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Pleinlaan 2, B-1050 Brussels, Belgium
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Abstract It is sometimes stated that Gleason's theorem prevents the construction of hidden-
variable models for quantum entities described in a more than two-dimensional Hilbert space. In
this paper however we explicitly construct a classical (macroscopic) system that can be represented
in a three-dimensional real Hilbert space, the probability structure appearing as the result of a
lack of knowledge about the measurement context. We briefly discuss Gleason's theorem from
this point of view.

1 Introduction

Even after more than 60 years there remain many problems on the 'understanding' of
quantum mechanics. From the early days, a main concern of the majority of physicists
reflecting on the foundations of the theory was the question of understanding the nature
of the quantum probability. At the other hand, it was no problem to understand the

appearance of probability in classical theories, since we all agree that it finds its origin in a
lack of knowledge about a deeper deterministic reality. The archetypic example is found in
thermodynamics, where the probabilities associated with macroscopic observables such as

pressure, volume, temperature, energy and entropy are due to the fact that the 'real' state
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of the entity is characterized deterministically by all the microscopic variables of positions
and momenta of the constituting entities, the probabilities describing our lack of knowledge
about the microscopic state of the entity. The variables of momenta and positions of the
individual entities can be considered as 'hidden variables', present in the underlying reality.
This example can stand for many of the attempts that have been undertaken to explain
the notion of quantum probability, and the underlying theories are called 'hidden variable'
theories. In general, for a hidden variable theory, one aims at constructing a theory of an
underlying deterministic reality, in such a way that the quantum observables appear as
observables that do not reach this underlying 'hidden' reality and the quantum probabilities
find their origin in a lack of knowledge about this underlying reality. Von Neumann [1]

gave a first impossibility proof for hidden variable theories for quantum mechanics. It
was remarked by Bell [2] that in the proof of this No-Go theorem, Von Neumann had
made an assumption that was not necessarily justified, and Bell explicitly constructed a
hidden variable model for the spin of a spin-| quantum particle. Bell also criticizes the
impossibility proof of Gleason [3J, and he correctly points out the danger of demanding
extra 'mathematical' assumptions without an exact knowledge of their physical meaning.
Very specific attention was paid to this danger in the study of Kochen and Specker [4],
and their impossibility proof is often considered as closing the debate. We can state
that each of these impossibility proofs consists in showing that a hidden variable theory
(under certain assumptions) gives rise to a certain mathematical structure for the set of
observables of the physical system under consideration, while the set of observables of a
quantum system does not have this mathematical structure. Therefore it is impossible to
replace quantum mechanics by a hidden variable theory (satisfying the assumptions). To
be more specific, if one works in the category of observables, then a hidden variable theory
(under the given assumptions) gives rise to a commutative algebraic structure for the set
of observables, while the set of observables of a quantum system is non-commutative.
If one works in the category of properties (yes-no observables) then a hidden variable
theory (satisfying the assumptions) has always a Boolean lattice structure for the set of
properties while the lattice of properties of a quantum system is not Boolean. If one
works in the category of probability models, then a hidden variable theory (satisfying
the assumptions) has always a Kolmogorovian probability model for the set of properties
while the quantum probability model is not Kolmogorovian. However, the assumptions
made in these proofs are too restrictive: they only apply to 'hidden variable' theories
of the state of the entity. From a physical point of view, it is possible to imagine that
not only the quantum system can have a deeper underlying reality, but also the physical
measurement process for each particular measurement. If this is true, then the physical
origin of the quantum probabilities could be connected with a lack of knowledge about a

deeper underlying reality of the measurement process. In [5,6,7] this idea was explored and
it has been shown that such a lack of knowledge gives indeed rise to a quantum structure.
This uncertainty about the interaction between the measurement device and the physical
entity can be eliminated by introducing hidden variables that describe the fluctuations
in the measurement context. However, they are not state hidden variables, they rather
describe an underlying reality for each measurement process, and therefore they have
been called 'hidden measurements', and the corresponding theories 'hidden measurement
theories'. In [5,6,7] it is shown that a hidden measurement model can be constructed
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for any arbitrary quantum mechanical system of finite dimension, and the possibility of
constructing a hidden measurement model for an infinite dimensional quantum system
can be found in [8,10]. Although the models presented in these papers illustrate our
point about the possibility of explaining the quantum probabilities in this way, there is

always the possibility to construct more concrete macroscopic models, only dealing with
real macroscopic entities and real interactions between the measurement device and the
entities, that give rise to quantum mechanical structures. One of the authors introduced
such a real macroscopic model for the spin of a spin-5 quantum entity. When he presents
this spin model for an audience, it was often raised that this kind of realistic macroscopic
model can only be built for the case of a two-dimensional Hilbert space quantum entity,
because of the theorem of Gleason and the results of Kochen and Specker. Gleason's
theorem is only valid for a Hilbert space with more than two dimensions and hence not for
the two-dimensional complex Hilbert space that is used in quantum mechanics to describe
the spin of a spin-A quantum entity. In the paper of Kochen and Specker also a spin model
for the spin of a spin-^ quantum entity is constructed, and a real macroscopic realization
of this spin model is proposed. They point out on different occasions that such a real
model can only be constructed for a quantum entity with a Hilbert space of dimension not
larger than two. The aim of this paper is to clarify this dimensional problem. Therefore
we shall construct a real macroscopic physical entity and measurements on this entity that
give rise to a quantum mechanical model for the case of a three-dimensional real Hilbert
space, a situation where Gleason's theorem is already fully applicable. We remark that
one of the authors [9] presented a model for a spin-1 quantum entity that allows in a
rather straightforward way a hidden measurement representation. Nevertheless, since he

only considered a set of coherent spin-1 states (i.e., a set of states that spans a three-
dimensional Hilbert space, but that does not fill it) his model can not be considered as a

satisfactory counter argument against the No-Go theorems. In section 2 we briefly give
the two-dimensional examples of Aerts and Kochen-Specker and analyze their differences.
In section 3 we construct a hidden measurement model with a mathematical structure for
its set of states and observables that can be represented in a three-dimensional real Hilbert
space.

2 The two 2-dimensional models

The physical entity that we consider is a point particle P that can move on the surface
of the unit sphere S2. Every unit vector v represents a state pv of the entity. For every
point u of S2 we define a measurement eu as follows: a rubber string between u and its
antipodal point —u catches the particle P that falls orthogonally and sticks to it. Next,
the string breaks somewhere with a uniform probability density and the particle P moves
to one of the points u or — u, depending on the part of the elastic it was attached to. If
it arrives in u we will give the outcome o" to the experiment, in the other case we will
say that the outcome oîf has occurred. After the measurement the entity will be in a new
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state: pu in the case of outcome o" and p_u in the other case. Taking into account that
the elastic breaks uniformly, it is easy to calculate the probabilities for the two results:

u|
1 + cosö 2 e

P{oi\Pv)
2

cos
2

^/ „, ^
1 — COSO O 6

P(°$\Pv) -2
=sin2-

with coso u¦ v. We have the same results for the probabilities associated with the spin
measurement of a quantum entity of spin-ì, so we can describe our macroscopic example
by the ordinary quantum formalism where the set of states is given by the points of a two-
dimensional complex Hilbert space. Clearly, wc can also interpret this macroscopic example
as a hidden variable model of the spin measurement of a quantum entity of spin-i. Indeed,
if the point A where the string disintegrates is known, the measurement outcome is certain.
The probabilities in this model appear because of our lack of knowledge of the precise
interaction between the entity and the measurement device. Every spin measurement eu

can be considered as a class of classical spin measurements e£ with determined outcomes,
and the probabilities are the result of an averaging process. In this example it is clear that
the hidden variable A is not a variable of the entity under study. In fact, it is a variable
belonging to the measurement process as a whole.

In Kochen and Specker's model, a point P on a sphere represents the quantum state of the
spin-^ entity. However, at the same time the entity is in a hidden state which is represented
by another point Tp of Sp, the upper half sphere with P as its north pole, determined in
the following way. A disk D of the same radius as the sphere is placed perpendicular to
the line OP which connects P with the center O of the sphere and centred directly above
P. A particle is placed on the disk that is now shaken "randomly", i.e., in such a way that
the probability that the particle will end up in a region U of the disk is proportional to the
area of U. The point Tp is then the orthogonal projection of the particle. The probability
density function p(Tp) is

,m J-cosö o<e< %

where 6 is the angle between Tp and P. If a measurement is made in the direction OQ the
outcome "spin up" will be found in the case that Tp G Sq and "spin down" otherwise. As

a result of the measurement the new state of the entity will be Q in case of spin up and — Q
otherwise. The new hidden state Tq is now determined as before, the disk being placed at
Q if the new state is Q and at — Q otherwise. It can be shown that the same probabilities
as for the quantum spin-A entity occur. It is important to remark that the hidden variable
here pertains to the entity under study, as was made clear by using the expression "hidden
state". But is this really the case? As we look closer we see that for every consecutive spin
measurement to reveal the correct probabilities, we need each time a randomisation of the
hidden state T. Thus every time a measurement occurs the hidden variable has to be reset
again. In practice this means that for every measurement a new value of the variable will
be needed. Thus we can make the philosophical important step to remove this "hidden
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state" from the entity and absorb it within the context of the measurement itself. Once
.his is done, the analogy with Aerts' model is obvious. But it is also clear that a new idea

las been introduced, namely the shift of the hidden variable from the entity towards the
measurement process. This is not only a new feature for a hidden variable theory, but also

i natural way out of the traps of the No-Go theorems.

3 The 3-dimensional model

In this section we introduce a mechanistic macroscopic physical entity with a three-
dimensional Hilbert space quantum description. Probably there exist models that are
much more elegant than the one we propose, because the explicit realization would be

rather non-trivial, but for our purposes it is sufficient to prove that there exists at least

jne. Once again we remark that the system that we present is not a representation of a

quantum mechanical entity, but a macroscopic physical entity that gives rise to the same
probability structure as one encounters in quantum mechanics. First we propose the model
md, for reasons of readability, we present a geometrical equivalent in R In this way we
can easily prove the equivalence between the model and the quantum mechanical case. In
section 3.3 we shall study the probability structure of the model.

3.1 The practical realization

The entity S that we consider is a rod of length 2 which is fixed in its center point c,
both sides of which have to be identified. The set of states of the entity, i.e. the set of
rays in Euclidean 3-space, possibly characterized by one of the two end points of the rod
(denoted by xp), will be denoted by E5. The measurement apparatus consists of three
mutual orthogonal rods, parallel with rays x\,xl,xl, fixed in 3-space. The entity and the
measurement device are coupled for a measurement in the following way (Fig. 1):

• Connection in x\: for each measurement axis, an interaction rod floats in a slider which
is fixed orthogonal to the rod of the measurement apparatus.

• Connection in xp: the three interaction-rods are fixed to one slider, which floats on the
"entity-rod".

• We also fix three rubber strings between the entity-rod and the three rods of the
measurement apparatus.

The last ingredient that takes part in the interaction is something we call a "random gun".
This is a gun, fixed on a slider that floats on and turns around the entity-rod in such a

way that:

• The gun is shooting in a direction orthogonal to the entity-rod.
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• The movement and the frequency of shooting are at random but such that the probability
of shooting a bullet in a certain direction, and from a certain point of the entity-rod is

uniformly distributed, i.e., the gun distributes the bullets uniformly in all directions and
from all the points of the rod. If a bullet hits one of the connections, both the rod and
string break, such that the entity can start moving, and it is clear that the two non-broken
strings will tear the entity into the plane of the measurement-rods to which it is still
connected.

xc Xp

X

Fig. 1 : Practical realization of the model. With rods, sliders, strings and a "random gun"
we construct a device with a mathematical structure equivalent to the one for a quantum
entity with a three-dimensional real Hilbert state space.

3.2 A geometrical equivalent of the model

To facilitate the calculation of the probabilities we will describe what happens during the
measurement from a geometrical point of view. We know that a state p of the entity is

characterized by the angles 61,82,63 between the rod and an arbitrary selected set of three
orthonormal axes in Euclidean 3-space E3. It is clear that this set of states corresponds
in a one-to-one way with the states of an entity described in a three-dimensional rea!

Hilbert space. The set of measurements to be performed on this entity S is characterized
as follows. Let xl,x2,î~l be the three mutually orthogonal rays coinciding with the rods
of the measurement apparatus. Therefore, for a given state p, and a given experiment e.

we take the three angles 61,62,83 as representative parameters to characterize the state
relative to the measurement apparatus. We denote by x\, x2, x^, the orthogonal projections
of Xp on the three rays x\,x2e,x\, forming a set of points representative for the couple (p, e)

(Fig. 2).
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r- Xp

/x
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¦'ig. 2 : The states of the classical mechanistic entity, a rod in Euclidean 3-space, repre-
ented by ip, one of the two end points of the rod. Thus, the different states p of the entity
Lre represented by the angles 8-1,0-2,63 between the rod and three mutually orthogonal rays
~\,x\Al representative for a measurement e. x\,x\,x\, the orthogonal projections of ip on
he three rays are thus representative for the couple (p,e).

The geometrical description of the measurement process goes as follows:

Every point x%e is connected with xp by a segment denoted by [Xg,xp] with length sin^.
Therefore the length of the projection of [x*, xp] on the rod is sin 8i (Fig. 3).

sme
Xp

\=;

^J

Mg. 3 : The first step of the measurement. Every point x< is connected with xp by a

segment denoted by [ij,ip]. The length of the projection of [xl,xp] on the rod is sin20i.
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ii) Next, one of the connections [xj,,xp] breaks with a probability proportional to the
length of the projection of [x^, xp] on the rod (in Fig. 4 and Fig. 5 we suppose that [x], xp]
breaks). The rod rotates into the plane of the two remaining points x\,x\, to which it is
still connected, and such that the point x'p, the projection of xp on the x^x£-plane, lies on
the rod. As a consequence, the connections [xj,xp] and [x£,xp] are still orthogonal to the
corresponding axes xJe and xk.

,Xp
\/1 \// \/1 \Ò,/ \/ \/ \\ V2
cose, x« Xe

V////
[Xp

Fig. 4 : The second step of the measurement. One of the connections, e.g. [xj,xp], breaks
with probability proportional to the length of the projection of \x\,xp\ on the rod. The rod
rotates into the plane of the two points x\,x\ in such a way that the connections [xl,x'p] and

[xl,x'p] are still orthogonal to the corresponding axes xl and xl.

iii) We proceed with this new, two-dimensional situation characterized by {x',x{,xk} as

before, denoting the angle between xp andx^ as d'y One of the segments, [x^.Xp] or [x£,xp],
seizes to exist, again with a probability proportional to the length of the projection of this
segment on the rod, equal to sino,, sin2 #'. Finally, the rod rotates towards and stabilizes
at the third ray, to which it is still connected.

cosöiSinöi
=*

^Cr-- h

fj>
b/

Xp

Fig. 5 : We proceed with {x'p,xl,x\} as we did with {xp,x\,xl,x\). One of the two existing
connections breaks with probability proportional to the length of the projection of the
corresponding segment on the rod.
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The global process can thus be seen as a measurement e, with three possible outcomes
r\, o\, o\ on an entity 5 in a state p.

Î.3 The probability structure of the model

\fter this geometrical presentation of our model it becomes very easy to calculate the prob-
ibility to obtain an outcome ok, equivalent with neither obtaining oe nor cPe, so with the
creaking of these two connections. Suppose that first \x\, xp\ breaks and then [x{, x'A. Since
:os2 0,+cos2 f5j-r-cos2 dk 1 we have sin2 ö^+sin2 6j+sm2 dk 2 and (sin2 6,)/2 is the prob-
ibility for the breaking of [xle, xp}. In the same way sin2 Ö' + sin2 8'k 1 and sin2 f?' is the
conditional probability for the breaking of [x^,x_] supposing" that the connection between

c" and the rod broke first. This yields \ sin2 8,. sin2 8'3 \ sin2 8t. cos2 8'k \ sin2 8,.(^±)2
| cos2 Ok for the requested probability. Analogously, we find the same result for the

probability that first [xe,xp] and then [xe,xp] breaks.

Therefore we find:
P(0^|p) cos2t9fc

.vhere 6k is the angle between xp and xk, the eigenstate with eigen-outcome ok of the
neasurement e on the entity S.

Mow we are able to compare the probability structure associated with our model with the
Due encountered in quantum mechanics. For a three-dimensional real Hilbert space 7Ì3

ive can introduce a self-adjoint operator He with {x\,x2e.x3} a set of mutual orthogonal
iigen-rays and {oxe,o2.o3} the corresponding eigenvalues (some of them may be equal), as

Ht. 2^i=i °\ LA,, where FA, is the projector on the ray x'e. Therefore, we have for every

r>\, eigen-outcome of a measurement e and associated with an eigenstate represented by a

-ay Xg. and for every state p of the system, represented by a ray xp:

P(o\\p) | < x\\ x„ > |2 cos20,

»vhere 6, is the angle between the rays x), and xp. It is therefore clear that the entity in
mr model corresponds in a one-to-one way with a quantum entity described in a three-
limensional real Hilbert space.

4 Discussion

In this paper we have presented a macroscopic device with a quantum-like probability
structure and state space. Since one can interpret this model as a hidden variable description

for a quantum entity, we can analyse the relationship with Gleason's theorem, which
implies the existence of a unique probability measure for a physical entity if its state space
is a more than two-dimensional separable Hilbert space Tt and if this probability measure
satisfies some reasonably looking a priori assumptions. For pure states Gleason's theorem
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takes the following form: if p : C(ri) -> [0,1] is a (generalized) probability measure, there
exists a unit vector ip € ri such that V P e C(H) : p(P) < ip \ Pip >, with C(ri) the
lattice of closed subspaces of the Hilbert space. In our case it asserts that the probability
to obtain e.g. o\ necessarily takes the form that was given above in this paper. Therefore
it is implicit in the assumptions of the theorem that the probabilities only depend on the
initial and final state of the entity. However, referring to our model we see that it is easy
to invent other probability measures that actually do depend on the intermediate states
of the entity and therefore do not satisfy the assumptions of Gleason's theorem. For
instance, one can imagine that the random gun is absent and the interaction rods break with
a uniform probability density, resulting in the first probability being proportional to sino;
instead of sin2 6,. Since the hidden measurement approach is obviously a contextual theory
that keeps the Hilbert space framework for its state space, but situates the origin of the

quantum probability in the measurement environment, there is no need for the existence of

dispersion-free probability measures on C(H) as in the conventional non-contextual state
hidden variable theories.
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