Zeitschrift: Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und

Hygiene = Travaux de chimie alimentaire et d'hygiène

Herausgeber: Bundesamt für Gesundheit

Band: 21 (1930)

Heft: 1-2

Artikel: Sur la coloration artificielle des denrées alimentaires

Autor: Balavoine, P.

DOI: https://doi.org/10.5169/seals-983917

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 08.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Sur la coloration artificielle des denrées alimentaires.

Par Dr P. BALAVOINE (Laboratoire cantonal de Genève).

L'introduction des colorants dans la fabrication et le traitement des denrées alimentaires tend de plus en plus à se généraliser; cette tendance est due, en partie, au fait que le public consommateur préfère un produit de belle apparence. Or la coloration des denrées alimentaires est actuellement réglée par l'Ordonnance fédérale du 23 février 1926, qui s'est inspirée de deux principes: n'autoriser la coloration artificielle que dans certains cas; n'autoriser qu'un nombre restreint de colorants. Le problème est ainsi heureusement simplifié et le chimiste se trouve donc placé, pour chaque denrée, devant deux recherches à effectuer: constater la présence ou l'absence de colorants étrangers; vérifier si le colorant constaté est autorisé.

Il faut souhaiter que ces recherches soient prévues pour chaque chapitre de la nouvelle édition du Manuel suisse des denrées alimentaires. Bien que peu de questions aient fourni la matière d'un aussi grand nombre de travaux, tant le champ est vaste, leur résolution reste souvent délicate, complexe et malaisée.

I.

En ce qui concerne les réactions générales des 29 colorants artificiels autorisés, il n'a paru utile et commode de les assembler dans des tableaux synoptiques, de façon à pouvoir rapidement les indentifier soit qu'il soient à l'état pur, soit qu'ils soient incorporés à des denrées alimentaires. Ces réactions sont disséminées dans la littérature; beaucoup manquent; j'ai dû compléter les tableaux à l'aide de réactions effectuées sur des colorants purs.

Qu'on me permette de noter brièvement la marche à suivre 1): Séparer, si possible, par épuisement en solution de bisulfate de potassium sur fibres de laine, le colorant de la denrée ou de la boisson à examiner. Redissoudre le colorant en traitant les fibres avec NH₃ 1% à chaud, pendant une demi-heure; évaporer la solution après l'avoir répartie en plusieurs petites capsules. Faire les réactions sur ces résidus; au cas où l'on aura à examiner les colorants eux-mêmes ou en solution, la séparation sur laine pourra être utile si l'on est en présence de mélanges de colorants.

¹⁾ Méthode Arata, Z. anal. Chem., 1889, 28, 639.

Au préalable, on aura avantage à préparer une fois pour toutes un tableau d'ensemble des 29 colorants fixés sur fibre de laine; par comparaison avec les mouchets obtenus on pourra déjà obtenir un certain triage. Cette comparaison pourra se faire aussi en les exposant à la lampe de quartz; j'ai obtenu de cette façon des résultats intéressants permettant d'identifier plus facilement le colorant.

Tableau I. Différenciation des 29 colorants autorisés.

(Le n° de la case correspond au n° d'ordre de la liste.)

Action	de	l'acide	sulfurique.
--------	----	---------	-------------

couleur de la solution aqueuse	jaune	rouge	bleu	violet	décoloré
jaune et orange .	1-2-3-9				4
rouge	11—12	10-15-16	14	8-13-17	
dichroïque ou fluo- rescente	18—19—21				
bleue	23		25—26		
violette	27				
verte	2829				
insoluble	6-7-20-22	5 - 24			

Tableau II.

Différenciation des colorants.

(Méthode Ronnet, Ann. des Falsifications 1911, 474.)

La solution aqueuse du colorant alcalinisée par la potasse à 10 % est agitée avec de l'éther:

L'et jaune	her décanté rouge	est col vert	oré en violet	L'éther est incolore et ne La solution aqueuse ou a					
	•			L'éther est coloré ou se colore par l'addition de NH3	Ľé jaune	ther est in orange	colore: le rouge	colorant éta bleu	ait: vert
3	11	29	27	18	1	8	. 12	23	28
4				19	2		13	24	
5				20	9		14	25	
6				21	10		15	26	
7				22			16		
22							17		

Le nº correspond au nº d'ordre de la liste des 29 colorants.

Action des réactifs sur le colorant ou sur le produit de l'évaporation du dissolvant.

Colorants jaunes et orangés.

Tableau III.

Nos	Noms	Le colorant es	t soluble dans	Coloration de la laine en bain de bisulfate	SO	4 H 2	· · ·	I Cl	Na OH
		l'eau en	l'alcool en	de potasse	concentré	dilué 10 º/o	concentré	dilué 10 º/o	10 º/o
1	jaune naphtol	jaune	peu soluble	jaune	jaune	jaune pâle	décoloré	décoloré	jaune
2	jaune acide	jaune	jaune	jaune or	jaune brun sale	jaune rouge	plus rouge	plus rouge	jaune
3	chrysoïdine	jaune	orangé	jaune orangé	jaune	jaune orangé	cramoisi	insoluble	insoluble
4	auramine O	jaune foncé	jaune or	jaune	incoloré	jaune	jaune foncé	jaune pâle	précipité blan
5	soudan I (orangé G)	insoluble	jaune orangé	orangé	rouge fuchsine	sans action	rouge fuchsine	sans action	plus brun et moins coloran
6	soudan G	insoluble	jaune	jaune orangé (rose en sol. alccolique)	jaune orangé	rouge cramoisi	rouge cramoisi	rouge cramoisi	sans action
7	dimétyl-aniline- azobenzène	insoluble	jaune	à peine jaune (sol. alcoolique)	jaune brun	rouge orangé	rouge brun	rouge orangé	jaune or
8	tropéoline 000 n° 1	rouge orangé	orangé	rouge orangé	violet	rouge puis orange	violet	insoluble	plus rouge cramoisi
9	tartrazine	jaune orangé	jaune	jaune orangé	jaune	jaune	jaune	jaune	jaune un peu plus vif
10	orangé L	rouge orangé	rouge orangé	rouge	rouge écarlate	insoluble	rouge écarlate	insoluble	rouge brun

					Colorants rouge	8.			
11	fuchsine	rouge violacé	rouge violacé	rouge violet	jaune brun	jaune	jaune brun	jaune	décoloré
12	fuchsine acide	rouge fuchsine	rouge fuchsine	rouge	jaune brun	rouge	plus pâle	rouge	décoloré
13	roccelline	rouge orangé	rouge	écarlate	violet	précipité brun	violet	inchangé	rougeâtre
14	rouge Bordeaux	rouge	rouge	rouge	bleu	rouge •	rouge violacé	rouge	rouge brun
15	nouvelle	rouge	rouge	écarlate	rouge violacé	rouge	rouge violacé	rouge	rouge brun pâle
16	ponceau 3 R	écarlate	peu rouge	écarlate	plus violet	plus brun	rouge violet	rouge	rouge brun
17	amarante	rouge	rouge	rouge violet	bleu violet	rouge	rouge	rouge	plus intense
18	érythrosine	rouge orangé bleuté	rouge	rouge pâle	jaune	précipité rouge orangé	précipité rouge orangé	précipité rouge orange	rose
19	éosine	rouge bleu fluorescent	rose fluo- rescent	rouge rose	jaune	précipité rouge	précipité orangé	jaune	plus intense
20	éosine à l'alcool	insoluble	rose fluo- rescent vert	rouge saumon	jaune	précipité rouge rose	précipité orangé	jaune rose verdâtre	plus intense
21	phloxine	rouge fluorescent	rouge fluo- rescent	rose saumon	jaune brun	précipité rouge	précipité orangé	précipité orange	peu de changement

Nos	Noms	Le colorant est soluble dans		Colorant de la laine en bain de bisulfate	SO	S 04 H2		H CI	
		l'eau en	l'alcool en	de potasse	concentré	dilué 10 º/o	concentré	dilué 10 º/o	10 º/o
22	bleu d'aniline	insoluble	bleu	peu en bleu	jaune brun	bleu insoluble	insoluble	insoluble	insoluble
23	bleu soluble	bleu	bleu	bleu foncé	jaune brun	précipité bleu	bleu	bleu	rouge brun
24	bleu d'alizarine	insoluble	bleu	- bleu	rougeâtre	décoloration	rougeâtre	décoloration	bleu précipité vert
25	indigotin indigocarmin	bleu	insoluble	bleu	bleu	bleu violet	bleu	bleu	jaune
26	induline	bleu	bleu	bleu	bleu foncé	bleu violet	bleu	peu en bleu	violet
				Color	rants violets et	verts.			
27	violet de méthyl B et 2 B	violet	violet	violet	jaune	bleu violet	jaune brun	vert bleu	précipité brur rouge
28	vert lumière S. F.	vert jaunâtre	vert	vert	jaune brun	vert jaunâtre	jaune brun	jaune or	décoloré
29	vert malachite	vert bleu	vert bleu	vert bleu	jaune brunâtre	vert jaune	brun rouge	vert jaune	précipité blan

II.

Les lignes suivantes contiennent des observations faites sur quelques cas particuliers.

a) Saucisses, préparations de viande, de poissons.

Ces produits sont souvent très gras; comme la coloration n'est pas autorisée, il suffira de vérifier la présence ou l'absence d'un colorant; j'ai obtenu de très bons résultats avec la méthode Sprinkmeyer et Wagner²) légèrement modifiée. Le colorant restant facilement incorporé à la graisse, on en dissout 10 cm³ dans 10 cm³ d'éther de pétrole; on additionne de 15 cm³ d'acide acétique glacial; la couche d'acide ne se séparant pas toujours de la couche éthérée, il suffit d'ajouter quelques gouttes d'eau. Le colorant passe alors dans la couche acide qu'on peut alors séparer; on évapore la solution acide et on peut fixer le colorant sur la laine en le reprenant avec de l'eau et quelques gouttes de solution de bisulfate de potasse.

Cette méthode peut convenir à la recherche des colorants dans les huiles.

b) Préparations à base de farine, puddings, etc.

Ces préparations peuvent contenir du café grillé. Or, ce produit, à l'inverse du caramel, colore nettement la laine en bain aqueux avec bisulfate. D'une façon générale toutes les substances végétales grillées (chicorée, malt, etc.) contiennent des composés colorants la laine, tandis que le caramel en solution d'une même intensité colorante la teinte à peine (1%) ou pas du tout.

A propos de ce chapitre on se rappellera que le cacao cède aussi un colorant teintant la laine; on peut l'éliminer avec l'acétate basique de plomb.

c) Vins blancs, cidres, vermouths, vins doux blancs.

Certains jus de fruits (pommes, raisins de Malaga) accusent, à l'épreuve sur laine, une coloration saumon plus ou moins marquée. C'est le cas notamment des produits qui ont subi un certain «brunissement»; les vermouths à base de vins doux, moscatels, etc., colorent nettement la laine.

d) Rhums, cognacs, eaux-de-vie.

La différenciation des colorants artificiels d'avec le caramel se fait aisément, car le caramel à la dose de $1^{0}/_{00}$ (teinte cognac) laisse la laine blanche; à la dose de $5^{0}/_{00}$ (teinte rhum) il la jaunit à peine.

Cependant fréquemment les rhums colorent la laine d'une façon suspecte. Certains auteurs affirment que la cause en est due aux sauces dont on parfume les rhums dans le pays d'origine. Il est possible aussi que le bois de futs cède un colorant susceptible de teinter la laine (Kreis, Bericht 1928).

²) Z. U. N., 1905, 9, 599.