
Zeitschrift: Helvetica Physica Acta

Band: 72 (1999)

Heft: 5-6

Artikel: Impurity at the boundary of two quantum wires : 1d Schrödinger
equations with an asymmetric Coulomb potential

Autor: Reyes, J.A. / Del Castillo-Mussot, M. / Vázquez, G.J.

DOI: https://doi.org/10.5169/seals-117181

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte
an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei
den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les

éditeurs ou les détenteurs de droits externes. Voir Informations légales.

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. See Legal notice.

Download PDF: 26.12.2024

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-117181
https://www.e-periodica.ch/digbib/about3?lang=de
https://www.e-periodica.ch/digbib/about3?lang=fr
https://www.e-periodica.ch/digbib/about3?lang=en


0 6. April 2000

Helv. Phys. Acta 72 (1999) 295 - 300
0018-0238/99/050295-06 S 1.50+0.20/0
© Birkhäuser Verlag, Basel, 1999

BIBLIOTHEK

I Helvetica Physica Acta
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potential.
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Abstract. In the momentum space we find the bound eigenenergies and eigenfunctions of the ID
Schrödinger equation for an asymmetric Coulomb potential. We find that eigenfunctions in the

configuration space are expressed in terms of fractional derivatives. Our approach could provide
qualitative features of the electronic states of an impurity located between two different quantum
wires.

Introduction

In general, asymmetry in nature produces exciting physical phenomena. For instance, in the

study of artificial heterostructures there is recent experimental and theoretical interest in
the effects of asymmetry in quantum systems such as wells [l]-[5], wires [6] and dots [7].

The stationary states of the one-dimensional (ID) Schrödinger equation describing the
ID hydrogen atom (ID H atom) have attracted a great deal of interest [8, 9, 10, 11]. This
equation is related to the exciton problem in the effective mass approximation in the study
of high temperature superconductors[12], semiconductor quantum wires [13, 14, 15, 16],

polymers [17, 18], and due to the existence of image forces on ID electron gas at the helium
surface, is also related to the Wigner crystal [19, 20].
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A general characteristic of some ID calculations is that the Frobenius series method was
employed to solve the ID Schrödinger equation in real space, and this was done only for the

symmetric potential 1/|.t|. To our knowledge the ID asymmetric potential Aj / \x\ for x > 0

and X-2/ \x\ for x < 0 with A] A ^2 has not been investigated before. We believe that our
approach is illustrative since there are not many problems of this type suitable to be solved
in the momentum space.

Clearly, our ID Hamiltonian does not describe a physical problem since real systems
always exhibit finite thickness. However, due to recent advances in the fabrication and

study of the physical properties of semiconductor heterostructures [13] it is now feasible to
construct and study a system formed by a fixed impurity of total charge Ze located between
two different semiconductor very thin quantum wires (QW) -with transverse thickness of the
order of nanometers. Hopefully, our results could exhibit some qualitative features of the
behaviour of such real system in the case of highly-confined electrons -for which x >> y. z

almost always if the system is oriented along the x-direction. Electrons experience asymptotic
Coulomb potentials Zt:/c,r to the right and to the left where e, (i 1,2) are screening
dielectric constants and r fx2 + y2 + z2, which is similar to our potential Ze/c, \x\. On
the other hand, in a highly-confined real system electrons practically move in ID since its
wavefunction can be written as f(y, z)etkx. That is, an electron is free in the rc-direction and
in the y- and z-directions it has its lowest energy when f(y,z) corresponds to the transverse
confinement groundstate.

TÌ+(o-£]V< 0, (2.1)

2 Momentum space equation

The ID Schrödinger equations with attractive asymmetric Coulomb potential to be considered

here are given by

df)
|

(-yg

where 7 2mZe2/h2. E -e1y£/f and g 1/e, for x > 0 and g l/e2 for x < 0 Here

m and e are the mass and electric charge of the electron and Z is a positive integer. We

restrict our work to consider just the bounded states associated to Eq.(2.1) for which their
corresponding wave functions are square integrable in the whole space. For such states the
Laplace transform £ exists for both the positive and negative parts of the real axis, defined
by

/00 r§^(§)r/5, (2.2)

and can be performed by using the property [21] £ [i/'(§)/§] =/°° cp(f) \f valid whenlin^- >0 ip(x)/i

is well defined. It should be remarked that it can be directly shown form Eq.(2.1) that %b(x)
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does satisfy this condition. Here s is understood as s ip/K. Taking the Laplace transform
of Eq.(2.1) gives

i-s2 + £)^ + 1 (G(s) - G(oo)) - ^(0+) 0, (2.3)
^ ' as €] dx

where G(s) J£ (p(s')ds' and dip(Q+)/dx is the right hand side limit of ip(x) at x 0. By
solving this equation for G(s) and rewriting the resulting expression in terms of p, we arrive
at

G(s)-G(oo)-i-lf(0f Ai(§^Y'V\ x>0 (2.4)
7 dx \ fE + s J

where Ai is an arbitrary constant to be determined by normalization. Using the same
procedure but for the negative part of the real axis, we obtain

G(S)-G(-oo)-^(0f A2(^-)^, ,«,, (2.5)

where A2 is an arbitrary constant to be determined by normalization. By integrating
Eq.(2.1) one time with respect to x. it can be shown that the condition limJ._>u ip2(x)/x < 0,

leads to dip(Q+)/dx dw(0~)/dx. Thus by evaluating Eqs.(2.4) and (2.5) at oc and

-co. respectively, the continuity of the derivative allows to write (Ai/ei)etrnA '»v J

(/l2/e2)e"n7r/(2£"/?). which yields the eigenenergy spectrum; En -(l/e, + l/e2)2mZ2e7 (8/iV
with n an integer. Taking the derivative of G„ for a particular n yields

dG(s) _
A (VS-s)^'1

+i ' (2.6)
ds ^^fs + s)^

or written in terms of p, we have after manipulation

dC t2 4ing(£H2/(£i+€2))aictan(prm£i£2/mZe2(61+£2))

cpJp) —— A 5 (2.7)
dp p2 + [(l/e1+l/£2)mZe2/hf2

V '

here A jAi/ey 7A2/e2. The corresponding probability densities associated to each

»-eigenfunction can be calculated from Pfp) \dGn/dp\2 yielding Pn(p) A„/(£.+ e )b
V

where An is a normalization constant. Notice that for a given n, Pn(p) has the same form as

that of the only bound state of an attractive delta potential, that is to say, we could adjust
the strength of the delta potential in such way that we could reproduce Pn(p) for any n.

w
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3 Wavefunctions in real space

To obtain the eigenfunctions in real space ip„(x), we take the inverse Laplace transform of
dGn/dp or Bromwich integral for both the positive and negative parts of the real axis,
defined by

f(x) £— [ff)} £- f+)~ \fcP(f)V-'- (3.1)

Here the integration contour is a vertical line in the complex plane which may be closed

by an infinite semicircle in the left hand semiplane. 7- is a constant to be chosen so that all
the singularities of cp(s) are on the left hand side of the vertical line. Substitution Eq.(2.6)
into the last definition and integrating by parts, we have

Anx rr+i°°ds (y/ë-a\$* « ,.„,

and if we introduce the dimensionless variable z (s + f£)/(s — fS). Eq.(3.2) can be

expressed as the contour integral in the complex unit circle \z\ < 1 given by

ALCec r e-"K*l(i-z)
ipfx)=--f^jdz^7 7, (3.3)

2th Jc ztrc(i-z)2
where Ç \[Zx. It is convenient to rewrite the contour integral of Eq.(3.3) in terms of the
variables w — Ç 2Çz/(l — z), to obtain

IpC r ,,,1SQ+] p—w
V-n(x) KL-^-tfdCe1 r w

Jw-
27i J (w-0n9O+y

^, ,7 C9a+1e~0, (3.4)
r(n.rya+ 1) dÇ*" V '

where a 2eje2/(£i + c2). With this transformation the new contour encloses the point
ix' C in the w plane. In Eq.(3.4) we have used the Osler-Nekrassov definition for the
fractional derivative [22], given by

1 / h(w) 1 <P>h(w)
fj> dw TV 77, T

27ri./c (w-f',+i r(r? + l) df

for any function h(w) and real number T). Here fZ(n) is the Gamma function To expand
Eq.(3.4) we use the Leibnitz rule's generalization
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dnqa [fg] Ä (nga\d^a-kfdkg
drngc 2-^y k J dÇnga-k jçk '

valid for arbitrary value of q, and the formulae [23]

(3.5)

dÇnsa-* r(A: + 2)
^ ' l ' '

Fr(-fc,-c), (3.7)
dxh Ç

where T(c, Ç) is the incomplete Gamma function defined by [24]

T(cf) =-^Z— T t^e-'dt. (3.8)
I (c) 7o

By substituting the above expressions into Eq.(3.4) we write ipn(0 as

,.(C).2,^-<g(T)Fs^±|_r(-t,-;). (,9)

Finally, we shall exhibit explicitly the asymptotic behavior ofipi.n(Ç) for both small Ç and

large values of Ç. From Eq.(3.8) we have T(c, 0) l/r(c + 1), and thus we can approximate
ipi.n(C) around the origin as

iPhn(f ^2tiAfF(n). (3.10)

where F(n) is a finite positive constant given by

EV i V^ (nga\ nga + 1

F(n) £UJr(^2)r(i-fc)- (311)

On the other hand, using the fact that r( — cf) « f for large values of Ç we obtain the
following asymptotic expression

In summary, we have obtained the ID bound states of an asymmetric Coulomb potential
which to our knowledge has not been investigated before. We found the eigenergies and

gave expressions of the eigenfunctions in terms of fractional derivatives which in turn can be

written in terms of incomplete Gamma functions. Also we provided analytical asymptotic
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expressions of these eigenfunctions for small and large arguments. We hope that this paper
may stimulate further work on the study of asymmetric quantum problems with Coulomb-

type and related singular potentials.
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