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Abstract. A comprehensive introduction to the basic formalism of the one-dimensional scattering
by time-periodic short-ranged potentials is presented. The fundamental objects of the theory
(transmission and reflexion probabilities, sidebands and time delays) are defined, and a generalized
Born expansion derived. Particular emphasis is given to the connection between the time-dependent
approach and the quasi-stationary one. In particular, the independence of the scattering process
>f the choice of time-origin, in the limit of a monoenergetic wave packet, is clearly established.

The generalized Born expansion is applied to two archetypical models: the square barrier with
modulated height (the celebrated Büttiker-Landauer model) and the square barrier with oscillating
position. For these two models, the full transmission probability is calculated up to the first non-

vanishing correction in the time-dependent perturbation.

1 Introduction
Roughly speaking, time-dependent potentials arise in physics when a small part of a system
is singled out. and its action on the larger part neglected. If the motion of the larger part
is known, one obtains an approximate description of the small subsystem in terms of an
effective non-consorvative force field. Examples include interaction of electromagnetic waves
with matter, thermal fluctuations, chemical reactions at surfaces, coupling of electrons with

'Permanent address: CH-6921 Vico Morcote, Switzerland. E-mail: time@tinet.ch
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optical phonons and electrons transport in presence of external oscillating voltages [1]-[10].
By now. the general description of scattering by time-dependent potentials is fairly well

understood mathematically [ll]-[20]. However, as far as we know, one cannot find in the
physical literature a sufficiently simple and complete description of the basic formalism for
such systems. The purpose of the first part of the present paper is precisely to fill this gap.
For this, we shall limit ourselves to the case of time-periodic potentials and of a single spatial
dimension.

We give in Section 2 the formulation of the scattering problem for perturbations periodic
in time. The concept of quasi-energy will be explained. Transmission and reflexion
probabilities and sideband intensities will be clearly defined. The notion of stationarity will also
be discussed, showing that if the incoming packet is sharply peaked in energy, the process
becomes insensitive to the choice of time-origin, ln Section 3. we establish the connection
between the time-dependent approach, described in Section 2. and the quasi-stationary one
which deals with the scattering of non-normalizable plane waves. We shall also obtain an
heuristic definition of the relevant time delays involved in the description of the scattering

process. Section 4 is devoted to the derivation of the perturbation expansion for the
scattering matrix, generalizing the usual Born series to the case of time-periodic potentials.

The second part of our work consists of a study of two specific models: the Biittiker-
Landauer model [l]-[6], consisting of a square barrier with time-modulated amplitude, and
the square barrier whose mean position oscillates [5]-[10]. To do this, we shall use the
perturbation expansion we derived in Section 4, to obtain, in Section 5. explicit formulae
for the intensities of the transmitted and reflected sidebands at the leading order in the
perturbation.

More interestingly, we shall obtain explicit expressions for the first non-vanishing
correction to the full transmission probability. This will require second order perturbation
expansion which, we believe, is performed here for the first time for these two models.
The graphical solutions of Section 6 will show that for both models, the full transmission
probability is dominated, in the tunnelling regime, by its first-order-sideband contribution
(provided the barrier is sufficiently opaque). The variation of the transmission probability, as

a function of the modulation frequency, shows resonances corresponding to maximums of the
transmission time delay. These resonances arise approximately at frequencies at which the

energy of the first-order-sideband becomes equal to the resonance energies above the top of
the barrier, in agreement with the numerical study [21]. We conclude our study by presenting
some final comments in Section 7. In particular, the role played by the Büttiker-Landauer
time in the description of the crossover regime will be examined.

2 Formulation of the scattering problem
We consider a quantum mechanical system with Hamiltonian

H(t) H0AV(t), (1)

acting in the Hilbert space H L2(IRd). where d is the spatial dimension (later we shall
set d 1). The first term in the Hamiltonian. H0 p2/2m. is the kinetic energy, with
p the momentum operator and in the mass of the particle. The second term, V(t), is the
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potential energy, which may depend explicitly on time. We shall assume that V(t) is local
and short-range. Local means that it can be written

V(t) fddxv(x,t)\x)(x\, (2)

with v(x.t) a real function of x and t. Short-range means that the function v(x.t) goes to
zero sufficiently rapidly (faster than 1/|t|) as \x\ —> oc. To write (2), we have introduced
the improper eigenvectors q\x) x\x), x G ïïid, of the position operator q, obeying the

completeness and orthogonality relationships / ddx \x)(x\ I and (x\x') 6(x — x'). In the

following, we shall assume for simplicity that v(x.t) is bounded everywhere, with (compact)
support in a ball of radius r.

When one allows the Hamiltonian to become time-dependent, many complications arise.

In general \H(t). H(t')\ ^ 0 for t =£ t', so that the unitary evolution operator U(t, to), solution
of the Schrödinger equation

ih—U(t,to)
dt

H(t)U(t,t0) U(to,to) (3)

is no longer given simply in terms of an exponential e ^^ '°\ as it is the case for a static
Hamiltonian H. but by its Dyson expansion (at least when it converges)

U(t,t0) e-iH°t \i+J2ur{t,to) e s Höh (4)

with

and

r(n)ur>(t,t0) f dU r dt2-- /"""' dtnVl(t1)---Vi(tn.i)Vl(t„
Jt(Z) «/to Jta

V,(t) ei"atV(t)e a Hot

(5)

(6)

Contrary to the static case, the evolution is no more invariant under time translations,
the energy of the system is in general not conserved and, in particular, one has to abandon
the notion of stationary state.

However, this does not mean that one has to renounce scattering theory. Indeed, the

important point for the characterization of scattering states, which leave any bounded region
in configuration space as t —> ±oo. is not that the potential may depends or not explicitly
in time, but that it decreases sufficiently rapidly in space i.e., that it is short-range.

More precisely, let \iZb(tA)) £ H be the pure state describing the system at time to- At time
t the system will be described by the state |^(t)) U(t,to)\il)(t(f)). If the initial condition
|V>(to)). at time to, is of scattering type, then \ip(t)) will behave in the distant future, and has

behaved in the remote past, according to the free evolution. In other terms, there exist free

evolving outgoing and incoming states |^±(t)) e_*Wo(t_to)|^±(t0)). such that the difference

\m) - iv±(*)> u(t,t0)wt0)) -*>-*"<><«-*>v±(t0)> (7)

tends to zero (in the Hilbert space norm) as t —y ±oo.
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Multiplying (7) from the left by U'(t,to), one finds that the asymptotic conditions here-
above are equivalent to the existence (as strong limits) of the wave operators2

n±(t0)= lim c/t(t.to)c-^'""-'<,). (8)
I—*±oc

According to (7) and (8), the scattering state at time t0 is related to the incoming and

outgoing states at time t0, by the equalities

|t/>(to)> ft±(*o)IV±(*o)>- (9)

This yields the correspondence

\p+(t0)) nUto)ttAto)\-p4to)) (io)

between the outgoing and the incoming state, and defines the unitary scattering operator'

S(t0) iìUtoAìAto) (ii)
for the initial condition at time t to.

The main difference between the discussion hereabove and the standard presentation for
time-independent potentials, lies in the fact that the scattering process now depends on the
choice of the initial time to, since the evolution is not invariant under time translations i.e.,

U(t,t0) t U(t + ti,to A ti) if t] / 0. According to (8).(9). the wave operators for different
initial times are related by

n±(t0) u(t0,tl)n±(ti)eA""("'~t>K (12)

which in turn yields for the scattering operators

S(to) e-KWo(to-'l)5(ti)eKHo(-°-tl). (13)

Relations (12) and (13) aro. respectively, the generalization of the usual intertwining property
and of the energy conservation law. This becomes more transparent if one differentiates both
equations with respect to the initial condition t0. yielding (the prime denotes differentiation
with respect to the argument)

iMi'±(t0) H(t0)Ü±(t0) - n±(to)H0 (14)

and

ihS'(t0) [H0,S(to)}. (15)

Clearly, for a static Hamiltonian the left hand sides of (14) and (15) aro zero, and one
recovers the usual form of the commutation properties of wave and scattering operators. In
the following, we shall set il± S2±(0) and 5 S(0).

2 As strong limits of unitary operators, the wave operators are isometries i.e.. n±(fo)$l±(fn) I. However,

in general they are not unitary i.e.. S!±(to)^±('o) ^ F according to the fact that hound-states may exist in
the theory.

3The scattering operator is unitary if the theory is asymptotically complete [20]. Roughly speaking, the
theory is complete if all states in ti are either scattering states or bound states i.e.. if there arc no states
trapped by the interaction, nor states that, although propagating away from any bounded region as t —• ±dc.
do not do it according to the law characterizing free particles [17]. In this paper we are only interested in
time-periodic short-ranged potentials, for which the completeness of the theory has been demonstrated [12].
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2.1 Time-periodic potentials and the law of quasi-energy conser¬
vation

From now on, we shall assume that the time-dependence of the potential is periodic with
period T 2it/uj i.e.. V(f) V(t + T). Then, it is clear from (3)-(6) that U(t + T.T)
U(t,0), so that il±(T) ü±(0) tt± and S(T) 5(0) S. According to (13), it follows
that the scattering operator S commutes with the free evolution over one period:

[5,e-i"oT]=0 (16)

The commutation relation (16) is the precise law of quasi-energy conservation saying that,
while H0 may not be conserved by scattering, the energy can be changed only by discrete
quanta ntiw, n 0, ±1, ±2,... To see this more precisely, we shall limit ourselves to the case
of only one spatial dimension (d 1). We introduce the simultaneous improper eigenvectors
of H0 and p p/\p\.

H0\E.tr) E\E,a), p\E,a)=a\E,a), (17)

with E e [0. oc) and a 6 { — 1,1}. They satisfy the relations of completeness

dE\E.a)(E.a\ I. (18)
CT=±i •"'

and of orthogonality
{E.a\E',a') b(E - Ef)6a<a>, (19)

and have for spatial wave functions the plane waves (hk \j2m.E)

(x\E,a) -r===\f^ AakA (20)

Taking the improper matrix elements of the commutation relation (16). one finds

(E',tT'\[S.r-i"aT}\E,a) (E',o-'\S\E,a) (e-*CT - c~tF'"r) 0. (21)

Equation (21) implies that the kernel (E'.a'\S\E.er) is zero except when e~hET e~*ET
or in other words. E' — E nZh^: with n 0. ±1,±2,... Therefore, writing the energy
E € [0. oc) as the stun E z + nhu, with n > 0 the entire part of E/huj and e e [0, hw)
the quasi-energy (i.e.. the energy modulo Tu;), the equality (21) becomes (we set \e,n,a)
5 + ntui.o))

{e',n',a'\S\e,n,a) (e~ieT - e-^'7") =0. (22)

Hence, since the difference in the brackets is zero only if z A. the kernel in (22) has the
form

(e',n',a'\S\e,n,a) (n',a'\S(e)\n,a)6(e - e'), (23)

showing that the quasi-energy t is conserved during the scattering process.
The operator S(e) is called the scattering matrix or scattering operator on the

quasienergy shell. According to the fact that each quasi-energy state is doubly degenerate (there
are only two angles a ±1 in one dimension), it is natural to divide S(e) into four blocks:
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where T(e) (+|5(e)|+) refers to states coming from the left being finally transmitted.
R(e) (—|S(e)|+) to states coming from the left being finally reflected, and similarly for
f(e) (-|S(e)|-) and îi(e) (+|S(e)|-), but for particles incident from the right.

The unitarity of the scattering operator S induces the unitarity of the scattering matrix
S(e) i.e..

&(e)S(e) I. S(e)&(e) I. (25)

More specifically, using the decomposition (24). the first identity in (25) yields

rt(e)T(e) + R>(e)R(e) I
f1(e)f(e)AR>(e)R(e) I (26)
THs)R(s) + RHe)f(e) 0,

and similarly for the second one. In particular, the first equality in (26) gives

E [\{m\T(e)\r,)\2 + \(m\R(s)\r,)\2}=\. (27)
m>0

for all n > 0.

2.2 Transmission and reflexion probabilities
Transmission probability has an easily visualisable meaning. For a particle coming from the
left, it may be defined as the probability of finding the scattering particle on the right hand
side of the potential as t —> oc. To put the above sentence in the appropriate mathematical
language, we first need to introduce the projection operator

*ft»)» Jb°° dx\x){x\, (28)

onto the set of states localized in the spatial interval [6. oc), and the projection operators

F± f* dE\E,±)(E,±\ |±)(±|, (29)
Jo

onto the set of states with positive (+) and negative —) momentum. Then, the precise
statement that the scattering particle approaches the potential from the left is F+\tp) |y?)

i.e.. that its incoming momentum is positive (to simplify the notation, we have set \p)
\tp-(0)) for the incoming state at time t 0). The transmission probability. VtT(^p). for a

particle coming from the left, with incoming state \{i). may thus be defined by the limit

Ptr(y>) Um {i>(t)\ F[bjoa) m))
^lStp\ Fi*,,») Ie"**»'.!

(Stp\F+\Stp). c«i)

£üm <e-K"»'5v>| F|òi0o) |e-K"°'Sv>)

The second equality in (30) follows from the asymptotic condition (7). The last equality
conforms to the intuition that for large positive times the probability that a free evolving
particle will be found in the interval [b. oc) is the same as the probability that its momentum
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is positive.4 The result is independent of ft. as is clear from the fact that the scattering state
propagates away from any bounded region as t —> oc.

According to quasi-energy conservation (23) and to the decomposition (24). one finds
that (30) reduces to

-Ptr(-f)= E rdetp*n(e){s\T(e)\ny{s\T(e)\m)tpm(e), (31)
\,, Jo

where we have used the completeness and orthogonality relations (18).(19). rewritten into
the form

E ^2[hUde\e,n,a)(e,n,a\ I, (32)

and

(£,n,tj\e',n',o-') b(s - c')<V..'<V„'. (33)

and we have set -f„(e) (e, n. +|^).
Similar considerations lead, of course, to the definition of the reflexion probability for a

particle coming from the left, which is simply obtained by replacing T(e) by R(e) in (31).
In the same way. for a particle coming from the right, one has to use T(e) and R(e) instead
of T(e) and /?(r).

2.3 Stationary process
Since in experiments one does not usually know the exact form of the incoming packet, one

may look for more realistic expressions than (31). for transmission and reflexion probabilities,
which are independent of any of the details of preparation of the particles in the incoming
beam. Indeed, one may think of the incoming beam as constituted of a succession of incoming
wave packets with a small time lag. that are scattered independently.

According to the discussion above, the scattering with a time-dependent potential is

sensitive to the choice of time origin (i.e.. to the choice of the initial condition), since particles
entering the interaction region at different times will not experience the same configuration
of the potential.' More specifically, using (13). one finds that the transmission probability
(31). corresponding to an initial condition at time t 0. transforms to

rhu
Ptr(*,*o)= E ei(m-n)wt0/ detp'n(e)(s\T(e)\nr(s\T(e)\m)tpm(e), (34)

n,m,s>0 J0

if the initial condition is shifted at time t t0 ^ 0.

1From a mathematical point of view, the equality follows from the Dollard decomposition of the free
evolution. We refer the interested reader to [22].

'The evolution operator (/'' (t. to), associated with the time-translated potential V(t + t\). coincides with
the evolution operator U(t + t,.t0 + t\). associated with the potential V(t). since both operators obey the
same differential equation with the same initial condition at t to- Therefore, according to definitions
(8).(II). the scattering operator S1' (fo) for the potential V(t + t,) and with initial condition at time t fo,
is the same as the scattering operator S(tu + t\) for the potential V(t) and with initial condition at time
f to + t\. This is the precise version of the intuitive statement saying that two incoming packets with a

time lag t\ will feel the external potential with a time difference t\. See also the discussion in (23).
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However, for an incoming packet with a small spread in energy, one loses the control on
the time at which the particle is prepared. Therefore, if the energy spread AE is sufficiently
narrow to give a time-dispersion At ~ h/AE.6 larger than the period of the potential, one

expect the transmission and reflexion probabilities to become independent of the choice of
the time of preparation of the particle.

To show that this is indeed the case, one simply has to observe that if the incoming state
has its energy support in an interval AE < Tui. i.e.. it is of the form tpn'(e) 6n,n'9(£), with
g a given function of quasi-energy e 6 [0,/iu;). then (34) reduces to

Vu(p-to) E / de' \(m\T(e')\n)\l \g(e')\2. (35)
mV0

This expression is manifestly independent of the initial condition t0. In other words, the

process becomes stationary for incoming packets with a spread in energy less than Tui, in
the sense that it becomes independent of the choice of time-origin or. equivalently, of the
choice of the time of preparation of the incoming state.

Furthermore, under the additional assumption that the elements of the scattering matrix
S(e) are slowly varying functions of quasi-energy e. and that g(e') is sharply peaked at about
e' e. we have the approximation

VtT(tp,t0) « / ds'\g(s')\2Y2\(»AT(s)\n)\2
J° ,n>0

Y,\(m\T(e)\n)\2 Vtv(E). (36)

where the last equality follows from the fact that the incoming state is normalized to unity,
and we have set E e + nhuj for the incoming energy.

For the reflexion probability, one finds in the same way

VnAf-to) « E IH/?H!"}|2 Pref(F) (37)
m>0

and. as a consequence of unitarity (27). the probability is conserved: Vlr(E) + VTci(E) 1.

In summary, equations (36) and (37) show that, in the limit of initial packets sharply
peaked in energy, the process becomes stationary and transmission and reflexion probabilities
depend only upon the incoming energy i.e.. they are free of any wave packet structure
considerations.

2.4 Sidebands

According to equations (36) and (37) the physical interpretation of the scattering matrix
elements is straightforward: |(n'|T(c)|77)| is the probability that a particle with incoming
kinetic energy E e + nTui, will be finally transmitted with energy E' e + n'haj, and

similarly for the elements of R(e) for the case of reflexion.

6We recall that the proper sense of the time-energy uncertainty relation AEAt ~ h for a free particle
that one is unable to say when it will cross a given point with a precision greater than Af ~ h/AE [24].



Saraga and Sassoli de Bianchi 759

From a physical point of view, it is however more natural to fix the incoming energy E
(instead of the quasi-energy e). and to discuss only in terms of energy transfer. This leads

us to the definition of the so-called intensities for the transmitted sidebands. These are the
probabilities.

V-'(E) \(v + m\T(e)\n)\2 (38)

for an incoming particle of energy E. of being transmitted with a transfer of exactly m

(pianta of energy huj with the external field, m 0. ±1. ±2.... Clearly, a similar definition
holds for the case of reflexion.

The probability of a transfer of m (pianta with the external field, irrespective of the fact
that the particle is ultimately observed as transmitted or reflected, is given by the sum

V'n(E) VZ(E) + Vi:,(E) \(n + m|T(e)|n)|2 + |(n + »i\R(A\»)\2 • (39)

It is worth noting that, by definition, sidebands are zero for m < -n. since there is no
scattering for a particle with negative outgoing energy. The case m lì. which corresponds
to the case of no transfer with the external field, will be referred to as the elastic channel in
the sequel.

2.5 Invariance principles
We conclude this Section by discussing time reversal and parity invariance. For a static
potential, time reversal invariance implies that the transmission amplitudes from the left
and from the right coincide. What happens for a time-periodic potential'.' To find the
answer let us first recall that the time reversal operator T is the anti-unitary operator
obeying T\x) \x) and T\E.a) \E.~a). Since the local potential is real, the total
Hamiltonian commutes with T. Thus, according to Dyson's series (4)-(6). and taking into
account the anti-unitarity of T. one finds that TW(t,to) Un(—t. —tü)T. whore Ur denotes
the evolution operator for the time-reversed potential Vr(/) V(—t). Then, assuming
V(t) V(-t). one has S T'S^T, from which it follows that

(n\T(e)\m) (n\f\e)\m)' (m\f(e)|n) (40)

and

(n\R(e)\m) (n\ft(e)\m)* (m\R(e)\n). (41)

In other words, for time-reversal invariant potentials V(t) V(-t). the probability for a

particle coming from the left with energy s + nh*: to be transmitted (respectively, reflected)
with energy e + mhu:. is the same as the probability for a particle coming from the right with
energy £ + mhuj to be transmitted (respectively, reflected) with energy ; + nh^j (the same
will be true for the associated time-delays, see next Section). Considering equation (13) and
the remark in Footnote 5. one can note that the same conclusion also holds for potentials
which satisfv time reversal invariance only in the limited sense V(t) V(—t + t\), for a given
t..7

7In that case one has. instead of (40).

(n\T(e)\m) {m\t(A\r<A2'("-m)-"'

and similarly for the reflexion amplitudes.
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For rotational (i.e.. parity) invariant potentials v(x.t) v(—x,t), one finds in the same
way that the scattering operator commutes with the unitary parity operator obeying V\x)

| - x) and P\E.cr) \E. -a), implying T(e) f(e) and R(e) R(e).
Finally, if the potential is V and T invariant, then (7?|T(£)|m) (77i|T(c)|n) and

(n\R(z)\m) (m|Ä(e)|n), i.e., scattering amplitudes remain unaffected if one permutes
the incoming with the outgoing energy.

3 Connection with the quasi-stationary approach and
time delays

In this Section we establish the connection between the time-dependent approach, presented
in the previous Section, and the more commonly used quasi-stationary approach, which
describes the scattering of (non-normalizable) plane waves in terms of a system of coupled
stationary Schrödinger equations, called the quasi-stationary Schrödinger equation. This
connection is based on a stationary phase argument which also provide us with a definition
of time delays.

To derive the quasi-stationary Schrödinger equation, we introduce the Fourier series

V(t) YlVne-^'. SL(I) ^!1/-"' (42)
n n

for the potential V(t) and for the wave operator ii_(t). Inserting (42) into (14) and
comparing the Fourier coefficients one finds the operatorial identity

E (6n,sH0 + Vn_s) ns iln (Ho + nhwl). (43)

Formally, wc multiply (43) from the left by (x\. and from the right by \E.o). to obtain the

system of coupled stationary Schrödinger equations

-|^<(£..t) + E Vn-s(xWs{E,x) (E + nhwWn(E,x) (44)

for the kernels k'n(E.x) y/2Tçhyfi£{x\Qn\E,tj). The system (44) is the so-called quasi-
stationary Schrödinger equation.

The solution of (44) corresponding to a plane wave elkx of energy E h k2/2m, incident
from the left (a 1). is distinguished by the boundary conditions (we assume for simplicity
that the potential is of compact support in the interval [—r,r])

r,+ iF T) _ / <Vo ék* + R„(E) e-ik»* x < -r
Vn(E,x)-lTn{E)eiknX T>r (45)

where we have defined hkH J2in(E + riTw). Similarly, for a plane wave e tkT incident
from the right (a —1). wc have the boundary conditions

_,„ / fn(E)e-ik"x x<-r
VAE-:r)=\cSn.oc^ + P,,(E)e>k-r x>r.

(46)
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nTui
The amplitudes T„(E). R,,(E).f„(E) and R,,(E) are uniquely determined by (44)-(46)

Note that in the definition of k„, we chose the branch of y/E + nhu) so that if E
\E + nTui\eut, then y/~E

i\j\Ë
nku yJ\E + nhuj\e'a/2. This means that when E + nhw < 0,

nhoj\. corresponding to exponentially decaying functions as x —> ±oc. thethen kn i^
so-called quasi-bound states.

Relating the above amplitudes to the elements of the scattering matrix gives the
connection between the quasi-stationary approach and the time-dependent one (we shall follow
here essentially the treatment presented in [15]). For this, we assume that the incoming wave
has its energy support iu the interval \nhui. (n +¦ l)Tui). and describes a particle approaching
the potential from the left i.e.. -f"n(e) (e. m.a\f) bnmbn\g(e). with g(e) a sufficiently
smooth function of quasi-energy s 6 [Q.huj). Then, by means of (9).(12).(32).(33) and (42).
the scattering spatial wave function reads

f'(t.x) (x\tp(t)) {x\U(t,0)Sl-\tp)

(x|O.(t)e-RW0» E(a:|^'e~^0V>e~"'u"

1 /"''"",
/ ds.l-—y"wi(e + nTuj.x)e »

7T/7 iu V h*n V
[£+(n+s')M' 9{t

1 f'1-'

=* / "
(k\f~- E en(£ + nTui, .r)e-^^'g(e).

nTi Jo V "K» m

(47)

where t/>s+-„U + nhw,x) y/2irh)f^(x\i}i-n\e. n. +), ht<n ^2m(e + nh^j). and for the
last equality we have made the change of variables ,s s' + n. In the same way. the spatial
wave functions of the free evolving incoming and outgoing states are

t(t.x) (x\e~*
I ftUtt

k"0'\+) -7= de
\J2ith Jo

-e » \t'.+nhu)l-hK,a\ 9(e) (48)

and

(S,p)(t,x) (x\e-iH°tS\tp)
1 rh~-±= / de E E ¦ -(s,<r|S(£)|n,-l-)e s- ~[(e + sftw)(—tinnir] 9(e)

-t^ Tdsj: ^{{s\T(e)\n)e-i^^'-
y/2ith io AA, V «k* l'27^. -v. s>0

+ (.s|i?.(£)|«.)c-il(="+s,'-')'+'"c":r)| S(£). (49)

By the stationary phase argument, -f(t.x) differs appreciably from zero as / —> —oc only
for those values of (t.x) for which the argument of the exponential in (48) is stationary with
respect to energy variations. More precisely, the incoming packet is essentially localized at
time t (t —> —oo) at a point x given by the condition

[(; + nhuj)1 - hK,,x] 0 (50)
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i.e., x ^ffft. showing that the particle was on the far left of the potential in the distant
past.

In the same way. applying the stationary phase argument to the outgoing state (Sp;)(t. x)
for t —> oo, yields the conditions

— [(e + sTkuft - htiax - aig(s\T(e)\n)} 0, s 0,1,2,... (51)

and

— \(e + shw)t + Tmsx - a.Tg(s\R(e)\n)] 0. s 0.1.2 (52)
de

showing that the outgoing wave is split into an infinite number of parts, each of which is

essentially localized at time t (t —> oc) at points

x=^ft_hd_ \
s 0,1,2,... (53)

in \ de

in the right hand side of the potential (transmission contributions), and at points

x=-^(t-h^-arg(s\R(e)\n)\, s 0.1,2.... (54)

in the left hand side of the potential (reflexion contributions).
Next, the asymptotic relations (7) are used to compare the scattering wave (47) with the

incoming (48) and outgoing (49) waves for t —» —oc and t —» oc, respectively. To this end.
it is necessary to study the asymptotic of </;(i. x) as t —> ±oc. By (45). the terms with s < 0

in (47) (the quasi-bound states) do not contribute since they are exponentially decreasing as

x —> ±oc. Again by the stationary phase argument, it is easy to check that only the terms of
the form ^«„c1""3" contribute in the limit t —> —oo of (47). whereas the others contribute only
as t —» oo. Comparing these asymptotic with those obtained hereabove for the incoming
and outgoing states, one finds that they coincide if one sets

Ts.n(e + nTuj) ß± (s\T(e)\n) (55)

and

Ka

R,-„(e + nhw) J— (s\R(e)\n). (56)
V ft*

Relations (55) and (56) establish the proper connection between the amplitudes delivered
by the quasi-stationary approach and the elements of the scattering matrix. Similar relations
hold, with obvious modifications, for the case of a particle incident from the right.

3.1 Time delays

According to the analysis above, if the incoming wave is well peaked in energy, the outgoing
scattering state is a superposition of an infinite number of waves characterized by the free
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velocities vs hnjin. s 0.1.2.... Since the latter are essentially localized at points (53)
for the transmitted parts, and points (54) for the reflected ones, it is natural to interpret

Af_n(e) hj^ig(s\T(e)\n) (57)

and

T%(e) h-aIg(s\R(e)\n) (58)

in (53) and (54) as the time delays experienced by the transmitted and reflected particles
with incoming energy e + nhio and outgoing energy e + sTui.

Transmission and reflexion time delays, irrespective of the outgoing energy, may thus be

defined by the conditional averages (E e + nhui)

rtr(E) ^n E K*!^-)W|2 <n(e) (59)

and

r"!(E) —— E \(s\R(e)\n)\2 r]%(e). (60)
Prv((E) „>0

Finally, the global (i.e.. unconditional) time delay is given by

t(E) VTe{(E)T^(E) + T,AE)Ar(E)

-ih(n,+\&(e)^S(e)\n,+), (61)

where r(e) —ihSi(e)dS(e)/de is the quasi-energy version of the well known Eisenbud-

Wigner time-delay operator [25].

4 Generalization of the Born series

In this Section, we derive the natural generalization of the Born series for the scattering
operator on the quasi-energy shell. We begin by observing that, by means of (8) and (11).

we may write the scattering operator as the (weak) limit of U\(t,t0) ezHatU(t.t0)e~*Hato
for tu —? —oc and t —> oc. Writing Ui(t.t0) as the integral of its derivative, one obtains for
the scattering operator the integral representation

S I -^ f dteiHotV(t)Si-(t)e-*Hot. (62)

Taking the matrix elements of (62) with respect to the improper eigenvectors (17). we find

(e'.s'.a'\S\e.s.a) 6(e' - e)6s>,s6al,a

i j ttiexV-^''-'^^ ,s' ,o'\V(t)Çl-(t)\e,s,o-).

(63)
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Inserting the Fourier representations (42) for V(t) and il-(t) and redefining the simulation
indices, we arrive at the relation

(e',s',a'\S\e,s,c7) - (s',a'\S(e)\s,a) S(e' - e) (64)

with
(s',a'\S(e)\s,a) 5^5^ - 2wi^2(e,s',cr'\Vs,-mnm.s\e,s,a). (65)

According to (65). to determine the perturbation expansion for the elements of the
scattering matrix (i.e.. the Born series), it suffices to determine the perturbation expansion of
f2m_j,|e,S,tr). To do this, our starting point will be the Dyson expansion (4)-(6). which we
rewrite, with the help of (42). as8

oc

Ul(t,t0) I + Y2Uïn)(t,to) (66)

with
UÌn)(t,to) (-J)"!! Jttdti---jytnVt,(ti)---Ve„(tn)e-i"^^t'1' (67)

and

Vt(t) eiHotVee-iHot. (68)

On the other hand, for the wave operator fi_(£), we have (in the strong sense)

«_(<) Inn Ui(tü.t)e-^"a{ia-l)
tu—*-cc

e-*"o< lim U\{t.t0)
to —*¦—oc

ts'"". (69)

Thus, we need to study the Dyson expansion (66)-(68) in the limit to —> —oc. In order
to take this limit without breaking the convergence of the series, we have to introduce an
adiabatic cut off of the interaction i.e.. we have to replace V(t) by estV(t), b > 0. The wave
operator 0_(t.(5). for the potential with cut off. is given by the series9

ft_(t,<5) /+Efi(-n)(M)> (70)A"
n=l

"Notice that each term of the series can be majorized by

ll^(Mo)l|<i(^lEll^ll)'
so that the series is norm-convergent for finite times \t — fol < oo, «md for bounded time-periodic potentials
obeying £m || V„, ||< oo.

9The series is norm-convergent for each c > 0. since we have the bounds

|n(_n)(t,<5)||< i(ëç ¦*•¦)"¦
At the end of the calculation, we shall take the limit fi —» 0. However, the convergence of the series will then
no longer be guaranteed, since these bounds diverge in that limit.
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with

it'](t.ò) (-ff E /' dtij"dt2--f""dtne-i"<*x
ll,.-,ln X °°

x lV(l(ti)---V(Jtn)}ei"0le-'ZU^^. (71)

Making in (71) the change of variables tm 52™-] t'j, m. 1 n, it gives

il{A\t.b) (-ff E f dt'i [°dt'2-- fdt'ne.-*Ha' x
\ II/ r f — OC J — OC -J — 3C

lm=l J

(72)

The integrals in (72) can be evaluated by using the formula (Imz > 0)

f dt'cM""-z)t'= ihRo(z)e^""-z)', (73)
J—OC

where wc have defined the resolvent Ro(z) (z — H0)~K To remove the last exponential,
we apply (72) to an improper eigenvector \e,s,a). Using (73) and the change of variables

¦s'j s + EL.,-0-1) lm- 7 1 n, one finds

n(:i)(t.b)\e.s.ej) en*'En»"-<.(5)le.s.(T)e_i(Sn"s)a" (74)
sn

with

niüUflk. », ^> E n4-: + Hin» + i6)}vSn-Sn_, ¦ ¦ ¦

Si «n-l
¦ ¦¦VK.tlRo[e + h(Sluj + iS)]Vtl.,\e,a,a). (75)

If we let 6 —> 0 in (74) we recover the Fourier series for Î2_ (t)|e, s,a). Setting

G0(E) lim Ro(E + iS), (76)
Ä-.0

we get for iim-s\;.s.ci) the formal series

f2m_s|e,s,<7) 6m,s\e,s,a) + £n^,|e,a,a) (77)
n=i

with

S2,(;;!.s[c. s,a) E GoU~ + mftw)Vm-ft ¦ ¦ ¦

e,, .(„-i
¦ • • Vln_2_ln_,GQ(e + «„_iM^-.-.|e, »,ff>. (78)
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Finally, inserting (78) into (65). we obtain for the elements of S(e) the perturbation expansion

S(e) I + Y2S^(e) (79)
n=l

with

(s',a'\Sin\e)\s,a) -2m E (e.s'.a'\V^(lG{)(-: + /,k)V,,_(i ¦ ¦ ¦

«i f,,-.

¦¦¦GQ(eAtn-ihu)Vtrt^s\e,s,cj). (80)

Equation (80) is the natural generalization of the Born series for a potential periodic in
time. In the special case of a static potential V(}-tJ+, 6fjjj+lV. one recovers the usual
Born expansion as expected. In fact, it is possible to write (79).(80) in a form closer to the
latter, by introducing the matrix notation

V £V»-m |n)(m|, N Y2n\n)(n\ (81)
Tl.lll 11

which allows (80) to be rewritten compactly as

SM(e) -2n,(e\V [G0(s + Nhu)V]n \e). (82)

5 Application to two specific models
In this second part of the paper, we apply the general theory developed in Sections 1-4, to
two basic one-dimensional models: the oscillating amplitude barrier, better known as the
Biittiker-Landauer model, and the oscillating position barrier.

The oscillating amplitude barrier model has played a central role in the recent controversy
over tunnelling times (see also Section 7). and may be seen as a simplistic model for tunnelling
electrons coupled with optical phonons of fixed frequency. In its generalized form, it is

described by the time-periodic potential

v(x,t) i'o(x) +¦ X(t)i'.(x). A (t + — X(t) (83)

consisting of a static potential !»o(.t), locally modulated by a time-periodic perturbation
\(t)i'i(x). The oscillating position barrier, on the other hand, is pertinent to the study of
the a-c Stark effect or in the modeling of chemical reactions at surfaces. It is described by
the potential

v(x,t) =vQ(x-a(t)), a (t + — a(t). (84)

For small modulations \(t) and oscillations a(t). both models can be analyzed with the
help of the perturbation theory for time-periodic potentials. For this, since we no longer take
as the unperturbed Hamiltonian the free Hamiltonian H0 but the total static Hamiltonian
H H0 + Vó. we first need to modify the Born expansion we derived in Section 4.
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Let H(t) H + \V(t) bea time-periodic Hamiltonian. with H H0+\'o time-independent
and W(t) of zero average i.e.. f**/u dt W(t) 0. Writing

I'dt-to) eKHotU(t,t0)e-*Hoto

(,k"»<(,-k>» (eimU(t,t0)e-*Ht'>) e*Ht<>e-*"°t<; (85)

and taking the limits t —» oc and t() —> —oc. one finds that the full scattering operator S for
the scattering system defined by the pair (H(t). Ho), factorizes according to

S 11°+ S n°_, (86)

where Ü" are the wave operators belonging to the pair (H,Hq), and S is the scattering
operator for the system (H(t), H). Clearly, the perturbation expansion of Section 4 holds
for S (at least at a formal level), if one replaces Ho by H throughout. By the chain rule
(86). one thus finds for the transmission amplitudes

(s'\T(e)\s) (s',+\S(e)\s,A)
òsrsT(E) + (s'\Tm(s)\s) + (s'\T(2)(s)\s) + --- (87)

where T(E) is the transmission amplitude, at energy E e + sTuj. for the static potential
io(.r) and

(.s'|r(l,(^)|s) -2iri(s,s',+\n0^Ws,-sÇl(L\e,s,+), (88)

(s'|T(2)(£)|s) -27ri£(e,s', +\n°+i\Vs,.fG(; + tTu>)Wi-sÇi°_ \e,s, +), (89)

with G(e + ITu;) the Green operator for the total Hamiltonian H. Similar equations hold,
of course, for the transmission amplitudes for a particle incident from the right and for the
case of reflexion.10

We are now in a good position to calculate the first non-vanishing corrections to the
transmission and reflexion amplitudes for the two mentioned models. For this, let us
first introduce the relevant quantities pertaining to the unperturbed problem. We write
\lA(E,x) y/2nhJ^(:r\U_\E. ±) for the two linearly independent scattering solutions of
the stationary equation /Zt,'* EV*- with boundary conditions (we assume that i'u(x) is of
compact .support in the interval [—r.r})

+ ,„ / ékx + R(E)e-ikx x< -r,¦ (E,x)=l[T{E)eikz r>r (90)

for the incoming plane wave coming from the left, and

f T(E)e--'kl
\ e-lkT + R(E)e'

' ¦-/¦-¦ '¦- {: ;»'/ ,,,:,.,>..¦ H/ (9i)

l0The following remark is in order. If the unperturbed potential supports a given number N of bound-
states of energy E,. j 1 N, then the Green operator in the second order term (89) diverges for resonant
quasi-energies e such that e + fftuj Ej. for a given j (provided that H"s._f and W't-, are not zero). For
these resonant energies a non trivial interaction arises between the incoming wave and a quasi-bound state
of the time-dependent potential and the perturbation expansion for the scattering amplitudes becomes more
complicated to describe [15]. In this work, we shall restrict ourselves to the case of non-resonant incoming
energies.
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for the one coming from the right, with

/ T(E) R(E) \
b{E) - [ R(E) T(E) j (92)

the associated 2x2 scattering matrix. We denote by Ge(x, y) (x\G(E)\y) the Green function

for the total Hamiltonian H. which can be entirely expressed in terms of the solutions
¦ilA(E.x) by the formula

G,lT u) - m I U'-(E.x)UA(E.y) y > x
UE{x'y) ~ ih2kT(E) \ 1>+(E,x)i>-(E,y) y<x. {M)

5.1 The modulated barrier
We consider the potential (83). letting v0(x) be an arbitrary bounded function with support
in the interval [—r,r\. We assume that ('i(.t) X{-r.r\(x), with X[-t.t](x) the characteristic
function of the interval \—r,r} (X{-r.r](x) 1 for x € \-r.r\ and X[-r,r\(x) 0 otherwise)
and. with no loss of generality, /0 dt X(t) 0.

5.1.1 Sidebands

Inserting the completeness relation f dx\x)(x\ I into (88) and using the fact that
(E, +|ü° |i) (x\ii°_\E. — (time-reversal invariance), one finds for the first order
correction the expression (77 ^ 0)

„„_ SJotR .00, rr ,n ^^2^
A„ m

(s + n\T(s)\s) -2iri\n(E+nh«.\+\n°+iFhr.r]n0_\E.+) + O(\

i,2 Ikk,
f dxtp-(E + nhuj.x)iJj+(E. x) + 0(X2

(94)

where E =- e + sTu;. hk„ J2m(E + nhw), A„ denotes the Fourier coefficient of X(i). and

F[_rr] fr_r dx\x)(x\ is the projection operator onto the set of states localized in the spatial
interval [—r,r\.

If Vo(x) is a square barrier i.e., t'o(:r) ftoX\-r.r](x) (with /to an arbitrary coupling), one
can easily perform the integral (94) since in that case the solutions inside the barrier are
known. However, even for an arbitrary v0(x). it is possible to integrate (94) and to express
the result in terms of the elements of the scattering matrix (92). For this, one observes that
the projection operator Ej_rr] can be written as the (strong) limit

Fr_r,r] I - lim |F[_6,_r) + F(rJ (95)

Substituting (95) into (94), one finds

-27nAnT(i

lim (/ dx+ f dx)i{r(E + nTu;,x)ijA(E.x) + 0(A2)

(s + n\T(e)\s) -2mXnT(E)b(nTui)
Xn m

kk„
(96)
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The first term in (96) is zero since 71 / 0. In the second term, the intervals of integration in
(96) are outside the support of the potential so that one can simply replace </¦"(£ + nhuj.x)
and i/.'+(E.x) by their asymptotic (90).(91) and the integration is straightforward. In the
limit b —> oc. it is not difficult to show that the ^-dependent oscillating terms converge to
the distribution 2it i XnT E)b(nh^). cancelling the first (in any case zero) term in (96). The
final result is the formula (77, ^ 0)

v» + B™«> -h^r^{T(EAnTuJ)e^-^-T(E)e-^^h2y/kk~k„ -k
ei{k"+k)r\T(E + nhuj)R(E)

**> *' \ ,,(k„+k)r
,kn + k

+ T(E)R(E + nTuf] } + ()(X2) (97)

For the case of reflexion from the left, a similar calculation gives

(s + n\R(e)\s) -^-^^-L_ {R{E + „M,«^>- _ R{E)e-^-k)r

+ (t—t) (Mk"+k)rlT(-E + nhw)T(E)
\k-11 + k j

+ R(E + nhw)R(E) - e-2i(*-+*)'-]} + (>(A'2). (98)

5.1.2 Elastic channel

As shown above, the calculation of the first non-vanishing contributions to the amplitudes of
the transmitted and reflected sidebands requires only first-order perturbation expansion. On
the other hand, since by définition the time-average of the perturbation over one period is

zero, to ('aleniate the first non-vanishing correction for the elastic amplitudes (,s|T(j)|.s) and

(.s|i?(c)|s) one has to resort to second order perturbation expansion ((88) is zero if s s',
since W0 0). By (87)-(89). we have for the case of transmission

(s\T(e)\s) T(E) + (s\T^(e)\s) + 0(A3), (99)

where T(E) is the transmission amplitude for the static unperturbed potential at energy
E z + shui, and

(s\T^(z)\s) -27r/ElA7-.-|2(î.s.+|ut{tF[_r.r]G(î + aiLj)Fhv]Sf_\e,8,+)
i

Iff) fr f-tfl E lA<-l JJx J dV 4>~(E, x)G,:+(hA-r- UA'+(E. y).

(100)

where nA(E.x) are the solutions (90).(91). GE+ihu(x,y) is the Green function (93). and
hk y/2mE.

For simplicity, we restrict ourselves to the special case where ('o(t) is a square barrier
i.e., i'o(x) ßoX[-T,r)(x). The solutions iji±(E.x) inside the barrier are then of the form (see

any good book of quantum mechanics)

iiA(E.x) A(E)e±icx + B{E)e*icx, (101)
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where he J2m(E — fio),

'iD(E) "v" ' "" ~v~' ~ iD(E)

„-i(k+c)r „-t(fc-c)r
A(E) ———-k(k + c). B(E)= ._,._, fc(fc-c), (102)

and

0(E) 2(dfeos(2cr) + (e2 + k2)An(2tr). (103)

The transmission and reflexion amplitudes are given by

ro-ür~. ^>=^|^e- (1M)

Inserting (101)-(104) into (100) and using the explicit formula (93) for the Green function,
one is led to a long but straightforward calculation of which the result is

111

(s\T(e)\S) T(E) + Ç M\<kklT{E + ihul)«B) + 0(X>), (105)

where hk/ J2m(E + iTko), and the function Ii(E) is given by the rather involved expression

(for simplicity, we write A for A(E) and A( for A(E + £hui). and similarly for B. Also,

we set Cf J2m(E + tTuj — /to))

h(E)
*

..{4ABAtBtcos2(c + ct)r
(c + ef)2 1

+ (/I2 + ß2) [/l2c2!(r+r')r + ß/V2,(c+c<)r] }

+ - -{4ABAlB(Cos2(c-C()r
(<¦ - dY l

+ (A2 + B2) \A2(e-'2llc~r,)r + Bje2l{c-C')r] }

+ -^-—^ { [(A2 + B2)A(B( + (A2 + B2)AB] cos2cr

- (A2 ¦+ B2)A,B( cos2ctr - AB [A2(e2lc'r + S/V2ic'r]

+ i fVSi"2rr(X2 - B2)AB + ic,r(A2 + B2)(A2 - B2)}

- 2
2 y< [(A2 + B2)(A2 ¦+ B2) +¦ AABA(B(] (106)

Note that the denominators in (106) never vanish since the sum in (105) runs only over I =± 0

as Ao 0 by definition.

5.2 The oscillating position barrier
We consider the potential (84) with r0(:r) fioX[-r.r](x) a square barrier of a given arbitrary
coupling po and /0* dta(t) 0. Then, we have the Taylor expansion (in the sense of



iaraga and Sassoli de Bianchi 771

iistributions)

i'o(x-a(t)) fio X[-r.r](x) - p0a(t)[S(x + r) - 6(x - r)}

+ Po^lè'tx + rì-è'tx-r^+CHa3). (107)

vhere 6'(x) denotes the derivative of the Dirac distribution, defined by

fdx6'(x±r)f(x) -f'(±r). (108)

:or sufficiently smooth functions f(x).

5.2.1 Sidebands

For the first-order correction to the sidebands amplitudes, we need to consider only the
inear approximation for the displaced potential (107). For the case of transmission, we have

[n f 0)

(s + n\T(e)\s) -2mp0On{E + ntwj,+\ü0+\6r - 6-r)Q°.\E,+) +0(a2)
''""" "7 -.fdxip-(E + nhw,x)ip+(E,x){6(x-r) - 6(x + r)] + 0(a2)

Tt2 yfkkn.

:^p--^= \ip-(E + nTu!,r)ip+(E,r) - <ir(E + nTu:.-r)v+(E.-r)}
hl yfkkn

+ ()(a2). (109)

Using the asymptotic forms (90) and (91), we obtain

(s + n|T(e)|*> i^n ™ \T(E + nTu-)eAk"-k> - T(E)e~^'~k)r
n y/kkn l

+ eAk"+k)r [T(E + nhiü)R(E) - T(E)R(E + nhw)} }

+ ()(a2), (110)

where the transmission and reflexion amplitudes in (110) are given by (104). For the case of
reflexion, a similar calculation yields

(s + n\R(e)\s) 7/t0"n " {/?(£ + r^V**""^ + /?(E)e"^-*>r
n y/kkn l

,i(fcn + k)r T(E + nhw)T(E) - R(E + nhw)R(E) - r'2'^^r] }

+ ()(a2). (Ill)

5.2.2 Elastic channel

As for the case of the modulated barrier, to calculate the first non vanishing correction to
the elastic channel one has to resort to a second order perturbation expansion. Using (107)
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and the definition (108) for the derivative of the Dirac distribution, one finds after a long
but straightforward calculation (we consider here only the case of transmission)

(s\T(e)\s) T(E) - E M2^ ME) + O(o?), (112)

where the function ,J,(E) is given by (we set B R(E). R, R(E + thuj). and same for the
transmission amplitude)

./((E) e2l{k+k')r [2TRR, -T,(T2 + R2)

+ 2e2lkrTR +¦ 2e2lk"' TR, - RT,

- e-2l(k-kt)TT,+2T. (113)

6 Graphical solutions
We present in this Section, for the modulated and oscillating position barriers, some graphs
of transmission probabilities, sidebands and time delays, as a function of the frequency w of
the external field. We consider only the case of an incoming energy in the tunnelling regime
i.e.. E < po. and of cosinusoidaJ time-dependences A(t) /Jicoswt and ei(t) Öcoswt.
According to (87)-(89). to the leading order in the perturbation the transmission probability
(36) can be written as the sum of three channels

VU(E) Vl(E) + Vl(E) + P~](E) + • • ¦. (114)

where V"T'(E) are the sidebands intensities defined in (38).
More specifically, we shall consider the following model parameters: E 5. /to 8.

r 2. /t, 1. d 1/8. m 1/2 and Ti 1.

6.1 The modulated barrier
In Figure 1. we have plotted the transmission probability (114), calculated according to
formulae (97) and (105). and the associated time-delay (59). The dashed vertical line gives
the inverse of the Biittiker-Landauer "traversal" time Tbl 2mr/h\e\ [2], and the full vertical
lines the frequencies at which E + Tui corresponds to an energy-resonance of the static
unperturbed barrier. The figure shows that, as the modulation frequency increases from
the adiabatic (aj 0) to the high frequency regime, the transmission probability increases

drastically to reach resonances corresponding to maximums of the transmission time-delay.
The resonances correspond rather well to the condition for the coincidence of the sideband
energies E + Tu; with the resonance energies of the unperturbed static barrier. On the other
hand, at the Biittiker-Landauer frequency wbl VTm. there is apparently no particular sign
of crossover (we shall come back to this point in the next Section). Notice that time-delay
(curve B) has been scaled by a factor of 10"2 in the graph.
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Figure 1: Transmission probability V,,(E) (full line A) and transmission time delay A'(E) (dashed line B).
as a function of frequency u;. Time delay is scaled by a factor 10-'2. The vertical dotted line corresponds to

win. 1/rui.. The other full vertical lines correspond to frequencies such that E + hu is equal to a resonance

energy of the static transmission probability.
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Figure 2: Absorption, emission and elastic contributions to the total transmission probability. Curve (C)

corresponds to V,r(E) (transmission with absorption of one quanta 7iu/). curve (D) corresponds to Vf, (E)
(transmission with emission of one quanta hu). and curve (E) corresponds to the transmission probability
V?r(E) with no transfer of energy of the particle to the field (elastic channel). The emission and elastic
contributions are scaled by factors of 10' and 10. respectively.
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In Figure 2, the three different contributions (111) to the full transmission probability
arc plotted separately. The Figure shows that the process is dominated by the absorption
channel, corresponding lo a transfer of one quanta of energy h^u from the external field to
the particle. For questions of clarity, the emission and elastic probabilities have been scaled

m the graph by factors of 101 and 10. respectively. Note that the emission probability is

identically /ero for Tu > E. since there is no contribution to the scattering for outgoing
negative energies (corresponding to the quasi-bound exponentially decaying states described
in Section 3).

6.2 The oscillating position barrier
Figures 3 and 4 are the same as Figures 1 and 2. but for the case of the oscillating position
barrier. It is worth noting that curves in Figures 3 and 4 are very similar (at least qualitatively)

to curves in Figures 1 and 2. so that the same remarks hold. This also shows that the
two models, even though very different from the classical point of view [5]. show similarities
at the quantum level
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; \ f
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15 ft

--''

Figure 3: Transmission probability P,,{E) (full line A) and transmission time delay A'(E) (dashed line B).
as a function of frequency w. Time delay is scaled by a factor of If)-2. The vertical dotted line corresponds

to u/m. 1/riu.. The other full vertical lines correspond to frequencies such that E + tiw is equal to an

energy-resonance of the static transmission probability.
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Figure 4: Absorption, emission and elastic contributions to the total transmission probability. Curve (C)

corresponds to P,r(E) (transmission with absorption of one quanta hu;). curve (D) corresponds to P,~'(E)
(transmission with emission of one quanta hui), and curve (E) corresponds to the transmission probability
V"r(E) with no transfer of energy of the particle to the field (elastic channel). The emission and elastic

contributions are scaled by factors of 105 and 10. respectively.

7 Concluding remarks
In the first part of the paper, we have described the basic formalism and concepts of the one-
dimensional scattering problem by time-periodic perturbations. Although the description of
the formalism is far from being complete (scattering from time-dependent potentials is a

very rich subject, both from the mathematical and from the physical point of view, which is

still under intense investigation), we have given a simple and self-contained presentation of
the problem. Since such a presentation is hardly found in the literature, we hope that this
work will also serve as a useful didactical purpose.

A generalization of the Eisenbud-Wigner time-delay formula was derived in Section 3.

by a stationary phase argument. The same formula can also be obtained using the more
transparent concept of sojourn time [25]. For this, and similarly to the case of N-body
scattering [26]. one needs to define a free reference time which is symmetric with respect
to the incoming and outgoing asymptotic states. We plan to come back to this problem in
future work.

A generalization of the Born series was presented in Section 4. Although the series was
derived in the one-dimensional context, it is straightforward to check that the final result
(79).(82) will also hold for an arbitrary number of dimensions.

The Born series was applied in Section 5 to two specific models (the barrier of modulated



776 Saraga and Sassoli de Bianchi

height and the barrier with oscillating position), and in Section 6 a graphical discussion of the
obtained perturbation formulae was presented for the case of transmission in the tunnelling
regime. The case of an incoming energy which is above the barrier and the case of reflexion
have not been discussed, in order to not increase dramatically the length of the paper. Also.
we have not discussed the complementary case of perturbation of a transparent barrier i.e..

a barrier having a (static) transmission probability which is close to one. In that case, one
finds that, contrary to the case of the opaque barrier, the process is essentially dominated
by its elastic channel contribution.

To conclude, let us spend a few words on the recent controversy over tunnelling times,
where the intriguing results of Biittiker and Landauer have played a central role [2]. The
original proposition of these authors was as follows: if the period T 2ir/u> of the external

modulation is long compared to the time during which the particle interacts with the
barrier, then the particle sees an effective static barrier during its traversal. On the other
hand, at modulation frequencies high compared to the reciprocal traversal time, the particle
sees many cycles of the oscillation and can emit or absorb modulation (pianta (in particular,
by absorbing quanta it will tunnel more easily through the barrier). As the modulation
frequency is varied, there is a crossover frequency wrl between these two different regimes, and
the inverse of this frequency gives the traversal time of the particle (or at least a magnitude
of it). In [2], the time trl 2mr/h\c\ was found for the case of the opaque rectangular
barrier.

The above reasoning assumes implicitly the existence in quantum mechanics of a concept
of traversal time, and the existence of a crossover frequency. Concerning the first assumption,
it has now been noted by many authors (see [27]-[28l, and the references cited therein) that
contrary to the case of classical mechanics, a traversal time cannot be uniquely defined in

quantum mechanics, because of the uncertainty principle (at least, not within the standard
theory of measurement Conversely, it can also be argued that the time proposed by Biittiker
and Landauer should be referred to as an interaction time, in the sense that it estimates the
time of interaction of the particle with the additional dynamical degree of freedom of the
barrier. In this way. one avoids the controversy over interpretation, and simply asks if there
is a characteristic frequency separating the pure adiabatic regime with the regime where
inelastic effects start to become relevant in the scattering process.

According to Figures 1 and 3. the Biittiker-Landauer frequency wrl is apparently
unrelated to any particular crossover regime, the only critical frequency emerging from the
Figures being the one for which the energy E + hui of the first sideband becomes equal to the
first resonance energy of the static barrier (this was the conclusion of the numerical study
[21]). However, in Figure 5. we have plotted the transmission probabilities of Figures 1 and
3, magnifying the adiabatic region going from w 0 to li 5. These curves show that
the Biittiker-landauer frequency does indeed correctly estimate the critical region where the
transmission probability starts to deviate from its adiabatic (static) limit, in the sense that
it correctly separates the pure adiabatic regime with the regime where inelastic effects start
to become relevant in the scattering process.
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figure 5: Total transmission probability for the modulated barrier (up curve) and for the oscillating position
larrier (down curve), as a function of frequency ui. The vertical dotted line corresponds to ujbl 1/nsL-
The full vertical line corresponds to the frequency such that E + hui is equal to the first resonance energy of
lie statu transmission probability.
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