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Abstract
Unitary operations in Hilbert space of spin one half system for

one qubit and two qubit systems are realized in terms of vertices of
graphs of macroscopical automata realizing quantum logic.Examples
of simple logical operations are analysed.

1 Introduction
Quantum computers and quantum computations became much popular topic
in modern theoretical physics. Theoretical works show new advantages of
quantum computers, such as Shor's algorithm for solving the factorization
problem and etc.'5'. The first experimental evidence of the realization of a

quantum computer using nuclear magnetic resonance spectrocopy on organic
molecule appeared in'1'. In all these examples one must have hardware, made
of quantum particles, described by quantum mechanics, so that its software,
differently from classical computers, works according to quantum logic. This
makes possible totally new kind of computations. Nevertheless, one can ask
the following questions: Is microscopic quantum hardware necessary to
obtain quantum logical software? Can one construct macroscopical automata
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with classical hardware but with quantum software'? Experimentally, if the
answer is positive, this can lead to new possibilities for quantum computation,
because differently from microparticle hardware one doesn't need to struggle
seriously with all kinds of noise, destroying coherence of the quantum enta-
gled states used in quantum computation. Other advantage can be some new
understanding of brain processes, when quantum logic can work even for the
macroscopic system. Indeed, in papers '3'4' following the idea of '2' examples
of macroscopic systems—macroscopic automata—were presented, where due

to the special rules of their work quantum logic arises Using correspondence
between lattices and graphs of automata and negative logic for identification
of the states of automata one obtains nondistributive quantum logical lattice
as description of its work. This means that the behaviour of these macroscopic

objects can be described by some Hilbert space with projectors in
this space as some observables— yes-no questions. In terms of graphs of
automata to different wave functions correspond different weights. Analogue
of the Heisenberg's uncertainty relations was constructed and breaking of
Bell's inequalities was demonstrated in terms of these weights. Due to quantum

logic, if properties of this system are unknown, the stochasticity will be

described not by the classical probability measure but by the wave function-
probability amplitude! Spin one half and spin one particle were modelled for
one particle and two particle quantum systems by such automata.

In this paper we continue the investigation, made in'3'4', by demonstrating
how some quantum computations, described by unitary operators in Hilbert
space for microscopic quantum computers can be realized by some operations

on weights on graphs for our macroscopic quantum computers. First
we analyze the case of a simple one spin one- half particle and show how
simple logical operations look in terms of our graph. Then the two particles
spin one- half system is analyzed—classical automata described by the same

quantum logical lattice are investigated and logical operations in terms of
transformation of weights of vertices of its graph are realized. A simple
example of a system called by us discrete quantum computer for one-qubit and

two-qubits is investigated.
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2 Weights on the graph of the spin one half
particle and qubit automata

In papers '3-4' it was shown how in some cases quantum logic arises as description

of properties of macroscopic automata, so that if it's states are random,
the description will be not in terms of the standard probability measure but
in terms of the probability function. Remind the definition of the automaton.

Normalized automaton is defined by a nonoriented graph .satisfying
the following conditions: (i) the set of input symbols and the set of interior
states of the automaton coincide with the set of vertices of the graph; (ii)
the transition function (i.e.. the rule of operation of the automaton) is such
that if it is initially in "i "and the input symbol is "j ''then if the vertices
of the graph are adjacent the new state will be "j "and if not connected it
stops. 'To vertices of the graph it was proposed in'3-"1' to give some weights,
having one to one connection with the wave function. So our problem will
be: how to describe unitary operations with wave functions (logical gates) in
terms of weights of the graph of the automata?

Following'3'4' let us take spin one half particle with observables SxSy, Sz.

For this system we have the Hasse diagramm and graph of the automaton
corresponding to it see Figure 1 The Hasse diagramm on the left represents

the quantum logical lattice, ro atoms of which correspond the following
yes-no questions:

1.5I i?, 2.Sy=l-fASz=lf.ASx -i?,5.5y -i?,6.S,
(1)

In Hilbert space of the spin one half system to these questions correspond
projectors on eigenvectors |ei>Je2 >. |e3 >. |e4 >, |e5 >, |e6 >
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Take the computational basis |0) |e3), |1) |e6). Then to the qubit.
l'I») Co|0 > +Ci|l) correspond weights of the graph on the right of Figurel.
We have, wa ||P„*>|2 |(eQ|*>|
l(ea|0)|2, ta |(eQ|l)|2 1 - Sa, Pa

1,2,3,4,5,6. Writting Sa

(0|eQ}(eQ|l) one obtains wa
Sa\C0\2 + iQ|Ci|2 + Re, (2paCçC\). One can easily obtain for Sa,ta,pa the
following values

(2)

Putting d

(e.l
(e4|

Sa ta 2pa
h k 1

1 I -1
(e,\
(ef

f\
(esl

I i i
1 -*

1 0 0

0 1 0

Co exp itpo, C\ ci expiai, Co +c.2 _1 — 1. V Vi - Vo,
one obtains the weights wa SuCq + tac2 + c0CiRe. (2pa exp if, so that,
tV\ f + C0Ci COS tp. U>2 j + CqCi Sill tp, (i'3 Cg, U/'4 j — C0Ci cos tp, w0

j — CoCi sin ^>, wq ef. It is evident that Wi + u>4 u>2 + wö ws + we 1.

Let us describe the space of weights of one qubit.
1. 0 < VJ0 < 1.

2. All weights depend on two parameters Co, C\, tp, Cq + c\ 1.

3. One can easily see that (ty, - \)2 + (w2 - j)2 + (w3 - j)2 (j)2, i.e.,
different values of weights correspond to points on the sphere, so that change
of these values can be described by rotation of the diamètre of the sphere.

And now let us describe unitary operations on the qubit automata. Let
us take Ue £7(2), i.e., UU+ U+U 1.

One can parametrize (7(2) matrices using angles a, 6, ß.

U exp iS exp i-
0

0

exp -

COS ; sin
cos 2 J

expzf 0

0 exp-if
(3)

Denoting the first matrix as Rz(a), the second as Ry(ô) one can say
that any unitary U on the weights of qubit can be represented if one can
represent these Rz(a), Ry(9) matrices. Knowing how they act on qubit |^),
i.e., fi,(a)|<]>) exp(ifc0)|0) + exp(-('fCi)|l), one comes to the following
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formulas for weights:

R.

'
Wi

'

W2

W3

Wi

1

_ 2

Wo

we

(n)

One also has

cosa
— sino
0

— cos a
sin a
0

sina
cosa
0

— sin a
— cosa
0

1 - cos a
1 sin a

0

cosa
— sin a
0

— sin a
— cosa
0

sina
cosa
0

Wi
U>2

W3

w6

Ry(ö)

'
wl '
W2

«'3

U>4

1

—
2

yjb

W6

coso
0

sin 9

— cos 9

0

— sino

— sint
0

cos 9

sino
0

— cos(

- cos(
0

— sine
coso
0

sino

1 sino "
î^l

1 0 W2

1 - cos# w3
1 — sino W4

1 0 w5
1 coso we

(4)

(5)

Since the space of weights is the set of points of the sphere, these
operations are just some rotations. On one qubit system one can perform the
following logical operations:

(i) identity / |0 >< 0| + |1 >< 1|;

(ii) operator NOT as A |0 >< 1| + |1 >< 0|;

(iii) Hadamard transformation H ^[(|0 > +|1 >) < 0| + (|0 > -|1 >
)<1|.

To these operations correspond the following matrices in the Hilbert space
of the spin one half system:

/
H

which are easily obtained from the general form of the unitary matrices for
special values of angles and to these correspond formulas for weights for the
same angles. Real advantages for quantum computations need investigation
of the two or more qubit systems. So now we shall investigate two qubit
svstem.

'10"
0 1

x
'

0 1
"

1 0
_

Y--
v/2 1-1 1

YX.
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3 Two qubit system
To two qubit system correspond two spin one half particle state, which can
be either the product of one particle states or some entangled state. In'4' we

constructed the automaton with the graph corresponding to this micropar-
ticle quantum system. So our task is again to look for transformations of
weights of the graph when unitary transformations act on the wave function.

The basis is: |0)|0), |0)|1>, |1>|0), |1)|1). So, any state vector of our
quantum system is

| *) Co|0)|0)+C1|0)|l)+C2|l>|0)+C3|l>|l), \C0\2+\Cf+\C2\2fCf 1

(6)
So differently from the classical physics of a two particles system one gets

not four parameters but six parameters to fix the state. This is just due to
the possibility of entanglement, leading to a new possibility for computation.
If one takes the graph without what was called in '4' nonlocal questions
i.e.. without questions about entangled states one has 36 yes-no questions
\ea > \e,3 >,a,J 1, ..6 with 36weights waj |{eQ|(e^|1I')|2 For factorised
states |*) |$)|A), |$) B0|0) + £i|l), |A) A0[0) + Af) one has only
4 free parameters and the weights are obtained from one qubit system eis

waj a-aWß.wa |(eQj$)|2. wj |(e^|A)|2. But. for the general case one
has

|(eQj(e;|>K)|2 \Co[2SaSg + C0C+SQpt

+C0Cfp+aSß + CoCfpaPßf + Cf^SaPj
+ \CfSatß + Cfffpö + fCZfpfß
+C2C0+;jQ5j -r C2C?pQp1; + \C2\2taSß

+C2CfaPj + C3CJpap3 + C3CiPatß

+C3C2tapß + \C3\2tatg,

Sa [(eQ|0)|2. rQ |(ett|l)[2. ;Jq (0|eQ)(eQ|l> (7)

So one has Hermitean forms Waß(x, y) 5~J3=0.By x,y~. where

"
SaSß SaPß p+Sß (PaPßY

UH- M-fR^h SaPß s<>tß PÌP3 PÌtp
Pa^ß PaPß ta^ß TaPß

PaPß Patj taPß tQtß
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are some Hermitean matrices.Weights are positive values waß Wap(C,C).
So. if vector of the coefficients is transformed unitarily C >-* UCoxie
obtains new weights wf Waß(UC,UC), which can be understood as some
transformation of the matrix ||H'a/j|| ?-> ||H'^||.

4 Discrete quantum computer
Here we '11 investigate these transformations for the simplified case,called
by us discrete quantum computer Instead of the general case take C, £
{ — 1. 0.1}. i.e., the space of coefficients is some 4-dimensional discrete space.So
we'll describe only those operations which don't evolve from this space as if
one has arithmetics on the field P3 {—e, 0, e}, where e + e —e. For this
case new discrete qubit corresponds to: jO >, [1 >. |0 > +[1 >, |0 > —11 >
.Operations X, H form a complete set of operations on the discrete qubit,
this meaning that any transformation of qubit can be obtained by subsequent
using of these operations

X : |0)^|1).|1)-H0),
H : |0)^|0) + |1),|1)^|0)-|1).

They are some reflections A'2 H2 I. Other operations are R HX,
R2 HXHX, R3 (R-1) XH, fi4 I, OH XHX. OH2 I,
OX HXH. OX2 I. One can see that the set of operations on such a
discrete qubit forms the group of symmetries of the quadrangle. Let us call
this qubit- quadrit

Now. let us investigate the two qubit system. One qubit operations are
obtained as the following tensor products: A ® I. I ® X, H ® I, I ® H.
Introduce controllable CNOT, which we denote for our special case as ZXfx
being CNOT for the first and second qubit:

Ä |0)(0|®/ + |1)(1|®A, (8)

A=/®|0){0| + A®|1){1| (9)

Also introduce the unitary operation S (Swap) :

|00) i-> |00)

|01) ^ |io>

|10) ^ |01)

ill) * |11) (10)
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So one comes to the following system of commands (operations): {/.
A®/, H®I, X, S).

Our quantum computer is the set of quadrits with the properties:
(i) each quadrit can be prepared in the state |0);

(ii) on each set of quadrits one can do logical operations to which
correspond unitary operations:

(iii) it is possible to do measurements for ''quadrit "in the computational
basis formed by {|0),|1)}.

Our quadrit corresponds to one spin one half particle with two observables

Sx, Sz, described by the corresponding graph and Hasse diagramm'3,4'.
All its possible states and weights can be easily enumerated, using notations

/i0, /ii, showing the possibility to obtain them by operation H from the

corresponding states of the basis:

i
0

hg

1

h

m uJ (w0,whow\,whi)
(1,1,0,1)

(|o> + |i>) U-U,o)
(o,UA)

^(|0>-|1>) (i, 0,1,1)

To logical operations A". H correspond matrix transformations of weights:

A'r->

H

'
Wq

"
0 0 1 0 "

U-'O
"

w\
Who

r->
0

1

1

0

0

0

0

0

Who

Wi

Who

w0

">ft, 0 0 0 1. whl W/ii

w0
" 0 1 1) 0

" "
Wq

"
who

Wi
r->

1

0

0

0

0

0

0

1

Who

Wi

Wo

wh,

whl 0 0 1 0 whi Wi

(11)

(12)

To unitary operations correspond permutations of indexes of the weight
vector.

Now consider biquadrit-tvro particle system. Here for our discrete case
there are the following states:

1. |0)|0), |0)|1), |1)|0), |1)|1)— 4 factonsed states Fi;
2. j0)(|0) |1)), |1)(|0) ± |1))— 4 factorised states Ei\
(|0) ± |1))|0). (|0) ± |1))|1)— 4 factorised states F :
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|0)|0) ± |1)|1). |0)|1) ± |X>|0>— 4 entangled states E2.
3. Entangled states |0)|0) ± |0)|1) ± |1)|0), |0)|0) ± |0)|1) ± |1)|1). |0>|0> ±
|1)|0)±|1)|1).

|0)|1)±|1)|0)±|1)|1).
4. there are also 8 states with 4 terms, forming two sets Fa. Eji.
States of the type 3 can't be obtained from states of type 1 by using the

operations X. H, CNOT. We shall be interested only in those states which
can be obtained from |0)|0) by our operations enlarged by new operations
which cannot be obtained from one qubit operations.making permutations
of qubits (SWAP operation), which we introduce later. One observes that
X, H don't lead to F h+ E. CNOT acts as F2 >-> E2. F, >->¦ E4. It is

interesting to mention here that due to existence of new 8 entangled states
there is a difference between a quantum computer and a classical one: for
one qubit system there are 4 states, but for the two qubit system one has
24 state instead of 16 as it is the case for a classical computer. The graph
of the two particles spin one- half system is the same as in the paper >4'. It
consists of 16 vertices and nonlocal vertices, one of them corresponding to
the antisymmetrised state |0)|1) - |1)|0) which we'll denote by q~ox as rx,
meaning that it can be obtained as

X (R ® A')|0)|0). It is easy to see that for the 16 states obtained as

\ea)\eß), a,ß L.A, waß |(eQ|(ej|^)|2. the new weights after unitary
operations L'|^) are obtained by permutation of weights in the weight vector.

One qubit operations are generalised as tensor products:^ g ® I. ig
I ® g. Here g is some one qubit operation. But for a two qubit system one
can also introduce new operations: g |0)(0| ® / + |1) < 1| ® ^-controlled g

by the first qubit. and 9 /® |0)(0| + j® |1)(1|— controlled g by the second

qubit.
In paper '4'only one nonlocal yes-no question corresponding to the

antisymmetrised state was considered. The vertex of the graph [q~) is not
connected in the graph by the arc with vertices 11. 22. 33. 44 and is

connected with all others.By unitary operations for one qubit and g. 9 one can
obtain from the |ry~) seven weights corresponding to entangled states of our
discrete two qubit system.These entangled states are

IO |01) - |10). \qf |00) + jll). IO |00) - |H), |<7+ |01) + |10).

\q;a) (|oo > +|ii » + (|oi > -|io >), io (|oo) - |ii)) + (|oi) + |io)),

IO (|oo) + |ii)) - (|oi) - |io», IO (|oo) - |ii)) - (loi) + |io)).
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Normalization constants are supposed but not written here. Weights
corresponding to these states can easily be obtained one from the other by.

automorphisms of the graph where besides \q~) other seven vertices are drawn.
The structure of the graph is the following. Differently from paper'4', for
simplicity we shall not draw the (complete) picture of the graph— instead we

are going to exhibit four by four tables putted inside bold brackets in which
each place corresponds to a vertex (of the graph) and where we put zeros
for those vertices which are not connected with the vertex corresponding to
the entangled state question. For example, zeros on the left diagonal for \q~)
mean that the vertex \q~) is not connected by arcs with diagonal vertices
11. 22, 33.44. So the graph has the structure:

/ 0

\q~)

IO

IO

°

*

*

*

\ o

* \

*
o

Vf)

*

*
o

V *

/ >

o

\q+sa) <->
0

\ *

< J

*
*

kr)

o

0

*

/ *

IO -?

o J

o \
* 0

0 *

*
0 IO ^

V o >

/ * o

0 *
* *

\ * *

*
0

* /
Vertices of entangled questions are also connected by arcs with themselves

due to the rule: they are located on the circle in the order \q~), \qàs), IO-
IO- IO. IO- IO. IO- After IO again follows \q~). For biquadrit
one qubit operations and new operations g, 9 are just automorphisms of the

graph. This solves the problem of logical operations in terms of transformations

of the graph and weights of its vertices.

5 Conclusion
In this paper we gave the rule for quantum computations described by unitary
matrices in Hilbert space realized on macroscopic automata with quantum
logic. This rule is very simple for the one qubit system, while for the two
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qubit system it can be easily formulated for the simplified case of the discrete

quantum computer. To unitary operations correspond some transformations
of the weights of vertices of the graph of the macroscopic automaton. Even
for the simplified discrete case of the two qubit system typically quantum
entangled states arise and logical operations can be made by use of them
due to which new advantages of quantum computers occur. It seems that
there is no principal objection for the generalization of the scheme for three
qubit system where new logical operations (for example '"and ") arise. So

we hope in future to formulate the rule for transformation of weights as for
the general (not the discrete one case for the two qubit system as for the
n- qubit system and to give examples of realization of Shor's algorithm and
others for our macroscopic quantum computer.
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