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Abstract. In this work we introduce the Killing-Yano symmetry on the phase space and we investigate

the symplectic structure on the space of Killing-Yano tensors. We perform the detailed analyze
of the ?i-dimensional flat space and the Riemaniann manifolds with constant scalar curvature. We

investigate the form of some multipole tensors, which arise in the expansion of a system of charges
and currents, in terms of second-order Killing-Yano tensors in the phase space of classical mechanics.

We find some relations between these tensors and the generators of dynamical symmetries
like the angular momentum, the mass-inertia tensor, the conformai operator and the momentum

conjugate Runge-Lenz vector.
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1 Introduction

Killing tensors are indispensable tools in the quest for exact solutions in many branches
of general relativity as well as classical mechanics. Killing tensors can also be important
for solving the equations of motion in particular space-time [1]. Killing-Yano tensors were
introduced in 1952 by Yano from a mathematical point of view on the configuration space [2].
When a manifold admits a Killing-Yano tensor we can construct a Killing tensor and a new
constant of motion in the case of geodesic motions [3, 4]. It was a big success of Gibbons
et all. to have been able to show that Killing-Yano tensors, which had long been known
for relativistic systems as a rather mysterious structure, can be understood as an object
generating a "non-generic symmetry", i.e. a supersymmetry appearing only in the specific
space-time [5]. On the other hand Lax pairs tensors can be viewed as a generalization of
Killing-Yano tensors [6]. The relation between Killing-Yano tensors and Nambu tensors was
found in [7]. As it is well known in the expansion of charge and currents in electromagnetism,
three families of multipole moments arise : the charge, the magnetic and the toroid moments
[8]. Among the first members of these multipolar families, the time derivative of the charge
dipole d, charge quadrupole Ql} and the magnetic dipole ß, correspond to infinitesimal
translations, shears and rotations of the points of a continuous distribution of charged matter.
For example the charge multipole moments. <3,112...!n, are related to the n-th order inertia
moments of a continuous distribution of mass [9]. In view of the correspondence between
the electric charge e, which is connected to gauge invariance and the gravitational mass m,
which is related to the Poincaré invariance, we make the formal change of the current density

j by the momentum vector p In this way we obtain the following associations for these
tensors

d, —> pi, (1.1)

Qij —? x,Xj - -r2<%, (1.2)

2
Qij —> x,pj + XjPi - -(r ¦ p)6ij, (1.3)

ßi —+ Li. (1.4)

These tensors can be found as generators of many Lie dynamical symmetries like for example
the three-dimensional rotation group 50(3), which is generated by the three components
of the angular momentum Lt, the group of the rigid rotator Rot(3), generated by the mass
quadrupole tensor Q^ and L, [10], or the linear motion group SL(3) which in turn is generated

by the shear tensor S^ s QXJ and L, [11]. It is then natural to seek for the symmetries
and the geometrical features of the higher-rank tensors arising in the multipole expansion.
An important point that one should mention is that the above tensors are written in the
configuration space. Unfortunately the components of the higher-rank multipoles do not
satisfy the closure relations for the Lie symmetry. For our purposes it will turn out to be
useful to consider the same tensors in the momentum space too. It is more convenient to
write these tensors in terms of purely geometric quantities in a form which will allow the
generalization to higher dimensions. On the other hand the Killing-Yano symmetry was
defined only on the configuration space.
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For all these reasons the extension of the Killing-Yano symmetry on the phase space is

very interesting to investigate.

The plan of the paper is as follows:

In Section 2 the extension of the Killing-Yano symmetry on the phase space is presented.
In Section 3 multipole and dynamical symmetry tensors are investigated using dual Killing-
Yano tensors. In Section 4 we present our concluding remarks.

2 Dual Killing-Yano symmetry

A Killing-Yano tensor [2] is an antisymmetric tensor which satisfies
the equation

Dxf„ß + DfXß=0. (2.1)

Here D denotes the covariant derivative.

For a given metric gßu instead of xß we consider the momentum pß. In this way we have
obtained the metric gßv on the momentum space. Performing the operation of mapping xß
to pß twice, leads back to the original metric gßv. We call gß^(p) dual to gfW(x).

The existence of a Killing-Yano tensor on a given manifold is deeply related to the
existence of a new supersymmetry in the case of geodesic motion on the spinning space [3].
We know that the action for the geodesic of spinning space has the form [3]

S= fbdr(l gUy(x) xß x" +
%-

gßv(x) *f ~) ¦ (2-2)LdT\2 9ßv^ ±ß ±V +
2

9ßl/^ ^" Uh j

The overdot denotes an ordinary proper-time derivative d/dr whilst the covariant derivative

of a Grassmann variable tp" is defined by Dipß/Dr ipß + xx TXv tp" In general, the
symmetries of a spinning-particle model can be divided into two classes. First, there are
conserved quantities which exist in any theory and these are called generic constants of
motion It has been shown that for a spinning particle model defined by the action 2.2) there
are four generic symmetries (for more details see [5]).By construction we have obtained four
generic symmetries on the momentum space too. The second kind of conserved quantities,
called non-generic, depend on the explicit form of the metric gßu(x). The existence of a

Killing-Yano tensor fßv of the bosonic manifold is equivalent to the existence of a super-
symmetry for the spinning particle with supercharge Qj fßUßipa — \iHabciba,fipc satisfies

{Q, Qf} — 0, where Hßu\ — D\fßu Uß gßuxß whereas the supercharge Q has the form
Q — Ußtpß (see [5] for more details). Because the dual metric gßu admits a Killing-Yano
tensor fßU the corresponding non-generic supersymmetries is defined by_ the supercharge
Qf fßflßipa - \iHabcipaipbipc satisfying {Q,Qf 0. Here HßuX Dfßu, the canonical

momentum is Üß gßfß and the supercharge Q has the form Q — Iißipß We mention
that Dx means the covariant derivative on the momentum space.
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Using dual Killing-Yano symmetry we have obtained a pair of Killing-Yano tensors (/, /)
defined on the phase space.

2.1 Examples

2.1.1.Flat space case
In the case of three-dimensional flat space these tensors have the following form :

fij — £ktjXk fij SkijPk- (2.3)

Eq.(2.3) can be reversed and thus one may express the position x and momentum p variables
in terms of / and /

Xi -£tJkfjk, Pi fijkfjk- (24)

The Poisson bracket of / and / reads

{fiji fu} àikàji - Suôjk- (2.5)

A scalar product can be defined for these Killing-Yano tensors. For example, the square of

/ can be written as follows

f f-f fijfij. (2.6)

Equation (2.4) enables us to construct the phase-space in terms of the Nambu tensor c,3k

and the Killing-Yano tensors f,3 and /y. When a manifold admits a Killing-Yano tensor /y
then we can construct a Killing tensor Kij x,x} — r2ò,r This Killing tensor corresponds
to a constant of motion K K,}p,pj. The Nambu tensor e^k is of rank three and it defines

a Nambu mechanics with the constants of motion H p2 and K [12, 13]. These results can
be generalized in the flat space of an arbitrary dimension [7]. In this case we have

Xi —e,v--i„ ft,-in ,Pi —^-.„/i, ¦¦¦>„¦ (2-7)

Equation (2.7) enables us to construct the phase space in terms of Nambu tensor e,,..In and

Killing-Y'ano tensors f,,...,n and fiy..,n-

2.1.2.Riemannian manifold with constant scalar curvature
It is well known that any n-dimensional Riemannian manifold with constant scalar curvature
admits ' ~ Killing-Yano tensors of order two [14]. For example in the three dimensional
case, the corresponding metric with constant curvature has the form

ds2=(l + Iïfy2J:(dq>)2. (2.8)

where r \/T,ì=i (l*)2 and q'(i — 1,2,3) are the coordinates, whereas K is a real constant
denoting curvature of the configuration space [15].In this case we have three Killing-Yano
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tensors fßV and three fßv. When q1 are the spherical coordinates the expressions of the

Killing-Y'ano tensors looks like

rsin</> r sin20cosy? _
r2 sinÔ2 cos tp(Kr2 — 4)

/l2=
i6(i + E£fh3 32(1 + E£y2j23- {4 + Kr2){1 + Kf)2 '

- 16psin</> - psin 20cos tp - p2 sind2 cos tp(Kp2 — 4)
/l2= (IT^,/l3 32(l + ^p'/23= (1 + ^)2(4 + ^) ¦ (2-9)

We are able to express the components of Runge-Lenz vector and the energy level of the

Kepler problem [15] in terms of purely geometric quantities fßu and /,,„.

2.2 Symplectic structure

In this subsection the symplectic structure to the space of Killing-Yano tensors is constructed.
Let us consider for the beginning the n-dimensional flat space case. From (2.1) we found
that the Killing-Yano tensors / and / are fn...,„_, e,n...,, ...,n_,xln, /tv-tn-i Un--i, ¦¦i„-,Pln-
Because each of the antisymmetric tensors /,,...,„_, and /n...;„_, has n independent components

we can consider / and / as a n-dimensional vectors. We can combine the vectors
I dH dH \{Jfj'tt]f and f into a 2n dimensional vector x (/,/), interpret the quantities (-^2-, ^x-), as a

2n-dimensional vector "VH, and introduce a 2n x 2n matrix J J. where I is the

n x n identity matrix. With this notation Hamilton's equations can be unified in the form
x J.VH(x).

Let us consider a even-dimensional Riemannian manifold having constant scalar curvature.

It is well known that all symplectic structures have locally the same structure.

A precise formulation of this assertion is given by Darboux's theorem [16]. Due to this
theorem, any statement of local nature which is invariant under symplectic transformation
and has been proved for the standard phase space (M R2u,lj ffl=l dpj A dqi) can be

extended to all symplectic manifolds. On the other hand from equation (2.1) we found that
an antisymmetric covariant constant tensor fßu is a solution of Killing-Yano equations. If the
corresponding form is non-degenerate then we have a symplectic structure on this manifold.
By construction the dual manifold admits a symplectic structure. If a manifold admits a non-
degenerate covariant constant Killing-Yano, then we can construct a symplectic structure to
the space of Killing-Yano tensors. As an example we mention here the self-dual Taub-NUT
metric [17]. In this case we have four Killing-Yano tensors. Three of these, denoted by /;
are special because they are covariant constant and non-degenerate. The dual manifold has
three covariant constant non-degenerate Killing-Yano tensors /;. In the two-form notation,
using the spherical co-ordinates (r, 9, tp) and respectively (p, 9, tp) the explicit expressions
are:

2m
f, 4m(dip + cos 9dtp)dx, — €yfc(l H )dxj A dxk,

2m
fi 4m(dip + cos 9dtp)dp, - t,]k(\ H )dp} A dpk. (2-10)
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3 Multipole and dynamical symmetry tensors

In this section the expressions of the multipole tensors in terms of purely geometric quantities
(/, /) are presented. The first step consists in writing the square of the radius r1 and of the

impulse p2 in terms of (/, /).
r2 \f- p- \f2, (3.1)

The magnetic dipole tensor is given by

ßi L, -Bklmfkiflm, (3-2)

and the dilatation has the form

D r-p=l-fJl]. (3.3)

The quadrupole mass-inertia tensor reads

Qa \(fimfmj - \ff2)- (3.4)

The toroid dipole tensor, a quantity related to the poloidal currents on a torus, can be

written in the following manner [18]

T, ±(x,D - 2r2p,) ±eijk{fjk(f ¦ f) - 2fjkf2}. (3.5)

In the case of purely transversal velocity fields this expression gets a simplified form [19]:

Ti -d,D -eijkfjk(f ¦ /)¦ (3.6)

Next we pass to other tensors, related to dynamical symmetries. Consider first the conformai
operator

C, 2xiD - r2Pl l-e,jk{2f]k(f ¦ f) - fff2}. (3.7)

Together with the angular momentum Li, C, is a generator of a symmetry group which obeys
commutation relations isomorphic to those of 50(4). This is a subgroup of the group SO(4,2)
[20, 21] (isomorphic to the conformai group in Minkowski space) which leaves invariant the
free Maxwell's equations [22], The other generators of this larger group arc the impulse p,
and the dilatation D which were defined above.

Another interesting tensor is the following particular form of the Runge-Lenz vector [21]
with components

A, =-x,p2 - p,D --x,. (3.8)

This vector, together with the orbital angular momentum L„ the dilatation D and other
two vectors and two scalars generates the SO(4,2) group which contains as a subgroup the
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symmetry group of the Hydrogen atom, i.e. 50(4). Thus, from the algebraic point of view
the properties of the Runge-Lenz vector are similar to those of the conformai one. If next we

take the momentum conjugate of (3.8), we obtain the following tensor in Killing-Yano form

Ai y,AU2 - 2)/i* - 2fjk(f ¦ /)}. (3.9)

This tensor can be viewed as a symmetry generator like A,, but in the momentum space.
Then we have obtained the following formula for the Killing-Yano tensors in terms of the

Runge-Lenz vectors and the conformai operator in the space and momentum subspaces.

fjk -£ijk(2Äi + Ct) fjk -e,jk(2A, + Of (3.10)

In this way the toroid dipole tensor (3.6) can be directly related to 50(4,2) symmetry
generators in the phase-space :

Ti (2Äi + Ci)D. (3.11)

When we move to the next rank multipolar tensors we encounter the charge octupole
tensor

Qijk — J { £imn(5jkf + 2fjifik) — -f (timfjk + Zjmfik + ^kmfij) \ (312)

the magnetic quadrupole tensor

hv g(z.£j + XjLi) -- [fiicfkifij + fjichifii] (3.13)

and the toroid quadrupole tensor

Tij (fimfnj - i<5y/2) (/ ¦ /) - \fijmjf2. (3.14)

Using again (3.10) we write the last tensor in terms of dynamical symmetry generators, in
the position subspace of Rot(3) and 50(4,2), for the purely transversal gauge mentioned
above

Tij QijD
l- [fimfmj - ^y/2) (/ • /)¦ (3.15)

4 Concluding remarks

In this paper the Killing-Yano symmetry was generalized to the phase space. We have
introduced Killing-Yano tensors in the momentum space in order to relate the geometrical
objects / and / with the dynamics. On the phase space constructed in terms of Killing-Yano
tensors / and / we have new supersymmetries in the case of geodesic motion of a spinning
particle. On the other hand in the case of the ?i-dimensional flat space all Killing-Yano
tensors are Nambu tensors. In this case we have constructed a symplectic structure to the

space of Killing-Yano tensors and the geometrical signification of these tensors was clarified.
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We found that on an even-dimensional Riemannian manifold every non-degenerate covariant
constant Killing-Yano tensor of order two is a symplectic structure We showed that it is

possible to relate the toroid dipole and quadrupole tensors to 50(4.2) and Rot(3) generators
acting in the phase-space. This pattern is followed also by the toroid and magnetic tensors
with higher multipolarity. Similar multipolar tensors occur in the theory of continuous media
[23, 24] and can be related to dynamical symmetry generators in the full phase-space using
a geometrical representation valid in flat and curved spaces as we showed above. In this way
we associate a geometrical meaning to such physical observables of the continua.

Finding all Kälter manifolds which have Killing-Yano tensors is an interesting problem
and it requires further investigations [25].
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