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2Marsden-Ratiu Reduction and W3 Algebra

By I. Mukhopadhyay and A. Roy Chowdhury

High Energy Physics Division
Department of Physics
Jadavpur University
Calcutta -700 032, India

(27.1.1997)

Abstract The W2 algebra is deduced by the Marsden-Ratiu reduction in the bi-Hamiltonian framework

proposed by Magri et al and compared with the usual derivations via the Drinfcld-Sokolov
formalism. It is observed that the choice of A in the first Poisson tensor must be different for W-2

algebra.

1. Introduction

It has been known since a long time that the KdV equation Ut UIXX + 6UUX can
be written as a Hamiltonian system with respect to two different Poisson structures'1'.
This property leads to a sequence of commuting Hamiltonians which can be constructed
through recursion. The second hamiltonian structure in this hierarchy coincides with the
canonical Lie-Poisson structure on the dual of Virasoro algebra'2'. On the other hand,
in a fundamental paper, Drinfeld-Sokolov'3'presented a procedure to associate generalised
KdV-type equations with any Kac-Moody algebra, which also enjoy the property of being
bi-Hamiltonian. The Drinfeld-Sokolov reduction is essentially algebraic, a fundamental
role being played by the idea of gauge invariance. On the other hand in the formulation of
Magri et al'4', a different explanation of the Hamiltonian reduction and the generation of
Virasoro algebra was given using a geometrical reduction process, viz. the Marsden-Ratiu
procedure. In the present paper, we utilise the idea of Marsden-Ratiu reduction and the
theory of bi-Hamiltonian manifold to deduce classical W2algebra, which is associated with
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the generalised DS hierarchies. We also study the co-adjoint invariance of the structure of
W2.

This paper is organized as follows. In section (2) we briefly review the Marsden-Ratiu
reduction'5'scheme and the associated bi-Hamiltonian manifold and then apply it to derive
the W2. In this context we have observed that some generalization of the formalism of ref
(6) is needed for the W^case. In section (3) the co-adjoint invariance is discussed.

2. Formulation

Recall that, according to classical mechanics an integrable system is a dynamical system
on a symplectic manifold M which admits a complete set of constants of motion in
involution. These constants are usually constructed by means of a group of symmetry G'

acting symplectically on the phase space. As a first step towards developing the idea of
bi-Hamiltonian manifold, we replace G by a "Poisson-action of the algebra of observables

on M defined by the second Poisson structure. Manifolds endowed with a pair of
"compatible Poisson brackets Fo and Pi, are called bi-Hamiltonian manifolds, such that one of
them selects the Hamiltonians and the other selects the vector fields'7'.

The Marsden-Ratiu reduction scheme considers a submanifold S of M, a foliation E
of S and the quotient space N S/E. The foliation E is defined by the intersection
with 5 of a distribution D in M, defined only at the points of S. The submanifold S is

a symplectic leaf of the first Poisson tensor Fo. The distribution D is the image of the
kernel of Fo with respect to Pi. We then have the following general result:

The quotient space N S/E is a bi-Hamiltonian manifold. On N there exists a

unique Poisson {, }^ such that

{f,g}xNo7t {F,G}i,oi

for any pair of functions F and G which extend the functions / and g of N into M, and are
constant on D. Here 7r stands for the projection 7r : S \-ï N and i denotes the inclusion.
This means that the function F satisfies the conditions,

F o i f o it

{F,K}i =0

for any function A' whose differential at the point of S, belongs to the kernel of Po. To
proceed let us consider g sl(3,C), and set

S =Vne11 + V22e22 + V33e33 + Uiei2 + V_!e21 +
I^ei3 + V-3C31 + V2e23 + V_2e32

a map from the circle S1 into the Lie algebra s/(3,c). The entries of this matrix are
periodic functions of the coordinate x on the circle. Let us consider this matrix as a point
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on the manifold M. We then have

S =Vut n + V22C22 + V33É33 + Vit 12 +
(2)

V_it'2i + V^en + U_:tc.ii + V2f23 + V_2e32,

a tangent vector to M at the point S. Let

V a-teu + Q2e22 + «3e33 A ß\e\2 + /?2«2i +<5iei3 + <52e3i +7ie23 + 72e23 (3)

denote a covector at the point S. They are arbitrary loops from S1 into g. To be consistent
with the s/(3,c) algebra we must have

Y^Vii =0; ^o, =0,7:= 1,2.3 (4)

The space M is essentially an infinite dimensional Lie algebra with a canonical co-cycle

u{SuS3)=* j Trlsx^Adx (5)

the linear map ß : g t-> g* associated with this co-cycle is

dV
ß V) T- (6)

dx

According to the general construction of bi-Hamiltonian manifolds, the space Ai is endowed
with two Poisson tensors Po and Pi defined by

Po(V) [A,V] (7a)

P1(V) VXA[V,S] (7b)

Here Vx denotes the derivative of the loop V with respect to the co-ordinate x on S1,
and A is a constant matrix. The crucial point is the choice of A. Specific Lie algebraic
method is given in reference (6) only for the Drinfeld-Sokolov type reductions. There it
was stipulated that A should belong to the centre of the Borei subalgebra. But in the case
of W2 we are to modify this prescription. We have observed that if we consider A to be a

constant strictly lower triangular matrix belonging to s/(3,c) algebra then wc can arrive
ai IV-, But the ansatz given in ref. (6) leads only to W3. So we set

A e21 + e31 + e32 (8)

Vu -di - Sx

Vn=ßi -7i
V33 ^i + 7i

V-i eti - o2 - 71

V'_2 01 + o, - o3 (9)

V-3 qi + /32 — 72 - Q3

Vi -Si
V2 Si

V3 0

The Poisson tensor Po leads to
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Similarly from the second Poisson tensor Pi we get

Un «rx + ÄV-i + S1V-3 - ß2Vi - S2V3

Ù22 o2x A ß2Vi + 7, V_2 - ßx V-i - 72U2

U33 Q3x + 752V3 + 72U2 - <5] V_3 - 7l V_2

V-i =ß2x+ßi{Vu -V22) + (a2 -oi)V_i +71V-3 -S2V2

V-2 I2x A 72(U22 - U33) + (a3 - a2)V-2 - ßiV-3 A 52Vi (10)

V_3 S2x +d2{Vu - V33) + (03 - cci)V-3 +72U_i -/32V_2

Ùi =ßlxAß1(V22-Vn) + (ai - Q2)Vi + SiV-2 - V3l2

V2 7ix + li(V33 - U22) + (a2 - a3)V2 A SiV-i - ß2V3
'

V3 =Slx + Si(V33-Vii) + (ai -a3)V3+ßiV2 -71V1

Let us note that the vector field defined by the first bi-vector Po are tangent to the
affine hyperplanes U3 U3o (where U3o is a given periodic function); so the symplectic
leaves of Po are affine hyperplanes.

Since U3 0, from the Poisson tensor P0, let us choose V3 1, so that

S Un en + V22e22 + U33e33 + Vie]2 + V_ie2i + eJ3 + V_3e3i + V2e23 + V_2e32 (11)

The kernel of Po is formed by the covectors with

Si=ßi=-n=0
01=02=03=0 (12)

along with /?2 72 and V\ A V2 0

Now the flows given by the second Poisson tensor suggest that the distribution D is spanned
by the following vector fields,

Vu =-ß2Vi-S2
V22 ß2Vx - 72U2

V33 S2 + 72V2

V-i ß2x A ß2(Vn - V22) - S2V2

{lo J

V-2 72x + 72(V22 - V33) + S2Vi

V-3 S2x A S2(Vii - V33) + 72U-1 - ß2V-2

Vi -72
V2=ß2

So from these equations we obtain the elements of the matrix V,

02 V2

72 -U, (14)

S2 V33 + Vi V2
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By using equation (13) in (14), we obtain

(V22-V2V])' Ç)

So we get an invariant functional of S, viz

Uo V22-V2Vi (15)

Similarly we obtain, after a laborious computation the other three invariants, viz.

til V2(V22 - V„) + V-i - V2Vi - v2x

U2 Vi (Vu + 2V-22) + V_2 - V2V2 + Vi,

u3 -VnV33 + \(V22 + GViV2)V22 - ^V2V2 (16)

+ V,V-i + V2V_2 + V_3 + Vnx + \v22l - l-V2ViX - ^\\V2l

These invariants closely resemble those found in ref. (9) in the discussion of the twisted
version of the W32 algebra. Geometrically speaking, Uo, Ui, U2, U3 are the final variables of
the quotient space N S/E which is the space of functions on Sl and equations (15) and
(16) give the projection tt : S >-> N. These four invariants turn out to be the generators of
the IV2 algebra because their Poisson brackets yield,

{U0(x),U0(y)} -^S'(x-y)
{U0(x),Ui(y)} Ui(x)S(x-y)
{U0(x),U2(y)} -U2(x)S(x-y)

{Ui(x),U2(y)} -S'(x -xj)+ 3Uo(x)S(x - y) + {U3(x) + Z-U'0(x) - ZU2(x)}S(x - y)

{U3(x),U0(y)} -Uo(x)S'(x-y)

{U3(x),Ui(y)} -\Ui(x)S'(x-y) - \u[(x)5(x - y)

{U3(x),U2(y)} Au3{x)6'{x-y) - \u'2(x)S(x - y)

{U3(x), U3(y)} l-S'"(x -y)- 2U3(x)S'(x - y) - U'3(x)S(x - y)

(17)

The Poisson brackets (17) correspond to the reduction of the second Poisson tensor
Pi. To obtain these Poisson brackets we use the fact that the fundamental Poisson brackets
between the different V,'s are isomorphic to the Lie commutation relations with a central
extension and are given by

{Va(z), Vb(z')} ftthcVc(z)S(z - z') - k(Ta,Tb)S'(z - z') (18)

where
S(z) Va(z)Ta (19)
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and Ta denotes the generators of the Lie algebra s/(3) with commutation relations

{Ta,Tb] fahcTc (20)

This fundamental Poisson bracket is, in turn, derived from the basic definition,

{Va(z),Vb(z)} ([dVa,d A S},dVb) (21)

where S is the symplectic leaf containing the different V;'s as its entries.

As a simple exercise, we calculate {V_i(x), V-2(y)}. We obtain

dV_i SV-i(x)/SS(z) e12S(x - z)

and
dV-2 SV-2(z)/SS(y) e23S(z - y) (22)

After using the expression for S given in (11), we get {V_i(x), V_2(t/)} — V-3(x)S(x — y).
Exactly the same result is obtained on using (18). Finally, we calculate one Poisson bracket
from the set (17) explicitly. We have

{U0(x),Uo(y)} ={V22(x) - V2(x)V,(x),V2(y) - V2(y)Vx_{y)}

={V22(x), V22(y)} - (V22(x), V2(y)}Vi(y)-
V2(7/){V22(x),V,(y)}-V_2(x){Vi(x),V22(y)-
{V2(x),V22(y)}V1(x)AV2(x)V1(y){V1(x),V2(y)}A (23)

V1(x)V1(y){V2(x),V2(y)} + V2(y)V1(x){V2(x),V1(y)}+

V2(x)V2(y){Vi(x),V,(y)}
={V22(x),V22(y)}

after cancelling several terms in pairs using the antisymmetry of the Poisson brackets,
whence

{Uo(x),U0(y)} -kS'(x-y)
2 2 (24)

—~S'(x — y), choosing k -
The above discussion shows how the Poisson brackets (17) are obtained and thus the
classical W32 algebra is derived. Thus through a rather new choice of the constant matrix
A of the first Poisson tensor P0 we have deduced the classical IV32 algebra. Our choice of
the symplectic leaf is further justified by the discussion in ref. (10). For comparison we

can mention in short the case of W3 algebra. Here the symplectic leaf is considered to be

5 Vii(en -e33) +Viei2 + V_ie21 + V3ei3 + V_3e3i + V2e23 + V_2e32 (25)

where Vi V2 1 and V-) 0 is the required condition. Further

A e3i (26)
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The covector V is found to be

o
V — e 11 - c33) + ß\C\2 A ß2e2l + SiCi3 + S2c:u + -M<23 + ~>(:i> (27

Proceeding as before we get two invariants.

li1 =\\\ + V_i + V_2 + 2Un,
U0 =V„(V_, - V_2) + V_3 + VnVnz A V\ixx + V-lx,

(28)

instead of four, as in the case of IV2 algebra. The algebra generated by U\ and Uq is found
to be the W3 algebra of Zamolodchikov. Finally we may mention again that the difference

actually comes from the fact that in case of W3, "A" belongs to the centre of the strictly
lower triangular matrices, while in case of W2 it is itself a strictly lower triangular matrix.

3. Co-adjoint Invariance

After our derivation of W2 from the bi-Hamiltonian framework we can compare our
results with those obtained in the gauge transformation frame-work. This method actually
generates the IT-algebra via the co-adjoint action invariance of certain functionals. Such

an approach was used in ref. (8) to deduce the Lie-Poisson structure on the dual of the
Virasoro algebra, the underlying algebra being the sl(3,c) Kac-Moody algebra on S1. We

now briefly comment on the results in case of s/(3, c) leading to W2. It is now well-known
that if G is an affine Lie group and g its Lie algebra then the dual space g* of g is defined
as the space of linear functionals of g. The coadjoint action is given by the formulae.

zdlY>ll)(v,k) ([Y,v]AkY,0) (29)

Ad(0i/l)(u,k) (évo'1 +kô'0~\k) (30)

where (v(x),k) belongs to the dual space. In the case of s/(3,c) algebra, the phase space
points are specified as

v(x) Viien + V22e22 + V33e33 + Viei2 + V_ie2i + V3ei3 + V_3e3i + V2e2:i + V_2f32 (31)

We put the constraint V3 1. The maximal co-adjoint action which does not change
this constraint is given by (30) with cp given as

<P en + e22 + e33 + Ae2i + De31 + Ce32, that is, Ad*(<j>li)(v,k) (v,k). (32)

Simple algebra gives

A V2 - V2; B Vn - Vn - Vi(V2 - V2); C V, - V,
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and we also obtain that

V22- V2Vi V22- V2Vi

V2(V22 - Vn) - V22V, + V_i - V2I V2(V22 - Vn) - V22Vi + V_i - V2x
('$3)

and so on. The upshot is that we get back the four quantities Uq Ui,U2,and U3 as the
invariants of the co-adjoint action whereas the bi-Hamiltonian approach suggests that
they are invariants of the flow. This can be seen to be related to the fact that we actually
construct the dynamics via the co-adjoint action.

One of the authors (I. M) is grateful to CSIR for a SRF which made this work possible.
He wishes to thank N. B. Manik and S. Sarkar for encouragement and cooperation. The
whole work has its genesis in the excellent deliberations of Prof. F Magri at the CIMPA
school held at Pondicherry, India, 1996.
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