)~? W(H + Co)~î¦ By hypothesis, the operator B is self-adjoint and satisfies
||ß|| < 1. Note that 0 G p(A) and

d± dist(<r(A) n R±, 0) A±(£± + Co)"1 > 0 (3.2)

Applying Lemma 3.1 to these operators A and B, we see that for ß as in (i), 0 G p( A + ißB)
and that

\\(A + ißB)-i\\<2mi?fE*+Co E-+C°S
A+ ' A_

Let P± be as in the proof of Lemma 3.1. For any w G D(H),

\\(H + ißW - E)w\\ \\(H + Co)HAAißB)(H+Co)iw\\
> \\(A + ißB)(H + C0)iw\\,

since (H + Co) > 1- We now repeat estimate (3.1) taking u (H + C0)*w- This gives

\\(H + tßW - E)w\\ > \\\(H A CoMl'1 (d+\\P+(H + Co)iw\\2

+(d.\\PAH + Co)L2w\\2) (3.3)

> imin(rf+,f/_)||(//-rCo)"w||

Since \\(H + Co)ïw\\ > \\w\\ and d± are defined in (3.2), result (ii) follows from (3.3) and
Lemma 3.1.

Theorem 3.3 Let H0 be given as in (2.1) satisfying (HI) and (H4). Let V be H0-bounded
with relative bound less than 1 and define the self-adjoint operator H Ho A V. Then the

dilated operator H(a) elaf'He~'af', a G R, admits an analytic continuation to a type-A
family on the strip ^(qo) (p and S(ao) are defined in (Hf)). Suppose Ho satisfies (H2) and
that H has a spectral gap G (E.,E+) C (B.,B+) (£_ / E+). For E e G, define
A± dist(£±,£). Then there exist finite constants C\, C2 > 0, depending only on H0 and

V, such that

(i) for any real ß satisfying \ß\ < min(ao,Ci\/A+A_, JA+/2), the energy E G p(H(iß));

(ii) for any real ß as in (i),

\\(H(iß) - Ey'W < C2max(A-1,AZ1) (3.4)
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Proof:

As in the discussion of (H4) in section 2, we have,

H (a) H + a2\Vp\2 + aW
where a G R and W -(Vp.(p - A) + (p - A).Vp) is symmetric. Note that HVpH«, 1

and IIA/sHoo 1 and that V and V0 are relatively (p — A)2-bounded. Consequently, (2.1)
is less than 1/2 for \Imz\ large enough. This proves analyticity of H(a) in S(a0). Taking
a iß,ß real and \ß\ < Oo, we have

H(iß) H -ß2\Vp\2 + ißW

We apply Proposition 3.2 to this operator taking H H — ß2\Vp\2. This operator has a

spectral gap which contains (E_,E+), where £L E- and E+ E+ — ß2. In order that
Ä+ dist(£+, E) > (A+/2), we require \ß\ < \JA+/2. (Note that Ä_ A_). We can now

apply Proposition 3.2 to conclude E G p(H(iß)) for \ß\ < min|a0,Ciy/A+A-, \Ja+/2\
and that (3.4) holds.

4 The Wegner Estimate

In this section, we prove a Wegner estimate for local Hamiltonians valid at all energies in
the spectral gap of H0- This estimate holds in the case of unbounded potentials as will be

discussed in section 6 (see also [3] for an application of this estimate to 2-dimensional Landau
Hamiltonians with unbounded potentials). Let A C R be a bounded region and denote by
Ra.u, Ho A (K,|A). Since (K,|A) is a relatively compact perturbation of H0, the spectrum
^(Hf,^) n (B-, B+) is discrete. Let Pa and Ea denote the probability and expectation with
respect to the random variables associated with A fl %d A. We denote by Tr the trace
on Z,2(Rd). Let R\(z) and E\(.) denote the resolvent and the spectral projection for H/,tW

respectively: we often suppress the w and write H/, for H/,u, V'a for (V„|A), and Ro(z) for
(Ho-z)-\'

Theorem 4.1

Assume (HI) - (H3), (H5) and (H7) - (H8). For any E0 G (£-,£+) and for any
q < 1 àìst(Eo,cr(Ho)), 3 finite constant Ce0, depending on [d\st(a(Ho), Eo)]-1 such that:

r„{d'ist(a(H^),Eo) <q}< CEon\A\ (4.1)

Proof:

Let In [Eo -q,E0 + r/]. We write HK for HA,„, VA for (VJA) and Ro for Ro(E0). By
Chebishev's inequality the left hand side of (4.1) is bounded above by

EA(Tr(EA(I„))).
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To control the trace, we recall that any eigenfunction ipE of HAtpE EipE, E G A,, satisfies

KoiPe -ipEARo(H„- Eo) ipE (4.2)

where A'0 RoVA. From (4.2), it follows easily that:

EA(I„) -K0EA(J„) A Ro(HA - Eo)EA(Q (4.3)

Hence, noting that EA(In) is a positive trace class operator,

Tr(EA(In)) \\EA(I,)\\i
< |Tr(ÄoJS?A(/,))| + i,||«.||||ÄA(/,)||i,

and by the assumption on tj:

Tr(EA(In))<2\Tr(K0EA(In))\. (4.4)

A first consequence of (4.4) is, by the Holder inequality:

Ea(||£a(/„)||i) < 2Ea(||A'o£a(/„)||>)

< 2Ea(||A'o||,||£a(/,)||p) (J + p1)
< 2{Ea(||A-o||,')}(1/'){Ea(||£a(/,)||pP)}(1/p),

where || ||, denote the norm in the Schatten class Jq. By Proposition 7.4 and the fact that
Ea(||£a(/t))||pp) Ea(||ì?a(7^)||i, since all the eigenvalues of the spectral projector are equal

to one, we obtain,

Ea(||£a(/„)||i)<2C|A|, (4.5)

from which the existence of the integrated density of states, for energies in the unperturbed
spectral gap, follows. Now, we use the adjoint of formula (4.3) to derive

K0EA(In) -KoEA(lAIC0 + KoEA(ln)(HA - E0)R0,

which implies

| 7>(A'0£a (7„))| < ||A'o£a(/„)||i
< Tr(K0EA(I„)K*) + n\\Ro\\ ||A'o£a(/„)||i.

Hence, by (4.4),

EA(Tr(EA(Iv)) <4EA(Tr(K0EA(IAIQ). (4.6)

If q > 2, one continues this procedure and writes:

K0EA(In)K* -K0EA(Q(I<o)2 A K0EA(Q(HA - E)RoI<l (4.7)
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One has by Holder's inequality,

\Tr(K0EA(In)(HA - E0)RoK*)\ \\K0EA(In)(HA - E0)RoK*\\
< '/||/?o||||a-o/?a(/,)||,/(,-i)I|A'oII,
< 7/||ßo||||A'0||2||AW„)||,/(,-2). (4.8)

Taking the expectation and again using Holder's inequality, Proposition 7.4, and (4.5), one
can bound the expectation of the left hand side of (4.8) by:

(2C)^V\\Ro\\\A\.

Consequently, equations (4.6)-(4.8) imply

EA(Tr(jBA(/,)) < 4EA(|Tr(/\'o£'A(/,,)(A'o*)2|)

-f4(2C)^dist(£0,a(#o))^|A|-

If q > 3, one repeats this procedure again. Finally, one obtains:

EA(rr(£A(7,))<4EA(|Tr(A'0A'A(/r,)(A0*r1|) + C);dist(£o,c7(/yo))-1|A|, (4.9)

where G depends on ç and the constant C of Proposition 7.4.

To estimate the first term on the right hand side of (4.9), we expand the potential
Va z7JlgA^iWii where Ui(x) u(x — i). For each q-tuple of indices {i} (ti, ...,;,) G A',
we define:

t 1

A'n..,, ulRou,iR0u,i....u,qR2oul (4.10)

We prove in the appendix, section 7, that (H3) implies that A'{,} K,t...,q G Ji- In terms of
this operator, the first term on the right side of (4.9) becomes

Ea E A1>)...A,>)TrJA'{,-}(U|£A(/04)} 1.
(4.11)

Since A'{,} is compact, we write it in terms of its singular value decomposition. For each

multi-index {i}, there exists a pair of orthonormal bases, < <p£' \ and { ipk \, and nonnegative

numbers \p\ }, all independent of u>, such that

oo

%} EmÌ''}|4'"})(#|- (4.12)
k=l

Inserting the representation (4.12) into (4.11) and expanding the trace in {<^. }, we obtain

Ea E Zk^MA^MM^H)^)}, (4.13)
[{¦jeA«^1
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where A{,-}(w) A,1(u;)...A,'?(a;). Recalling that EA(IV) > 0, we bound the fc-sum above by:

|E4')Ea{|A{i}(u;)|(^'},KÌ?a(/J?K)'AÌ'}>
<=>i (4.14)

+ |A{l}M|(4^ (4^(^)4)4°}} ¦

From indépendance of the A,'s, the spectral averaging result (see [5] or [7]) applied to each

term in (4.14) gives for the first term:

EA{|AwH|<V>f ,(uj£A(/,,)uJ)V>f )} < Cir,. (4.15)

where C\ is finite according to (H6). From (4.13)-(4.15), we obtain an upper bound for the
first term on the right hand side of (4.9),

C'iV E _(llff«lli) • (4-16)

n,...,i,eA

In the appendix, we prove in Proposition 7.2 that 3 finite constant Ce0 > 0, depending only
on dist(a(Ho), Eo)~l and the dimension d > 1, such that (4.16) is bounded above by

C[CEovW- (4.17)

Results (4.9) and (4.17) prove the theorem.

5 Verification of [HI](70,^0)

The goal of this section is to prove the hypothesis [Hl](7o,^o) for finite volume Hamiltonians
corresponding to the models introduced in section 2. We let A C Rd denote a bounded open
region and A^(x0) {x G Rd||z, — x0,,\ < i/2, i 1,..., d}. When xo 0, we will write A^ for

simplicity. The potential depending only on the A, in a region A is denoted Va.^ V^IAJ.The
finite volume Hamiltonians HA}U/ are defined as HAiU/ Ho A VA>W. Since VA<U has compact
support, it is a relatively compact Pertubation of H0 and hence aess(Ho) o'ess(HA^). One

of our first tasks is to locate precisely the eigenvalues of HAiUI in the gap (B-, B+) with good
probability.

The condition [Hl](7o,^o) on the resolvent of HAtUI, written RA(z) (HAiU, — z)~x, when

it exists, is the following. For any \ G C2, define the first order differential operator VV(x)
by

W(x) [-A,x] -V.Vx-VX.V (5.1)

This operator is localized on the support of V\. Fix any 6 > 0 small and let Ac,{ {x G

A^|dist(9A(, x) > 6}- We will use \t to denote a function satisfying \e\^e,s 1, supp \l C A^



30 Barbaroux, Combes and Hislop

and xe > 0. It follows that supp Vxe C ht\hi,s and W(xe) is also localized in this region.
The condition we must verify is

[HIjWo):
37o > 0 and £0 > 1 such that l0E0 > 1 and P{sup \\W(xta)RAl(E + ie)xi0/3\\ < e-™'°||} >

1 — £q~
> f°r E near the band edges B± and for some £ > 2d.

We do this in two steps. We first prove that for 6 > 0 small, dist (a(HA^),B±) > 6 with
good probability. We can then apply the Combes-Thomas result of section 3 to conclude
exponential decay at energies E G (ß_ — 6/2, B) U (B+,B+ + 6/2) with a good probability.
We then verify [Hl](7o,£0) for an appropriate choice of 70 and £0-

We now discuss the location of the spectrum of the finite volume Hamiltonians HAtW in
the unperturbed spectral gap. Recall that by (H8) the family {H^} has an almost sure
spectrum E. The probabitity space is Çl (supp h)z

Lemma 5.1 Suppose p pA,U0 G <rd(HAìU0) n (B_,B+) for some to0 G Çl, then p G E.

Proof: let ipuo be an eigenfunction of HA^0 with eigenvalue Pa,u0 — P '¦ HA^0xpU0 ptp,
\\ipu>o\\ L For any R such that A CC Afl, consider the following events for any v > 0)

^01

/flil/ {w e Çl\ \X,(wo) - Xx(w)\ < „(6|A| HI«,)"1, Vz G Ä}
and

ERiV {« G fi| |A,-(«)| < i/(6|ÀA\A| IMI«,)-1 Vi G Àfl\AJ

Set Bfl,„ s Ir,vV\Er^. Let \ G C2 be a smoothed characteristic function with supp \ C A2,

X < 1, and x'|Ai 1. For R > 1, set Xr(x) x(Ä_1z) so that ||<9aXR|| 0(R~M), for
|a| 0,1,2. Choose Ri sufficiently large so HxKi^woll > f> ana- ^or R > Ri define tpn
Wxr^wqW'1 XhV-'wo so IIV-'rII 1- Then, by the definition of ipR and the local Hamiltonians,

(Hw - p)ipR (/Ya,uo - n)ipR A ^2(X,(w) - X,(w0))u,ipR + E k(u)uiipR
i€A i€AH\A

and it follows that for all u> G Br^

\\(Hu-p)iPr\\<2\\{H0,xr]^\\A^ (5.2)

The commutator is estimated as follows: as H0 (p — A)2 A V0, we have

[(P - A)2, XR]i>m -2iAXr(p - A)^ - (Axfl)^o • (5-3)
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Now ipuo is an eigenfunction of HA,W0 and, in particular, ipwa G D(H0), so

(P - A)jiP^ (p- A)j(H0 - z)-\p - z - VAlW0)Vw

Setting z 16, 6 > 0, we obtain

IKp-^i^H^Ä^II/i-tÄ-VA^Hoo. (5.4)

which is independent of R. Hence, by taking R sufficiently large, it follows from (5.4) that

\\(H„-p)iPr\\<\v-

This shows that for any v > 0, a(Hul) fi [p — v,p + v] ^ 0 with probability P(i?fl,„)
¥(Er^)P(Irm) > 0. Since the spectrum of {H^} is deterministic, this implies p G E.

Lemma 5.2 Let pAM p G ad(HAyU,)n(B-, B+), with eigenfunction <pw, \\4>w\\ 1- Assume

that Va.u > 0. Then we have

(K,VA^<j>„) > [d\st(p,a(H0))]2 M^1

Proof: Since M^Va.* ii (VAm)2 under the hypothesis that VAiUI > 0, we have

(cpu,VA,„<P«) M-'^.MooVa*,^)
> M^\\VAM2

The eigenvalue equation gives VA,w<pu —(H0 — p)4>u, so that

<^,Va,^> > M-l\\(Ho - p)M\2
> M^[dist(a(H0),p)]2

Proposition 5.3

Let 6± \\B± — B±\, and for any 0 < 6 < \MZff min(<5+, <5_), assume that X,(u>) < (1

<5Mtx,[min(<5+,<5_)]~2)M,Vi G À. Then we have

sup{a(HAM)n(-oo,B-)] <B--6
and

inf {<r(HA„) n(B+,oo)}>B+ + 6
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Proof: Without loss of generality, we assume HAm has an eigenvalue pAM p G [B- — 6, BA\.
Furthermore, we can assume that Va.u, > 0, since by Lemma 5.1, we always have p < B_

and the eigenvalues of HA-U are increasing functions of the coupling constants \ Xt(tw)\i G A \.
This fact follows, for example, from the Feynman-Hellman formula and the positivity of u.
Indeed, if <pu is an eigenfunction of //AiUM so that HAiU,<pu p4>w, then

dpA,u, dHAiU

-dxT ^-dxT^
(<Pw, u,4>J) > o

The family T(0) H0 A 9VAiUI, for 9 in a small neighborhood of oo 1, is an analytic type A
family which is self-adjoint for 9 real. If p has multiplicity m, there are at most m functions
pw(0), analytic in 9 for 6 near 60 1, and which satisfy lim p^(9) p. Let ^k)(6) be

0—*öo l
an eigenfunction for /i'*'(0), with ||^'*'(ö)|| 1 for 9 real and \0 — 1| small. Applying the

Feynman-Hellman formula again, we find

^ m,v^m) (5.5)
9-1(<j>(9),(9VA^)rj>(6)) ¦

We now assume A,(w) < (1 - <5Moo[min(6+, <5_)]"2)M, Vi G À, and fix

oi =min (t^t) > (l - 6M„ [min(<5+,5_)]-2)_1
,£A \X,(W)J V '

> 1

Applying Lemma 5.2 to VA_W under these conditions yields

^^>e^M^[diSt(p^(9).a(Ho))f

Upon integrating over [1,0!], we get, by monotonicity of //*'(#):

p.W (Ôi) > p A (log9i)M^ mm ^[d\st(p^(9A,a(Ho))}2,[d'ist(p,a(Ho))]:

> p + 6> B.

This shows that [HoA^Z rMuA has an eigenvalue outside of E which contradicts
Lemma 5.1.

This proposition is the main technical result. We can now easily compute the probability
that dist(a(HA,ul), B±) > 6.
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Corollary 5.4 For 0 < 6 < \Maf min(<5+,<5_), we have

sup{ff(//A.u,)n(-oo,ß_)} <B.-6,
and

inf{cr(//A,.)n(5+,oo)}> B++6,
with a probability larger than

1 — IAI max
A'=m,M

/ h(s)dt
J l-6M^[min(6+ ,6-)]-2X

Proof: The probability that X,(u>) < (1 - 6MO0[m'm(6+,6-)]~2)M Vi G À, is given by

1 — fn_jAf a-2)m h(s)ds\ The corollary now follows by expanding this probability and
from Proposition 5.3.

We verify [Hl](70, to) by combining Corollary 5.4 on the location of the spectrum of HActW

and the exponential decay estimate of Theorem 3.3. We note that hypothesis (H6) on the
decay of the tail of the density h near the endpoints of its support m and M is essential
in order to control the probability in corollary 5.4. We first give the decay estimate for the
localized resolvent and then comment on the gradient term.

Proposition 5.5 Let \,,i 1,2, be two functions with ||x.'||oo < Lsuppxi *- ^</3 an^

suppx2 localized near dA/ and 6± \\B+ — B_|. For ß > 0 as in (H6), consider any v > 0

such that 0 < u < 4/?(2yÖ + 3d)-1. Then 3(*0 il(M^,6^,6.,M) such that W0 > t0 and

ve e (ë. - t0-2,B.] u [B+,B+ + r0-2),

sup||Y2ÄA,0(£ + it)\i|| < e"

with probability > 1 — (0 for some £ > 2d.

Proof: From Corollary 5.4 and (H6), we compute the probability that a(HAl iU) is at a

distance 6 2£g~ from B±,

Pjdist [a [HAto,S] ,B±) > 26} >l-ido {2T0-2Moa [m'm(6+,6.)]-2 X)M/2+0 (5.6)

where X m for jB_ and X M for B+. A simple computation shows that the right side of
(5.6) is bounded below by 1 — £q for some f > 2d provided v satisfies 0 < v < 4/3(2/3 +3d)-1.
We now apply Theorem 3.3 to HAl iW. Let E G [B- — £q~2, B-) and, following the notation

of Theorem 3.3, let A_ dist(ß_ - 6,E) > 6/2 ro~2 and A+ > \B+ - Ü_|. Since

dist(supp X2,supp xi) > ^o/3 (in dimension d > 9, this is no longer true; one has to replace
(o/3 by c'o/(3Va), for the diameter of the inner cube), we obtain
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\\X2RAf0(E + ie)xi\\ < C2sup(|ß+-ß_|-1,C)
x e-inf(ao.C1^/2-I|S+-B-|I/2)^/6

The result follows by taking £0 large.

Corollary 5.6 3^ such that W0 > £*0, hypothesis [HI] (70,4)) holds V£ G (£L - tQ~2, BA] U

[B+,B+ + £o~2) and any v satisfying 0 < v < 4/3(2/3 + 3d)-1, /3 as in (H6).

Proof: As in Lemma 5.1, of [6], we write

\\W(xi0,r,)RAtoXt0ß\\< ||(Ax<„,v)ÄA/oX/o/3|| ,,7,
A2EU\\(diXto,v)(p-A)jRAeoxto/3\\ l°-'J

for a function xe0.v localized within distance v of dh(0. Let Xi-, i — 1>2, be smooth functions
such that XtXto.v Xta,v,XïXi Xi) and SUPPX> 's localized within a distance 2v for i 1

and 3u for i 2, of d\(0. Then, we write for each j and any u G L2(Rd),

WidjXeo-vYp- A)3RAlQu\]2 < Co((p-A)jRAlou,xi(p-A)ix_RAtou)
< Co||x2/?A/o«|| Up-A^xiip-A^R^uW

Taking u xialii\ we see that (5.7) is bounded above as in Proposition 5.5 (taking £*0

larger) provided we have ||(p — A)2RA,ou\] bounded. This follows with a probability > 1—£q,

since V'o is relatively bounded and V_ ° is bounded.

6 The Case of Unbounded Random Potentials

We indicate here the modifications necessary when supp h is unbounded and satisfies the
second part of (H6). To control the location of a(HA) with a good probability, we must work
in the weak coupling regime. Consequently, we study the family H(g) H0 A gV_, for \g\

sufficiently small. We assume conditions (H1)-(H8) in this section.

Proposition 6.1 The random family of Schrödinger operators Hw(g) H0AgVw is essen-

tialy self-adjoint on C'óx'(Rd) with probability 1.

Proof: We refer to Hinz and Stolz [18] for a discussion of essential self-adjointness. It
suffices to prove that |V^(x)j ö(|a:|2) as \x\ —» 00 with probability one. We define events

Ak, k G Zd, by
A,ee{u,||A,M|>1 + |ä;|2}.
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From (H6), we have for any bounded set B CRd containing the origin,

E nAk) E {j h(x)dx)
k_"L<\B k,TJ\B

keZd\B

< ^TEjr2(',u
< oo,

since r > | — 1 according to (H6). The Borei-Cantelli lemma then states that P(lim Ajf) 0.

SoVfc G 1d, \k\ sufficiently large, and for a.e.w G Çl, 3 finite C_ > Os.t. |Afc(w)| < Cw(l + \k\2).

We next turn to the Wegner estimate. The only change in Theorem 4.1 is a factor gq on
the right side of (4.1). The multiscale analysis of [5] requires a simple modification. For a

constant Ce, depending on the length £ assumption (H6) on the decay of h(X) implies

P{|Va,| < CA > 1 - -i- ||u||^CkfCr(r+1) (6.1)
r + 1

for Ch and r as in (H6). It is easy to verify that for Ce 0(lA), we have (6.1) bounded
below by 1 — £~*, for some £ > 2d. This can be absorbed into the probability of exponential
decay. At each stage of the multiscale analysis the constant is 0(£^). A careful check of
the calculations in the appendix of [5] shows that this changes the decay constant 7 by a

vanishing amount of 0((log£n)t~x) at each step. Hence, the results remain unchanged. Next,
we indicate how the small coupling constant g allows us to obtain estimates on a(HAliU/(g)),
which replace those of section 5. In fact, the results are simpler in this case.

Proposition 6.2 Let Em (\)(B+ - B.),A (|)|B+ - B-\, and fix K > 2. Then

3g0(K) > 0 such that \/g < go(K) and for l0 g~6,

P{d,st (a(HAto,Ug)),Em) > K~l(K - 1)AJ > 1 - tf
for some £ > 2d.

Proof: It is clear that ||<7Va,||oo < A'-1 A, if Vi G A/, the coupling constants satisfy

|A,H| < (gKu^y'A i/(A)

where «oo || E w'll°o- K this condition holds, then a(HAl lW) is a distance K~1(K — 1)A

from Em. The probability of this occurring is

po P{dist(a(HAlo,Ag)),Em) > K~\K - 1)A}> 1 - £d I h(X)dX.

Using (H6), we obtain the estimate for the probability

Po > 1 - C^'+1(A(A'Uoo)-1)-<'+1),
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where q and Ch are as in (H6). By choosing l0 large enough and g 0(ig6), we can bound

po from below by 1 — £p for some £ > 2d.

Finally, we formulate the analog of Proposition 5.5 in this case. We note that Corollary
5.6 is immediate since we know VA( (U) can be bounded with a good probability.

Proposition 6.3 Let XiA 1,2, be the functions defined in Proposition 5.5 and fix K > 2

as in Proposition 6.2. There exist finite positive constants g0(K), t0 and C3, C4 (depending
only on Xi, K, and A), such that for all i0 >> £q and any E G [-Ö- + 2A'_1 A, B+ — 2A'_1A],
we have

Cito
""f »A-'^r,t \*-i 1 '-'-/Alii -^ ^3"00

-i

sup \\x2R\AE A ie)xi\\ < C3e~
OO

with probability > 1 — /0 for some £ > 2d.

Proof: For E as in the proposition, define

A_ inf (dist(E,B)),
B_{B.,B+y

v

A+= sup (dist(£, B)).
B€{B_,B+}

From Proposition 6.2, it follows that for g < go(A) and £0 > g~e, we have A± > (A/4) with
a probability > 1—£q, for some Ç > 2d. We can now apply Theorem 3.1 directly. The analog
of Corollary 5.6 now follows since we can control Vff with a good probability (> 1 — (*¦), as

indicated above.

It remains to provide some examples which show that theorem 2.2 is not empty. We prove
that if supp h R and hypotheses (H1)-(H8) are satisfied, then the almost sure spectrum
E(g) fills in the spectral gaps of Hq; an example of this is the Gaussian distribution. We

prove the following.

Proposition 6.4 Let H0 satisfy (H1)-(H3) and assume (H5), (H7)-(H8). Let D(g) be the

a.s. spectrum of Hul(g) Ho A gV_ and assume supp h R. Then we have

RW)cE(j), g^o ¦

Proof: We fix g 1 without loosing generality and consider p0 6 (B-,B+); by Lemma
5.1 one has p0 G £(<?) if «o G "^(-^A.wo) f°r some finite volume hamiltonians HA-U10 and some
1^0 e Çl- Given any fixed ball AclJ there exists by (H5) and (H7) an o;0 G fi such that
VAt0J0 is positive; consider then H(X) H0 A XVAiUI0, i.e., H(X) HAtx_0 ; by (H3) and (H7)
one has aess(H(X)) (7ess(rY0) for all A and the operator K(p) \VAiU,0\*(H0 - /i)-1|VA>W0|2
is compact for all « G p(H0)- It is well known that p0 G <Td(H(X)) iff —1/A G a(K(po));
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so unless K(po) 0 one has p0 G U,\eK<7,i(//(A)). On the other hand, if K(po) 0, then
either there exists a sequence (p„)„ converging to po such that K(pn) / 0 in which case po
obviously belongs to VJ\e^Od(H(X)); or A'(p) 0 for all p in an open neighbourhood of p0;

but then — K(p)\^n \VAiM)\î(H0 - po)~2\VA,W0\î is zero i.e. (H0 - p0)_1 |Va.uJ* 0;

but po 6 p(Ho) so this is possible only if |Va,u;oIj 0. Since Lemma 5.1 implies that
^\_W.ad(H(X)) Ç T,(g), the proof is complete.

We remark that this technique also applies to show (H9) in case supp A is compact
but large. Essential in the proof is positivity of Va,„0 which follows from positivity of u

(assumption (H7)); if there is no magnetic field, A 0, we could also use results of Deift
and Hempel to get the result without this positivity assumption ([10], [16]).

7 Appendix

We prove estimates on the operator K{i} defined in (4.10) which are needed in the proof of

Theorem 4.1. Let A A Ctl/ and recall that {i} is a g-tuple of elements of A. The following
lemma is easily proved using Holder's inequality for trace ideals (see, for example, Theorem
2.8 of [30]).

Lemma 7.1 Assume (HI) - (H3) and (H7). Then A'{,} is trace class provided {i} is a

q-tuple, with q as in (H3). There exists a finite constant Ce0 > 0, depending only on ||m||oo)

dist(a(H0), 7?o)_11 and d > 1, such that \\K{,)\\i < Ce0-

The main result of this appendix is the following proposition which establishes (4.17).

Proposition 7.2 Under the assumptions of Lemma 7.1, for any E0 G (B-,B+), 3 finite
constant Ce0 > 0 such that

E JA'wlli <Ce0\M (7.1)
•1 'q€A

provided {i} is a q-tuple, with q as in (H3). The constant Ce0 depends on the dimension

d>\, ||u||oo, and dist(a(i/0), E0)~l.

The work in this appendix concerns only the unperturbed Hamiltonian H0 (p—A)2 + Vo

and Eo G (B-, B+) C p(H0). To simplify the notation, we write Ro (H0 — Eq)'1 ¦

Lemma7.3 Assume (HI) - (H3) and (H7). Suppose Xi,X2 G Cc°(Rd), withsuppxi compact
and that suppx2 lies in a half-space disjoint from suppxi, ||Xi||oo 1, dist(suppxi,suPPXï)
> a > 0, for some a > 0.
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Then, the operator Xi^oXî G Ji- Furthermore, there exist finite constants D > 0. o• > 0

such that

IIXiÄoXalli < D e~aa (7.2)

where D and a depend only on dist(a(H0), E0)~l.

Proof: Let Hi be the half-space containing supp yj and such that

Hi {x|dist(x, supp yj < dist(:r, supp X2)}

Let L be the straight line minimizing dist(supp xi, supp X2) so \L\ a and dH\ A L. Let T\,
A > 0, denote the parallel translate of Hi along L, that is, T\H\ {x | A_1dist(supp\i, x) <
dist(supp X2) x)} H\. For any A > 1, we can choose xa G C™ such that XiXa \i and

dist(supp XA,supp \2) a(l — j). Note that xaX2 0 if A > 1. Iterating the geometric
resolvent equation 2o-times, we find

X1R0X2 XiRoW(xMW(xxA...W(Xx2q)RoX2 (7-3)

for any sequence Aj > A2 > ¦ ¦ ¦ A2, > 1, where

W(xx) ]Ho,\x] ](p-A)2,Xx]. (7.4)

For each A,, we can find \\, G C0x'(Rd) such that W(x.\,)xk ^(Xa,)- It then follows for q

as in (H3) and the boundedness of W(x\)RoW(xy) that

XxiRoW(xxi+i)R0W(xxi+A £ Jq (7.5)

In exactly the same way as in the proof of Lemma 7.1, we use the Holder inequality to
conclude that Xi^oX2 G Ji. To prove the exponential decay estimate (7.2), we use the
Combes-Thomas estimate.

If 6(Eo) A\3i(Eo,cr(Ho))~l, then there exist finite constants C > 0, 5 > 0 depending on 6,

s.t.

||XißoX2II < C e-~aa (7.6)

By the same argument as above, we can choose xi G C0x,(Rd) such that Xi\i Xi) \i\2 0

and

dist(suppxi) suppVxi) > a/3

dist(suppxi) supp\2) > a/3

Again, by the support properties,

X1Ä0X2 XiRoW(xi)RqX2

and we estimate the trace norm by

HX1Ä0X2II1 < Hxifio Xi II \\W(xi)RoX2\\i (7.7)
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where \~i is the characteristic function for supp(Vxi).

To prove the finiteness of the second factor, we note

W(xi)RoX2 îVxi • (p - A)RoX2 A AxifioX2 ¦ (7.8)

The second term on the right in (7.8) is trace class by the first part of the theorem. The first
term is trace class by the argument of (7.3) - (7.5). Applying the estimate (7.6) to the first
factor in (7.7) gives the result (7.2). Note that C depends on ||H^(xai)^o^(Xa2)I|) which is

proportional to dist(£0, cr(//0))_1.

Remark : We will only use this lemma for Xi>X2 G C0X(R In the proof of Proposition
7.2 below, we simplify notation and write

!<{,) u,1RoU,2RoU„...u,l_ìR%Uiì

and assume u2 u,k, when convenient.

Proof of Proposition 7.2: Fix q so that A',,.,.,-, G Ji according to Lemma 7.1. We separate
the multiple sum over A' {(t"i,...,ìj)|ù G A} into two parts. By (H5), we can choose a

finite a > 0 so that if -q 2diam(snppu), we have q < a < 2q and ||i„ — im|| > a implies
dist(supp u,n, supp u,-m) > a/2 > 0. We define a subset /i of A' as follows. An a-tuple

{i} G A' is in /] if ||ijt_i — ik\\ < a VA: 2,...,q. Let /2 A'\/1 be the complementary set

of indices. If {i} G h, then there exist at least one pair of consecutive indices (ik-iAk) s-^-

\\ik — h-i\\ > a. We use this pair of indices for the exponential decay. From Lemma 7.1, we
have an estimate for the sum over Ii,

E lattili < Ce. |/i| (7.9)
«6/i

where Ce0 is the constant appearing in Lemma 7.1. To estimate |/i|, if we fix i\, there are
a finite number C(a,d) of possible i2 terms so that j|*x — z211 < a. This number depends

only on the constant a and d, for all large A. Hence, for fixed ij, there are C(a,d)q~1 terms
satisfying the closeness condition since there are |A| choices for ti, we obtain the bound

|/i|<Ô(o,d)|A|. (7.10)

We now turn to the sum over I2- We write i3 fl ij,. if ||ij — ijt|| < a and ij /Ak if ||ij — ik\\ >
a. We sum successively from ij to iq, for {i} G h- We sum first over all i\ such that
3(z2, Ì3,..., ig) e A,_1s.<.(ii,i2,..., ig) e h- We separate the ii sum into two parts :

EPm.)IIi (E + E)IUm.}IIi (7.11)
Ì,r\Ì2 «11/1>2

The sum over i] s.t. ii fl i2 is bounded above by

E \KRoUi2\\ ]\u,2Ro---Ro2u,q\\l<C(a.d)6(E0)\\u,2R0---R20ulq\]i (7.12)
{,1-112
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where 6(E0) (d\st(cr(Ho), E0)) ' and C(a,d) are the numbers introduced above. To evaluate

the sum for which i\ f)i2, we use (7.2) of lemma 7.3, and obtain an upper bound,

^3l|^tl JRo^,2||i||»«2-«o-.--JRo2w,^||< ^E ^e-^ll^-^llj ||u,2Äo....Ä02^^|jj|wt|^ (713)
•l^"2 \lll7l>2 /

The sum in (7.13) is finite and independent of |A|. Note that in (7.13), we only need to
continue the estimate in the operator norm. We now pass to the sum over i2 There are two
terms, one coming from (7.12) and one from (7.13). From (7.12), we sum over all i2 such

that (i2,Ì3, ¦¦..ig) G A'-1 n I2. Separating the sum into 2 terms as in (7.11), we obtain,

Elk2#o--#o".Ji < E K^ll IKfio.-floVJi
J2 t2ni3

+ E Kßou.sIliKÄo-./Vw.J. (7.14)
¦217I13

Each term is estimated as in (7.12)-(7.13). As for the i2-sum in (7.13), we have

El|w.-2^ou.3---^o2u.,ll
"2

< E KÄo«.,ll \\u,3Ro---Ro2uJ
¦ 2<~lt3

+ E IK^II ||".3ßo---ÄoV,!| (7.15)
I2C"3

Since the trace norm has been evaluated in (7.13); the usual Combes-Thomas result (7.6)
(see section 3) can be used for the second term of (7.15). As above, the bound on both terms
is |A|-independent. We continue to sum over i3, - ¦ ¦ /,_2. In (7.14) the trace norm is pushed
through each pair when (i;_!,ij) satisfy ||ij_i — tj|| < a, and it is evaluated using lemma
7.3 otherwise. Similarly, in (7.15), we use the Combes-Thomas result (7.6) of section 3 to
control the operator norm of pairs (ij-i,ij)s.t.\\ij-i — ij\\ > a. We obtain in this way 2'
terms and a coefficient depending only on d, ||a||u0,C(c,d), and 6(Eo) Finally, there are 2

remaining terms to evaluate : one from (7.14),

E K-.floXlli, (7.16)
i,-i,>«

and the other from (7.15),

E K-,ßo2".J (7.17)
',-1.',

for the trace norm in (7.16), we recall that the remaining indices, coming from /2, satisfy
ig-i /Mg (that is, the only remaining trace norm is from those q-tuples {i} for which only
the pair (iq-i, iq) satisfy ||?,-i — iq|| > a). Because dist(suppwli)_1, supp u,-) > |, we can find
X G C£°(Rd)s.t.xulq_, «,-,_,,dist(suppX)supp u,-,) > f, and dist(supp Vx.suppu,,,, > \.
We then have:

E K-.ÄoV-jt < E lkt-,ÄollllxÄo«.-Jli ¦

iq-l0iq tq_lf7llq

+ E \\u,q_,RoW(x)U\Ro2u,q\\ (7.18)
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The trace norms in both terms on the right in (7.18) are exponentially bounded by Lemma
7.3 and the operator norms are bounded by a power of 6(Eo). Consequently, the ig_1-
sum is controlled and the i?-sum results in a factor of |A|. Finally, we estimate (7.17).
We separate the sum into i,_i D iq and i,_i/li,. The nearest neighbour sum is bounded
by C(a.d)6(E0)2\A\. The sum over disjoint pairs is estimated as in (7.18) using the usual
Combes-Thomas estimate (7.6) for the operator norm. This completes the proof.

Proposition 7.4 Let ho RoVA, then there exists a finite constant C > 0, as in Proposition
7.2. such that

E(||A0||,')<C|A|. (7.19)

Proof: The proof uses almost exactly the same arguments as in Proposition 7.2 and we will
indicate how to reduce the expression to those calculations. By hypothesis (H3), we write
q 2p, for some integer p. From the definition of the norms, we have

IIAoll,' |||Ao|'/2||, ||(A-ÖA'o)li. (7.20)

Since A'JA'o RoVAR0, we must estimate

EA{Tr(V2Rl---V2R2o)}. (7.21)

Expanding the potential as before (4.9), we obtain the analog of (4.10),

A'{l} utlR2oUl2ul3R2oUltul5...u,ti_lR2oUtç (7.22)

The trace norm of this operator is estimated as in the proof of Proposition 7.2. We carry out
the summation over the indices in the same manner using Lemma 7.3 to control ||w,/?ouj||i
when u,Uj 0. Note that the intermediate terms like u,tu,b actually vanish when the
supports are disjoint. The proof then proceeds as in the proof of Proposition 7.2.
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