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Algebra with q a Root of Unity.
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Abstract

When g is a root of unity, rwo mode extension of a single q-
oscillator algebra was constructed. It was shown that this algebra

s/?(2)-covariant oscillator algebra) is covariant under slq(2). The
coherent states and coherence factor were computed.

1 Introduction

The theory of quantum groups [1-3] has led to the generalization deformation

of the oscillator boson, fermion algebras in several directions. The

development of differential calculus in non-commutative quantized spa:es

has identified multimode systems of deformed creation and annihilation

operators covariant under the actions of quantum groups [4-6].Generalization

of the usual boson-fermion realizations to quantized Lie algebras and super-

algebras have resulted in the study of single-mode deformed bosons [7,8] aid

fermions [9,10].

A single-mode q-oscillator with the creation (a*), annihilation (a) and

number operators (TV) operators obeying the relations

aai-qata l, [N,a\ -a, [N,ai} ai
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has been the subject of study by some authors [11-13] in the past, independent

of the recent developments due to the theory of quantum groups.

When the deformation parameter q is real, the first relation of the above

equation is invariant under the hermitian conjugation. So, af can be

interpreted as a hermitian conjugate operator of a. But, the situation is different

when q is a complex number.

In this paper, we restrict our discussion to the case that ç is a root of

unity. In this case, the first relation of the above equation is not invariant

under the hermitian conjugation any more. Thus, we should rewrite the

q-oscillator algebra as follows;

aa+ — qa+a 1,

where a+ is not a hermitain conjugate of a. But, a and a+ play roles of

lowering and raising operators, respectively, if the following relations maintain

[TV, a+] a+, [N, a] —a.

Some representation theory of the q-oscillator algebra with q a root of unity

is discussed elsewhere [ 14,15].

In this paper, we discuss two-mode q-oscillator system which is covariant

under some quatum group slq(2). In the following we restrict our discussion

to the case that q is a k-th. primitive root of unity

k i Qi
q =1, or q e~
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2 s/g(2)-covariant Oscillator Algebra

When q is real, quantum group covariant oscillator algebra was firstly

introduced by Pusz and Woronowicz [4-6]. They demanded the g^(n)-covariance

among step operators. However, when g is a root of unity, Q^(n)-covariance

should be replaced with si9(n)-covariance. Following their technique, we can

write the s/9(2)-covariant two-mode oscillator algebra as follows;

aia2 qa2ai,

Û1+Û2+ <7-1a2+a1+,

aia2+ qa2+au

a2ai+ qai+a2,

0-10-1+ - q2o\+oi 1,

a2a2+-q2a2+a2 lA(q2-l)ai+ai. (1)

When qk — 1, from the algebra (1), we see that both af and a*+ commute

with all operators of algebra (1), which means that they are central elements

of algebra (1). So we can set

ol al 0 (2)

and we have the finite dimensional representation.

Now we will prove the s/9(2)-covariance of the algebra (1) explicitly. In

order to do so, we should introduce the s/ç(2)-matrix. An s/ç(2)-matrix can

be written in the form
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where the following commutation relations hold

ad — da (q )bc,
q

ab qba, cd qdc,

ac qca, bd qdb,

bc cb, detqM ad — qbc 1. (3)

By the s/g(2)-covariance of the system, it is meant that the linear trns-

formations

M ai \ _ a b \ cl\ \ _ a[
a2 J \c dJ \a2

(a1+ a2+)M l a1+ a2+ _ ^ J af af (4)

lead to the same commutation relations (1) for (a\,a'1+) and (a'2,a2+). It

should be noted that the particular coupling between the two modes is

completely dictated by the required sZ?(2)-covariance.

The Fock space representation of the algebra (1) can be easily constructed

by introducing the hermitian number operators {Ni,N2} obeying

[Nh a,j] -Ôijuj, [Ni,a3+} 6lJa3+, (i,j 1,2). (5)

Let JO, 0 > be the unique ground state of this system satisfying

TVi|0,0>=0, ai|0,0>=0, (t l,2) (6)

and {\n, m > \n,m 0,1,2, ¦ • •, s} be the set of the orthonormal number

eigenstates

Ni\n,m >= n\n,m >, N2\n,m >= m[n,m >,
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< n, m\ri, m' >= 5nn>ômm>. (7)

From the algebra (1) the representation is given by

ai\n,m >= J[n]\n — l,m >, a2|n,m >= qnJ[m][n,m — 1 >,

a1+|n,m >= y[n + l]|n+l,m >, a2+|n,m >= qn^J[m A l]|n,m+l >, (8)

where the q-number [x] is defined as

a2x - 1

oz — 1

Since a^ is not a hermitian conjugate operator of a,, we introduce two

hermitian conjugate operators af and a\+, where both are hermitian conjugate

operators of al and al+, respectively. The representation of a\ and a*+

are given by

a\[n,m >= J[n A l]*|n — l,m >,

a\[n,m >= g nJ[m + l]*|n,m + 1 >,

aj+|n,m >= y [n]*|n — l,m >,

a2+|n, m >= q n\i[m]*\n,m— 1 >, (9)

where * implies a complex conjugation. Then, al4_ and at play roles of

annihilation and creation operators, respectively and they satisfy

(a\+)k (a\)k 0. (10)

At this point, it is worth noticing that the following relations hold;

t t -N,aia\-qa\ai q ',
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aia2 q a\a\, a2a\ aa{a2,

al+ai+ -qo-i+a\+ =q~N',

ax+a2+ qa2+a\+, al+ai+ q~1al+al+,

Oi+a] qa^,
al+a) qa]al+, (i ^ j), (11)

where we used the formulas

[x][x]'=q2-2*[x]2,

^[xA l][x + !]• - qy/[x][x]* q~x,

,J[x+l}[xY=qy/[x+iy[x}.

3 Coherent States

There exists several methods for constructing coherent states. In this section,

we construct coherent states as eigenstates for annihilation operators ai and

a2. From the definition of coherent states

ai\z) zi\z),

a2\z) z2\z),

where \z) \z\, z2) and zfs are called coherent variables. In the case of the

ordinary harmonic oscillator, the coherent variables are complex numbers.

Here, the situation is a little bit different. From the generalized nilpotency

of annihilation operators

a\ <4 0,
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the coherent variables should be generalized Grassmann variables obeying

z\ zk2 0.

From the commutation relations of two annihilation operators, we have

zxz2 q~lz2zx. (12)

If we introduce the complex conjugation of z, as z* and assume that (ab)*

b*a*, we have

z\z\ q~lz2z{ (13)

and

(zf)* (4f 0. (14)

Then, we obtain the unnormaized coherent state as follows;

fc—1 vn ~m
4>-\ /C>r)

J2 i \n,m>. (15)
n,m=o J[n]![m]!

Its dual state is given by

(z\= £ < nm\ ^)m(zî)" (16)
n,m=o -y/[n]*![m]*!

From the algebra (1), we can obtain the remaining commutation relations;

z\z2 qz2z\,

z\z\ — q Z\z\,

z\Z\ Z\Z\,

z"2z2 z2z2, (17)
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The length z\z\ commutes with all coherent variables and their complex

conjugates. Using this fact, the norm of coherent states is given by

(z\z) Ek(z\zi)Ek(z*2z2), (18)

where
fc-l in(n-l)

Ek(x) E ¦

and we used the formula
„=o W!

[n].| g-n(n-l)[n]|

4 Coherence Factor

The coherence factor turns out to be very important in quantum optics and

multiphoton spectroscopy. It occurs in the expression of the absorption or

emission multiphoton intensity. We define here the coherence factor g\ of

order m by

Am] _ -
< a\ai >T

where we adopted the notation
r lZAfZf, m

(z\z)

for denoting the expectation value of the operator X on the coherent state

\z).

It is then a simple problem to prove that

g\m) 0(k-l-m),
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(m) [Efg^z'zi)}
92 - [Ek(qHlz{)]^{k 1 m)' (-0)

where the step function 6 is defined by

„m_ro if * < o

ö(t)-\i ift>o •

For example, when k — 3, the non-vanishing coherent factors are

tf>

1,

5<2) [1 + (2 + 3q)z*1z1 A (6q - l)(z\zi)%

where q e »

When fc goes to oo boson limit we have q —» 1 and Efx) becomes an

ordinary exponential function. So, we have

glm) l for 771 1,2,..., (21)

which generalizes well-known results for ordinary bosons. In the case where k

is an arbitrary integer greater than two, the vanishing of the coherent factar

gl for m > k — 1 indicates that a given quantum state cannot be occupied

by more than k — 1 identical particles, which generalizes the Pauli's exclusion

principle.

5 Conclusion

In this paper, I have obtained two mode oscillator algebra which is covariant

under slq(2) transform when g is a /c-th primitive root of unity. In this case,
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it was shown that there exist two types of creation annihilation) operators.

The Fock representation for this algebra was obtained and the coherent^state

for this algebra was explicitly constructed by introducing the generalization of

the Grassmann variables. Using these results, the coherence factor of order

m was computed and it was shown that for this algebra a quantum state

cannot be occupied by more than fc — 1 identical particles. These results

can be easily extended to more general case, multimode oscillator algebra

which is covariant under a quantum group slq(n). Therefore, in this paper,

I restricted my concern to two mode case.
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