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volume preserving diffeomorphisms of TM cannot be deformed when M > 2, the arising
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1. Introduction
Generalizing fundamental concepts, such as Lie algebras or Hamiltonian dynamics, may
have quite divers merits; it can lead to new, interesting possibilities. - or reassure oneself of
our present notions. While the result that volume preserving diffeomorphisms of toroidal
M-branes. as a Lie-symmetry algebra, cannot be deformed (if M > 2) is of the latter
nature - the following ideas appear to be worthwhile persueing:
— Using a *M-deformation of the algebra of functions on some M-dimensional manifold
for representing the M-linear analogue to Heisenberg's commutation relations that Nambu
[1] encountered in multi-IIamiltonian dynamics.
— Generalizing the Jacobi identity for Lie algebras to a (2-bracket) identity involving
2M — 1 elements of a vectorspace V for which an antisymmetric M-linear map (M-
commutator) from V x • ¦ • x V to V is defined (in a dynamical context, an identity
involving M, rather than 2. of the M-commutators, may be preferred).
— A potential relevance of A/-algebras to the quantisation of space-time.
Perhaps most importantly (on a concrete, practical level), an explicit example is given
(the multidimensional diffeomorphism-invariant integrable field theories found in [2]) for
the usefulness (envisaged some time ago [3]) of generalizing Lax-pairs to -triples

2. M-algebras from M-branes
A relativistic M-brane moving in D-dimensional space time may be described, in a light-
cone gauge, by the VDiffE-invariant sector of ([4])

H 5 / d-^(P2+3) (D
2 A p(f)

where g is the determinant of the MxM matrix (g,s) := (Vrj'V3.r,)r,s=i...,v/, x' and p,

(i 1, • • ¦, D — 2 =: d) are canonically conjugate fields, and p is a fixed non-dynamical
density on the M-dimensional parameter-manifold E (M 1 for strings, M 2 for
membranes,. Generators of VDiffE, the group of volume-preserving diffeomorphisms
of E (resp. the component connected to the identity), are represented by

K := J f P, dr -v1 dM <p (2)

with V,/r 0. g may be written as

where the "Nambu-bracket' {¦ • ¦} is defined for functions /i,* • •, /^ on S as

{fu — ,M ¦¦= f'''-r"d„ h---drufM. (4)



304 Hoppe

This trivial, but important observation suggests to consider Hamiltonians

1

Hy := 77Tr{P2± £ [A'„,...,.V1A(]2), (5)
2

"1< ¦<>M

resp.

1
d

1

Hx
2

11^ (Pi, Pi) +
2 E ^([-V„,--,.V,M],,[A11,..-A',U]A). (6)

1=1 li< — <>M

where X' and P, are elements of (possibly finite dimensional, A-dependent) vectorspaces
V on which antisymmetric M-linear maps [, ¦ ¦ • ,]a : V x ¦ ¦ ¦ x V —¥ V are defined, and
ß a positive definite hermitean form, preferably invariant with respect to some analogue
of volume preserving diffeomorphisms (cp. (2)).

With
[Ta„---,TaMh fZt...aM(X)Ta (7)

and

ß(Ta,Tb) 61 (8)

for some (possibly A-dependent) basis {Ta}df"^ of V, i.e.

£,.-*(*) ß(Ta,[Tai,---,TaM}x), (9)

(6) reads

HX \plPia + \ (f:,...aJX)y ft...bM(X)
1

while (1) may be written as

x*,o, ¦•X*„a.u xilh "¦•''¦«(>„ (10)

I! TjP'aPic +
2

(«», -aM)' 9ß,-ßM

7^7 ri,o, •¦ • x<m0m ; (iX)

&.¦— := Jj:{Ya„---,YaM}pdM y (12)

is defined with respect to some orthonormal basis of functions (on E) satisfying

JY:Y0PdM>p o°s

a,ß !•• -co (13)

(even for real x,. it is often convenient to take a complex basis)
Obvious questions are:
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1) Does there exist a 'natural' sequence of finite dimensional vectorspaces Vn with basis

{Ta } and antisymmetric maps Fn : V„ x • • • x Vn —> V„ such that for each

(M + l)-tuple (aoi-'-a«)

Hm /"...„„ (A») <£...„„ (14)

2) For which M do there exist finite dimensional analogues of (2), K(n), leaving (10).\„
invariant, such that, asm oo, the full invariance under volume-preserving
diffeomorphisms is recovered?

3) What about A-deformations with infinite dimensional Vs

Let us look at the case of a M-torus, E T :

Choosing
Y* e''** m (mi,---,mM) £ 1M, p 1, (15)

9t..^u i"(*i,~-,**) S$1+^*M (16)
one gets

i/m, rnM

where (mi,"',mjf) £ Z denotes the determinant of the corresponding M x M Matrix
(an element of GL(M,Z)

Consider now the following '*M-product' (a deformation of the ordinary commutative
product of M functions /i, ¦ • ¦, /m on E):

C"

(/.•••/a/). := /i---/m + E

d<Pr> ¦ ¦ ¦ dfrm d^M) ¦ ¦ ¦ cV"

OO (_,)M+'A\m .riM)

E( ,V7!
e ' '

er-r« -rLM 1

m=l mi

gm f, <)m f\i (17

One then finds that

/,• y _ / {m,,—,mM) y{rm, ' ' ' imM)m — vu; roij+...^M

vAJ e'*« (18)

Defining

[/i---',/m]. := E (siSn<7) (/»I •"/»«). (19)

'ES«
to simply be the antisymmetrized *M-product. one gets

—i
[Tm,,---,TfnM] —— sin(2nA(mi,---,mM))Trni+...4.,nM (20)

Z/TA

A ¦

with A := —— and 7n,n := A ¦«-> Y,B.

For A/ > 1 arbitrary (but fixed), let V denote the vectorspace (over C) generated by
{Trn}AeZM, MA denote (V,*) and AA denote (V,[•• •],).
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The hermitean form ß (cp. (8),(9)),

ß(Tm,Tn) Sf, ß^XudjXA c'{ dj ß(Xi,Xj),
will have the important property ('invariance') that (for A', XiATm with x'A xt-A)

ß (X. [Xf,,¦¦¦ XiM}) -ß [Xir, [A„,• • •, Alr_,, A, Alr+1,• • •,XiM}),

as

ß (Ta,[TAì,---,TAm}) —— ^|+...+ÄM sin(27rA(m1,---,mM))2ttÄ

For rational A ^ (assuming N and N < N having no common divisor > 1)

both AA and MA may be divided by an ideal of finite codimension. namely (using the
periodicity of the structure-constants) the vectorspace I generated by all elements of the
form TA — Ta+n (anything)- One thus arrives at considering (for arbitrary odd N)

K<"> := (r„,|mr -^l,...,+^Lzl)r r=\---M (21)

with a *m product on V^N> defined just as in (18):

— i N itT T \ ¦— ____ ,- i ("*lr"."*M) T\lm, ¦¦¦lmM). •— - ~ W *m,+-+mM (mod N)2ttNMl

w e47"N (22)

and a corresponding alternating product,

- ; A' A
[Tm,,• • ¦,TmM], — sin (2>t — (mi, ¦ ¦ ¦ ,m.M)) TAi+...+Am (mod N)

2-rtN A

fhr e (1N)M (23)

The 'structure constants' of the alternating finite dimensional M-algebras

AN := (V<">, [,•••,],),
AN / N[N)rf. —IJM /V / _ \\fk,UM ¦= -f^Sin\2n Af {mi-'"'mM)) ' Öm,+ - + ,nM (mod.V) (21)

satisfy (14) (up to an .V and Z^-independent rescaling of the generators, resp. factors

of i, which anyway drop out in (10) and (11); n NM, f{N) f(Xn), fh £ Z%
V{N) Vn=A-3.and lim V(/v> V).

jV-foo

Hn - P,-m p,m

IN2 / N (^ n / N /_ \\+ 2i^Â^Slnl2"Âri---HJ •-n(2.-(n„...nMjj
^1,-TÄi ' ' ' xtM-mM x\,n, ' ' ' x\m^m °n,+ •+nM (mod V' ' 'M\

could therefore be considered as a finite-dimensional analogue of (1
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3. Multidimensional Commutation Relations
Before turning to questions of symmetry, let me discuss in a little more detail the

*M-algebras MA, with defining relations (cp. (18); note the slight change of
notation/normalisation)

i

(TAi---TAm). u;-ilA>-~-*"lTmi+...+*M(*),

and as vectorspaces generated by basis-elements IA, rn £ S (where 5' Z 5'

(1in)M, or any combination thereof - in the M-brane context, depending on whether
YJ TM, resp. a fully, or partially, discretized M-torus).

First of all note, that for any M elements, A\,-¦ ¦ Am £ V, any even permutation
cr £ Sm (the symmetric group in M objects), and any choice of S (even RM),

(Ai •••AM). (Aff(,) • • • AC{M)) (signa +) (26)

and that E := Tg acts as a 'unity' in the sense that if one of the Ar is equal to Tg, the

*M-product becomes commutative (i.e. independent of the order of its M entries).
Using E, one may identify T(m=±|m|i0,...,o) with the |??i|-th power of E±i := T(±i,o,—,o),

T(m.o,.,o) ((((E---EE±i).---EE±i).---),---EE±i),, (27)

t
|m| brackets

so that one may wonder whether MA can be thought of as being generated by

£" lg, E±i T(±1 o-o), ¦ ¦ '
i E±m T{o~o±i)-

This is indeed the case: Let FM be the free (non associative) M-algebra generated
by 2.M + 1 elements E, E±\, ¦ ¦ ¦, E±m; define arbitrary powers (Er)m of the generating
elements as in (27) (from now on E_r ='¦ E7 a notation that will be justified via
(29)), and let

Em ¦= E'r E?> ¦¦¦ EMM. (28)

Divide FM by the ideal generated by elements

Em' Ern» ¦ ¦ ¦ EA(M) — LOl(m 'm ' ' '"" • EA, + ...+A[M) (29)

2f(m, ¦ ¦ ¦ ,rrv ') := (m{ ¦ m2 rn^) — (fn! ,m'',- ¦ ¦ ,rrv ')
M M

- e (no w
r=l s=l

(fh := fn' + rn" + ¦¦¦ + m(M))

This quotient then is isomorphic to MA, as can be seen by defining

Ta := U? "'1^ —M £m, Em2 _ £mM
^ ^
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which (due to (29) being zero in FA//) satisfies (18) (with Y standing for T).
Note that

E?2 Em' F™3 ¦¦¦ EMM ,/".">;¦-'".« B'f" E'f2 ¦ ¦ ¦ El)". (32)

in particular:
E2 Ei E3 ¦ ¦ ¦ h m u) /-. i E2 ¦ ¦ ¦ Em (33)

(while any even permutation does not alter the product, cp. (26)).
In order to get a feeling for (29)/(30) it may be instructive to consider M 3: due to

(29).

(Ef E? E?)(E'i' Elf E^3)(E^ Ek22 £*3)
Tin, +l,+k, T^ri2+Ì2 +h pns+lz + kz

¦ a;"1'3*2 + ^'1*3 +"3'i*i (34)
I— »1 Wi + *2*3> + nj(/|/j + fc, frj) + t>3((it> + fci *j)

• v u.'

^-Illl»j((3 +*3) +"ll>3(l2 + fci) + "2 "3 C I + *'l
¦ vu;

The general rule (30) can hence be stated as follows:
Consider all possible triples (resp. M-tuples) containing powers of each of the Er(r

1 ¦ • • M) exactly once. If the 'contraction' picks out exactly one factor from each of the
3 (resp. M) factors in (34) it does not contribute if they are already in the correct
order, modulo even permutations (cp. 26). (like £,""' E2 E33, or E22 Ef EZf while they
contribute a factor w<product of theE-powers^ wnen they are not in the correct (modulo even
permutation) order (like E22 Ef Efx). Contractions entirely within one of the lai tuis
don't contribute, while mixed contractions (involving at least 2. but not all. ol the factors

in (34)), all contribute a factor y/ZZc
uct ° Me Poue"' irrespective of their order.

Due to (32), all 'monomials' are proportional to one of the elements En, (cp. (28)) -
which therefore form a basis (with the convention E$ E). Note that 27rM! A — A —> 0

is a "classical limit" (resp. A / 0 a 'quantisation' of the classical Nambu-structure) as.

formally.
[ln £i,ln E2, ¦ ¦ ¦. In Em] iX E (35)

Having obtained this relation, one could of course start with objects In Er =: .f..
[J\. J2,- ¦ ¦ Jm] i A E. and derive generalized "Hausdorff-formulae" for products involving
the eim'Jr.

Of course. (35) cannot be true in any M-algebra containing only finite linear
combinations of the basis-elements £„• as Tjj E never appears on the r.h.s. of (20): this is

similar to the fact that the canonical commutation relations of ordinary quantum mechanics,

[q.p] ih I. cannot hold for trace-class operators. (35) may be justified by formally
"A (-)*' „kexpanding ln Er — E E ET. using

T.,=l fcr=0 \«r/ "r

[Ef' .E^.---.E\f] ~(\- w*' "*« )£*¦-.. Efr
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and then resumming recursively, after the first step obtaining

^ ln £, • ¦ ¦ ln EM - ^ E '
• • • HE^k2"kM)Eh22 ¦ ¦ ¦ EkM" ^(Inw) ¦ E (36)

nr.tr
r>l

as formally,

EE(:)^^ vE(«-w'^'nr\ -)*'
7lr l ir l

4. Breakdown of Conventional Symmetries
Let us now discuss the question, whether theories like (5) or (6) can have symmetries
reminiscent of volume preserving diffeomorphisms; in particular whether the generators
(2) may be 'translated' to finite dimensional analogues. * For simplicity, consider again
E TM.

As f d,ujrs trsr'"'rM~2d,LJn -rM_2 for non-constant (divergence-free) vector-fields
on T (2) may be written in the form

AV.,-.„-2 J dMToLori...ru_1{pi,xi,^,---,^^} (37)

resp., in Fourier-components,

Kn -ru-1 E 5m-^nPirhXin(m,n,ëTl,---,ërM_i) (38)
rh,a

e tM

(where er denotes the unit vector in the r-direction).
Suppose the deformed theory was invariant under transformations that are still

generated in a conventional way by phase-space functions of the form

K' E P'A-r.n S'a+a can ¦ (39)

m.ng S

Using [xtrn.pjA ô,jSfA, while leaving open whether S ZM or S (Z\-)M as well as

(independently) whether S is defined mod N, or not. one has

[A'r,F'] E^*#+«
rnjrl
es

with (40)

Can V U" à' :" C-gC g- -A-, \ k -k ** -fc" \c<rr C

k£S

"For M 2. this question was already considered in [4] and answered positively.
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while K 0 would require can cnm and

sin (27rA(ai, • ¦ •, 5m)) sin (27rA(a1 + • • • + Sm-S2 ',•••, 5m'))

Cîl+.-ai ' + ---SM '.a, ' ' xni, ^tiSi' ' ' xxmÔ-M X'M<ìm' — " (41)

(where for (41) consistency of the (^-functions used in (39) and (25)a with the index set
S was assumed).

The effect of the x^-factors in (41) is to make the product sin ¦ sin ¦ c, symmetric
under any interchange 5r ++ 5r', as well as any simultaneous interchange 5,- <-> as.
Sr' ++ a,'. Choosing, e.g., ar' ar(r 1 • • ¦ M), with sin(27rA(ô*i ¦ ¦ ¦ Sm)) ^ 0, (41)
requires that

/ csal+i(s„2+¦¦¦+s„m)â*i °- (42)

This condition is insensitive to any alteration of the deformation: replacing the sine-
function in (41) (resp. (25)a, •• •) by any other function of the determinant will still result
in (42) as a necessary condition. Apart from M =2 (csl+2s2.s, + c,î2+2î,,î2 0 is trivially
satisfied by any odd function) (42) is not satisfied by

can s'm(2TtA(rh,n,ki,-¦ ¦ Am-ì)) ¦ (43)

nor would (40) be a linear combination of the generators (39), for such a can', for
M 3, e.g., one would obtain

ta*{ll';kk')
7, k + k'^

sm (*A(ÏP.Siî-))
_^

sinf2irANm,n, ——) + (jri-n.——- —-—))) (44)
2

(.-.,'ZZ, 1'-^
k-k'\ /_ /-/' k + k's

sm[27TA (ij', ——)

/ / _ _ « — k \ _ ..l — l k + k \\¦sinl27rA I m.n. —-—J + I m - n, —-—. —-—II

which means that the algebra closes only for k' k (for A -h this would give A3
closed Lie algebras, each of dimension A'3; in fact, each consisting of N copies of gl(N)).
- In any case, if can was a function of (ffiifiiki. ¦ ¦ ¦ k-M-i), one could let 52.53,- ¦ ¦ Sm

differ only in the ('irrelevant') ki,- ¦ ¦ kM-i directions and obtain

f(((2M-2)a2,au---)) + (M-\)f((2Sua2,---)) =0. (15)

which eliminates all can that are non-linear functions of the determinant.
Interestingly, c,nn (fh,n, something^ m>i is suggested by yet another consideration:

replacing {p,,x,,ip3, ¦ ¦ ¦ ,<p } (cp. (37): for notational simplicity taking n
3,---,rM_2 M) by

[P,.X„\nE3,---,lnEM), (46)
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(with P, p,rnPm,A', x„nT,n) formally expanding the logarithms in a power series,

using (20), and then (formally) summing again, one obtains something proportional to

PimXinTa+n ¦ («i n2 - m2 ni) • (47;

[Pi, Xt, ln E3, •¦-, In Em]

Pi rh * tri

' "" /nA...(nM) (-)*3+-+tM
kz) \kM J n3---nMM-2EE-E E

n3 l *r3=0 »» 1 *M=0

IT- T- Fkl ¦ ¦ ¦ F*M1

~ E' ¦sin(27rA(m,,i,/c3e3,- • • .kMeM)) ¦ TA+-+r

~ E--(\/£fc3"'fc"z-\/£"fc3'"fcM2) (v^)n"'(mr+nr+A:r) •

rmi+m prriQ+'is rmj+n.i + i:? p™M + nM+kM
¦ Cj C/2 -C3 • • ¦ Z^M

~ E" (ln(v^ "iM-" + n^K+"'+M £3)

- in(v^"*,""*MZ+n"'3('")£3)) • ^""^rw
r,mi+ni r/m2+n2 rnn3+n3 r^m,,+714+fc4 /7mM+TiA/+^M¦ C, C/2 Cj3 U,\ ¦ Ejm

fz := (rn, n, e3, • • •, Sm) rnyn2 - m2nA

\k (0, 0, k3,---,kM)

(Ino;) pia xin z (m,n) v/£n'',mr+"r) E?i+n> ¦ ¦ ¦ EZM+"M

(mi n2 - m2 ni) p,a xin (lnw) • TA+n
00 n / \ I \k

where (for r > 3) - E E (" ^~ k ' E* ' (w'")* £ was usecL

However,

A; / 7i
n=l k=0 K '

can (m,n, anything) (48)

does not satisfy (41). Moreover, even if one considers more general deformations of the
Hamiltonian, i.e. replacing the sine-function in (41) by an arbitrary odd (power-series)
function / of the determinant, the corresponding condition,

f (Si,- ¦¦ ,5M) f (Si H + Sm, 5'2,- ¦ ¦ ,5'M) • (ë",ô",, • • • 0

+ (M • 2M - 1) permutations (49)

M
e E (5r A S'r), can never be satisfied by any non-linear function f - as on can see, e.g.,

r=l
by choosing a'T prSr- Supposing f(x) ax + ßx2n+l ¦ ¦ ¦ and denoting (ä\, ¦ • • Sm)

m
by z, n pr by p, the terms px,azß (p z)2n+i, e.g., (occurring only twice, with the same

r=l
sign) could never cancel.
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The preceding arguments possibly suffice to prove that, independent of the above
dynamical context, the Lie algebra of volume-preserving diffeomorphisms of '['M>2 does
not possess any non-trivial deformations.*

5. Rigidity of Canonical Nambu-Poisson Manifolds
For the multilinear antisymmetric map (4). and 2A/ — 1 arbitrary functions /,. • • ¦ )'2m- i ¦

one has (cp. [5]):

{{/m,/i,- • • ,/m-i}, /m+i,-'-- flM-l}
+ {Îm, {/m+i,/i, ' ' ¦ ,/m-i},/m+2, ¦ ' ' ,flM-l}
A ¦¦¦ + {//W, ¦ ¦ ¦ f2M-1- {flM-l, fl, ' ' ' ,/m-i}}

{{/m,---,/2M-i},/i,-- -,/m-i}. (50)

Takhtajan [5], stressing its relevance for time-evolution in Nambu-mechanics [1], named
(50) 'Fundamental Identity (FI)', and defined a 'Nambu-Poisson-manifold of order M '

to be a manifold A' together with a multilinear antisymmetric map {• ¦ •} satisfying (50)
and the Leibniz-rule

{/>/l./2,---..M /l{/l./2,--..M + {/i,---,/m}/i (51)

for functions fr : X -> E (or C).
Without (51), i.e. just demanding (50) for an antisymmetric M linear map: V x ¦ ¦ • x

V —» V, V some vectorspace, Takhtajan defines a 'Nambu-Lie-gebra' [5], - also called
'Fillipov [6] Lie algebra' [7]). I would like to point out various other identities satisfied
by canonical Nambu-Poisson brackets (4). and show that all of them - including (50)!
do not allow deformations (of certain natural type), if AI > 2.

At least from a non-dynamical point of view, all identities involving Narnbu-brackets
obtained from antisymmetrizing the product of two determinants formed from 2M M-
vectors,

(Si ¦ ¦ ¦ 3m)(5m+i ¦ ¦ ¦ S2.m) (52)

with respect to M + 1 of the Sa(a 1 ¦ • • 2AI) should be treated on an equal footing.
For M 3, e.g., one has - apart from

(5 b ci)(c2 c3c4) - (3bc2)(c3 c4 Si)

+ (3 b c3)(c4 Si c2) - (5 b c4)(ci c2 c3) 0. (53)

which gives rise to (50)m=3 for functions / £ T3 - also

(a c[i c2)(c3 c4] b) 0 (54)

*M. Bordemann has informed me that apparently an even more general statement of
this nature has recently been proven in [19].
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yielding the following 6-term identity (FI)« (which can of course also be proven by using
just the definition (4), {f.g-h} taßi 9a f d^ g 9-, h. rather than (54); i.e. not

necessarily specifying the manifold X):

{{/, /[i, /2} /3, /4j} 0 (55)

as well as the 4-term identity (FI),

{{fJuh}, 9J3Ì
+ {{/¦ /2./3}. <!¦])} (56)

+ {{/./3./.}. fi-h} -{f-g- {.l\-J)-f,}}
each of which is independent of (50)m=3 (while any 2 of the 3 identities vield the

¦A'1).

Naively, one would think that (56) should follow from (50)3 alone, a.s (54) follows from
(53) (perhaps one should note that for general M. a theorem concerning vector invariants
[8] states, that any vector-bracket identity is an algebraic consequence ol

(a[i a2 ¦ ¦ ¦ Sm) (Sm+i] • • ¦ S2M) 0 :

however, in the proof of (56) via vector-bracket identities, one in particular needs (54) for
the special case 3 b which cannot be stated as an identity between functions on A

Curiously (with respect to a statistical approach to M-branes), vector-bracket identities
('Basis Exchange Properties' [9]) also play an important role in combinatorical geometry.

From an aesthetic point of view, the most natural quadratic identity for (1) is

E (sign<7){{/ffir">/ffM} foM-rl,---,fo2M-l} 0. (57)
ff Ê S2A/-1

For M 3, e.g., one could see this to be a consequence of (50)3 and (56) by grouping
the 10 distinct terms in (57) according to whether {fai, fai- fai] contains both f.t and

/5 (3 terms, 'type A'), only one of them (3 "B-terms" and 3 '('-terms') or none of them
(1 term, 'type D'): for the B (resp. C)-terms one can use (56) while (50) for the A-terms.
to get ± {/4, /5, {/1 f2 /3}} for each of the 4 types, and for the B and C-terms with
a sign opposite to the one obtained from the D (and A) term(s). (57) (taken without
the derivation-requirement) is a beautiful generalisation of Lie-algebras (M 2), and has

recently started to attract the attention of mathematicians mostly under the name of
(M - l)-ary Lie algebras [10 - 13]. *

Unfortunately, all identities (50). (55)-(57), can be shown to be rigid, in the following
sense: assuming that

[Ta,,- • ¦
- TaM]x gx ((mi, • ¦ •,%)) Tal+...+aM (58)

with g\(x) a smooth odd function proportional to x + A" cx" as A —> 0 (n > 1) any
of the above identities will require the constant c to be equal to zero (I have proved this

T would like to thank W. Soergel for mentioning refs. [10]/[11] to me and J.L. Loday
for sending me a copy of [10] and [12]; also, I would like to express my gratitude to
R. Chatterjee and L. Takhtajan for sending me their papers on Nambu Mechanics (cp. [5]).
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only for M 3, and in the case of (57) - the a priori most promising case - for general
M >2).

Concerning

gx((a,b,ci)j gx Ua + b + cu c2, c3)j

gx Ua,b,c2)J gx ((a + b + c2,c3,Ci)J

gx ((S,b,c3)J gx((a + b + C3,ci,c2)j

9x ((ci,c2,c3)) gx Uc, + c2 + c3,a, b)j (59)

i.e. the deformation of (50)m=3, one could assume z := (ci,C2,c3) ^ 0, 3 J2i Q,cr

b=J2i ßrCr, such that g(y) := gx(y) := gx(zy) must satisfy

g (a2ß3 - a3ß2) ¦ g (1 + q, + ßx)

+ cyclic permutations

9 (1) ' ff(ö2Ä -a3ß2 A cycl.)

(60)

for all ar,ßr', which is clearly impossible for any nonlinear g of the required form, (e.g.,
as in next to lowest order in A the terms ai(a2 ß3)n>1 appear only once).

Similarly, the deformation of (56) is impossible due to the analogous requirement

9(a3) 9 (ßi - ßi + (ociß2 - a2Ji)) + cycl.

-g(l)g((aiß2 - ct2ßi) + cycl.)

Finally, concerning possible deformations of (57), let (Si, ¦ ¦ ¦, Sm) i1 0, and

(61)

M

0-M+ f E ais] s> (f !- M - 1

/

then g (1 A a\ ' + ho.(A/-1),

1

0 so-sc-»
0

•-¦¦ [1]

e.g., contains (in next to lowest order in A) a term a] ¦ o[ ¦ [1] (of total degree

(M + 1) in the a;), which cannot appear anywhere else (in the same order in A). - in
contradiction to the assumption that (57) should hold for [• ¦ -],\ (cp. (58)) replacing the
curly bracket (4).
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6. A Remark on Generalized Schild Actions
Cc

„0 ,,MS := - / d<p° dMTo f(G) (62)

where G := (-)M det (Ga0), Ga0 := §£ g£ r,»,, nltu diag (1, -1,---,-1
a,ß 0, • • •, M and / some smooth monotonie function like C (7 1 resp. |
corresponding to a generalized Schild-, resp. Nambu-Goto, action for M-branes). Apart from
a few subtleties (like 7 1 allowing for vanishing G, while 7 | does not) actions with

2

different / are equivalent, in the sense that the equations of motion,

da (f'(G)GGaß dßx") =0 p 0---D-1 (63)

are easily seen to imply
daG 0 a 0,---,M (64)

(just multiply (63) by 9(xM and sum) - unless f(G) const. y/G, in which case (62) is

fully reparametrisation invariant and a parametrisation may be assumed in which G
const, (such that (63) becomes proportional to da(Ga(i dßXß) also in this case). Due to

G E KV-'^+'HW',^,} (65)

(63) may be written as (cp. [14] for strings, and [15] for membranes, in the case of 7 1

resp. \)
{f'(G){x",---,x™+>}, xM2,---,.r,lM+1} - 0. (66)

whose deformed analogue (note the similarity between G const, and condition (3.9) of
[16])

[[.r<V",.T"M+1], z«,-",*,M+i] 0 (67)

looks very suggestive when thinking about space-time quantization in M-brane theories.

7. Multidimensional Integrable Systems from
M-algebras

Several ideas used in the context of integrable systems are based on bilinear operations.
Our problems to extend results about low (especially 1 + 1) dimensional integrable field
theories to higher dimensions may well rest on precisely this fact. Already some time
ago, attempts were made to overcome this difficulty by generalizing Lax-pairs to -triples
([3], p. 72) and Hirota's bilinear equations for 'T-functions' [17] to multilinear equations
([3], p. 107-111).

At that time, good examples were lacking, and - not being an exception to the rule that
generalisations involving the number of dimensions (of one sort or an other) are usually
hindered by implicitely low dimensional point(s) of view - the proposed generalisation of
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Hirota-operators may have still been too naive: while hoping to come back to the question
of multidimensional r-functions in the near future. I would now like to give an example
(M > 3 will then be obvious) for an equation of the form

€ -{£. Mu M 2} (68)
P

being equivalent to the equations of motion of a compact 3 dimensional manifold £~J C R4

(described by a time-dependent 4-vector x'(ipl,<p ,<p ,t)), moving in such a way that its
normal velocity is always equal to the induced volume density ^fg (on J~J) devided by a
fixed non-dynamical density p(>p) ('the' volume density of the parameter manifold):

x\ - {x2,x3,x4}
P

x2 -- {x3,x4,xi)
p

x3 - {x4,xi,x2}
p

1

.!'., -- {.1 ,..!¦;..r3} (69)
p

With the curly bracket defined as before (cp. (4)). it will be an immediate consequence
of (68) that

Qn ¦= j d^pMC (70)

E

is time-independent (for any n).
In [2] evolution-equations of the form (69) (in any number of dimensions) were shown

to correspond to the diffeomorphism invariant part of an integrable Hamiltonian field
theory (as well as to a gradient flow); one way to solve such equations is to note ([18].
[2]) that the time at which the hypersurface will pass a point x in space will simply be a
harmonic function.

In any case, the (a) form of (C,M.i,M2) that will yield the equivalence of (69) with
(68) is:

£ (xi+ix2)- + (x3 + ix4)- + p(x3-ix4) - X(xi—ix2)
PX

Mi ^(x3-ix4) - —(x3 + ix4) (71)
2 2p

M2 -(x]-ix2) + — (xi + ix2)

(involving two spectral parameters, A and p). Surely, this observation will have much
more elegant formulations, and conclusions.
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