Eine lineare Integralgleichung auf dem Gebiete der Lebensversicherungsrechnung

Autor(en): **Schenker, O.**

Objekttyp: Article

Zeitschrift: Mitteilungen / Vereinigung Schweizerischer

Versicherungsmathematiker = Bulletin / Association des Actuaires

Suisses = Bulletin / Association of Swiss Actuaries

Band (Jahr): 11 (1916)

PDF erstellt am: **16.08.2024**

Persistenter Link: https://doi.org/10.5169/seals-550819

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

Eine lineare Integralgleichung auf dem Gebiete der Lebensversicherungsrechnung.

Von Dr. O. Schenker, Bern.

Wir knüpfen an die verdienstvolle Kinkelin'sche Arbeit: "Elemente der Lebensversicherungsrechnung" (I. Kapitel, 4. Aufgabe), an. Es heisst dort in der Ausgabe von 1869;

"Eine Anzahl gleich alter Ehepaare sei gegeben, man soll finden, wie viele von ihnen nach einer gegebenen Zeit noch leben, wie viele ausgestorben sind, wie viele Witwer und Witwen zurückgelassen wurden."

Professor Kinkelin konnte noch nicht von den einheitlichen internationalen Bezeichnungen Gebrauch machen, da dieselben erst seit 1898 bestehen. Selbstverständlich werden wir, soweit möglich, dieselben verwenden. Von den in Frage stehenden Ehepaaren sei der Mann x, die Frau y Jahre alt, ihre Zahl sei l_{xy} , so ist bekanntlich die Zahl der nach n Jahren noch vorhandenen Ehepaare:

$$l_{x+n\;y+n} = l_{xy} \cdot \frac{l_{x+n}}{l_x} \cdot \frac{l_{y+n}}{l_y} = l_{xy} \cdot {}_n p_x \cdot {}_n p_y.$$

Von den l_{xy} Ehepaaren sind nach n Jahren ausgestorben:

$$\begin{split} l_{xy} \cdot \frac{l_x - l_{x+n}}{l_x} \cdot \frac{l_y - l_{y+n}}{l_y} \\ = l_{xy} \cdot (1 - {}_n p_x) \cdot (1 - {}_n p_y) = l_{xy} \cdot {}_n q_x \cdot {}_n q_y. \end{split}$$

Von den l_{xy} Ehepaaren leben nach n Jahren als Witwen $l_{xy} \cdot {}_{n}q_{x} \cdot {}_{n}p_{y}$, und als Witwer $l_{xy} \cdot {}_{n}p_{x} \cdot {}_{n}q_{y}$ Personen.

Zum Beispiel sind von 400 Ehepaaren, wo die Männer 30 und die Frauen 25 Jahre alt sind, nach 10 Jahren, auf Grund der Tafel der 17 englischen Gesellschaften, noch 335,15 Ehepaare vorhanden, 2,86 Ehepaare sind ausgestorben, Witwen sind vorhanden 32,55, Witwer 29,44 (siehe Kinkelin o. c., Seite 10). Sehr interessant sind nun die hieraus sich ergebenden Folgerungen. Prof. Kinkelin sagt wörtlich:

"Es ist eine weit verbreitete Meinung, dass schon die ersten Jahre des Bestandes einer Witwenkasse auf ihr zukünftiges Gedeihen schliessen lassen. Ferner wird gewöhnlich angenommen, dass ein grosser Zugang junger Mitglieder einer morsch gewordenen Kasse aufhelfen könne. Die Irrtümlichkeit dieser Ansichten wird durch nachfolgendes Beispiel dargetan."

"Eine Witwenkasse enthalte 400 Ehepaare, in denen die Männer 30, die Frauen 25 Jahre alt sind. Sobald eine Frau stirbt, trete der Witwer aus. Die gestorbenen und die ausgetretenen Mitglieder werden jeweilen nach 10 Jahren durch neue Ehen von den angegebenen Altern ersetzt, so dass die Gesamtzahl alle 10 Jahre wieder auf 400 steht. Dann sind vorhanden:

Nach Jahren	Witwen	^o / _o der Ehen	Lebende erste Mitglieder	Witwen der ersten Mitglieder
10	32,55	8,14	335,15	$32,\!55$
20	69,79	17,45	267,00	64,43
30	116,23	29,06	183,31	99,29
40	159,36	39,84	$86,\!46$	121,72
50	158,96	39,74	16,53	90,78
60	123,50	30,87	0,37	23,75

"Hieran knüpfen sich folgende Bemerkungen: Würden zunächst keine neuen Mitglieder eintreten, so zeigen die die ersten Mitglieder betreffenden Zahlen, dass die Witwenzahl bis zu einem zwischen dem 30. und 40. Vereinsjahr (genauer zwischen dem 37. und 38.) liegenden Zeitpunkt unter der Mitgliederzahl bleibt, von dort an aber rasch grösser wird, so dass nach 60 Jahren die zahlenden Mitglieder ausgestorben, dagegen noch 24 Witwen am Leben sind. Ahnliche Umstände würden eintreten, wenn während längerer Zeit keine oder nur wenig neue Mitglieder dem Verein beiträten. Auch bei Wiederersetzung der gestorbenen und ausgetretenen Mitglieder zeigt die Witwenzahl eine beständige Zunahme bis zum 40. Vereinsjahr, erreicht dort ein Maximum von nahe 40 % der Mitgliederzahl, nimmt vom 50. Jahr an wieder ab bis auf etwa 30% und wächst später wieder. Etwas günstiger gestaltet sich die Sache, wenn die Mitgliederzahl selbst im Zustande des Wachsens ist; aber dieses Wachstum kann nicht ins Unendliche fortgehen, und es wird einmal ein Stillstand oder Rückgang eintreten, und von diesem Moment an wird das Verhältnis der Zahl der Witwen zu der der Mitglieder in um so stärkerm Masse zunehmen. Diese Beobachtung hat grosse Wichtigkeit für Witwenkassen, welche die zu verwerfende Einrichtung haben, dass der Betrag der Witwenpension von dem Stande der Kasse, d. h. von der Anzahl der zahlenden Mitglieder abhängt. Einem derartigen Verein kann nichts Schlimmeres begegnen als ein plötzlicher starker Zugang neuer Mitglieder, dem ein Stillstand folgt. Denn in diesem Fall wächst die Zahl der Witwen anfangs beinahe so, wie in der ersten Abteilung obiger Tabelle angegeben ist; infolgedessen nehmen die Witwengehalte ab, was wieder eine Rückwirkung auf den Zutritt neuer Mitglieder ausübt und nun eine um so raschere Zunahme der Witwen, wie sie die zweite Abteilung der Tabelle zeigt, verursacht. Wer es mit unsern Witwen-, Alters- und Sterbekassen aufrichtig meint, muss aufs dringendste vor dem Abhängigmachen der Bezugsbeträge von der Mitgliederzahl warnen, weil sie dies mit mathematischer Gewissheit einer traurigen Zukunft entgegenführt."

Die Darlegungen von Prof. Kinkelin geben nun Anlass zu einer interessanten und, wie mir scheint, lehrreichen Aufgabe, die wir folgendermassen formulieren können:

Eine Witwenkasse zählt l_{xy} Ehepaare von der Alterskombination x, y. Alle durch Tod des einen oder beider Ehegatten aufgelösten Ehepaare sollen kontinuierlich durch Ehepaare von der Alterskombination x, y ersetzt werden, so dass die Gesamtzahl der lebenden Ehepaare in irgend einem Zeitpunkt stets l_{xy} beträgt; wie gross ist nach n Jahren die Zahl der vorhandenen Witwen und Witwer, sowie die Zahl der ausgestorbenen Ehepaare, und zu welchen Zeiten erreichen die Zahlen der Witwen und Witwer ein Maximum, bzw. Minimum?

Zur Lösung dieser Aufgabe müssen wir verschiedene Voraussetzungen machen, wobei uns die geometrische Methode gute Dienste leisten wird. Wir wählen

die x-Koordinaten eines räumlichen rechtwinkligen Koordinatensystems zur Darstellung der Geburtszeit und die y-Koordinaten desselben zur Darstellung des Alters. Treffen wir die Vereinbarung, dass wir im Verlaufe der Rechnung nur Bezug nehmen wollen auf Ehepaare mit konstanter Altersdifferenz (z. B. 30 – 25 = 5), so können wir die zu einer beliebigen Zeit vorhandenen Ehepaare geometrisch zur Darstellung bringen, indem wir ihre Anzahl als z-Koordinate, das Alter des Ehemanns als y-Koordinate und den Zeitpunkt seiner Geburt auf der X-Achse auftragen. Nehmen wir speziell mit Kinkelin an, es seien ursprünglich 400 Ehepaare vorhanden, das Alter der Ehemänner sei 30 und das der Ehefrauen 25. Für die weitere Rechnung können wir nun nicht annehmen, alle Ehemänner seien genau 30 und daher die Ehefrauen genau 25 Jahre alt; denn sonst würde die hierzu gehörige z-Koordinate unendlich gross werden, also einem Unstetigkeitspunkt entsprechen; wir müssen vielmehr für das Alter 30 die Grenzen $30 - \frac{1}{2}$ und $30 + \frac{1}{2}$ und daher für das Alter 25 die Grenzen $25 - \frac{1}{2}$ und $25 + \frac{1}{2}$ setzen, also den Begriff des laufenden Alters verwenden. Ferner lassen wir die Hypothese gelten, die zwischen diesen Grenzen liegenden Alter seien gleich stark vertreten; dem Alter 30 — $\frac{1}{2}$ entspreche die y-Koordinate 0 und die Geburtszeit 1. Dann lassen sich die im Anfang des ersten Vereinsjahres vorhandenen 400 Ehepaare vom laufenden Alter 30,25 wie in Figur 1 geometrisch darstellen. Auf der X-Achse tragen wir vom Nullpunkt aus die Strecke 1 ab und errichten in ihrem Endpunkt A die z-Koordinate $\frac{400}{\sqrt{2}} = AD$; auf der Y-Achse tragen wir vom Nullpunkt aus ebenfalls die Strecke 1 ab und errichten in ihrem Endpunkt B die z-Koordinate

 $\frac{400}{\sqrt{2}} = BC$, so stellt das Parallelogramm ABCD die

Zahl der anfänglich vorhandenen Ehepaare vom laufenden Alter 30,25 dar. Wenn diese Ehepaare nach dem Gesetz F(y) aussterben (durch Tod des Mannes, der Frau oder beider Teile aufgelöst werden), so sind nach n Jahren hiervon noch vorhanden:

$$400 \cdot \int_{0}^{1} F(n+1-x) \cdot dx.$$

oder wenn $n + 1 = \alpha$ gesetzt wird

$$400 \cdot \int_{0}^{1} F(a-x) \cdot dx.$$

Soll die Zahl der Ehepaare stets 400 betragen, so müssen fortwährend neue Ehepaare in die Kasse eintreten. Zur Vereinfachung der Rechnung nehmen wir an, dass von diesen eintretenden Ehepaaren der Mann genau $30 - \frac{1}{2}$ Jahre alt sei, so wird das Gesetz, nach welchem diese Eintritte stattfinden, durch eine Kurve in der XZ-Ebene dargestellt, ihre Gleichung sei z = f(x); alsdann muss den Bedingungen der Aufgabe gemäss für jedes α die Gleichung bestehen:

$$400 \cdot \int_{0}^{1} F(\alpha - x) \cdot dx + 400 \cdot \int_{1}^{\alpha} f(x)$$
$$\cdot F(\alpha - x) \cdot dx = 400.$$

oder

(1)
$$\int_{0}^{1} F(a-x) \cdot dx + \int_{1}^{a} f(x) \cdot F(a-x) \cdot dx = 1.$$

Da diese Gleichung für jeden Wert von α bestehen muss, so ist sie identisch erfüllt; man kann sie daher

beliebig viel Mal nach α differenzieren und dadurch so viele Gleichungen erhalten, als man will. Zuvor müssen wir uns darüber Rechenschaft geben, wie ein bestimmtes Integral nach einer Konstanten differenziert wird, wenn diese Konstante in den Integrationsgrenzen vorkommt. Sei abkürzend f Funktion von x und α ; seien ferner u und v Funktionen von α , so besteht die Gleichung:

(2)
$$\frac{\delta \int_{u}^{v} f(x, \alpha) \cdot dx}{\delta \alpha} = -f(u) \cdot \frac{\delta u}{\delta \alpha} + f(v) \cdot \frac{\delta v}{\delta \alpha} + \int_{u}^{v} f'_{\alpha}(x, \alpha) \cdot dx.$$

Mittelst dieser Formel differenzieren wir die Gleichung:

$$\int_{0}^{1} F(\alpha - x) \cdot dx + \int_{1}^{\alpha} f(x) \cdot F(\alpha - x) \cdot dx = 1$$

nach α und bekommen dadurch die Gleichungen:

$$\int_{0}^{1} F_{a}'(a-x) \cdot dx + f(a) \cdot F(0) + \int_{1}^{a} f(x) \cdot F_{a}'(a-x) \cdot dx = 0$$

$$\int_{0}^{1} F_{a}''(a-x) \cdot dx + f'(a) \cdot F(0) + f(a) \cdot F_{a}'(0)$$

$$+ \int_{1}^{a} f(x) \cdot F_{a}''(a-x) \cdot dx = 0$$

$$\int_{0}^{1} F'''(a-x) \cdot dx + f''(a) \cdot F(0) + f'(a) \cdot F_{a}'(0)$$

$$+ f(a) \cdot F_{a}''(0) + \int_{1}^{a} f(x) \cdot F_{a}'''(a-x) \cdot dx = 0$$

Eine allgemeine Lösung dieser Gleichungen, d. h. die Bestimmung von $f(\alpha)$ und damit auch von f(x) kennen wir nicht. Wir beschränken uns deshalb auf Spezialfälle, indem wir zunächst voraussetzen, die Absterbeordnung folge der Moivre'schen Hypothese, d. h. sie verlaufe geradlinig und breche mit dem Alter 86 ab. Dann sind von den 400 Ehepaaren vom Alter 30,25 nach $\alpha-1$ Jahren noch vorhanden:

$$400 \cdot \left(1 - \frac{\alpha - 1}{56}\right) \left(1 - \frac{\alpha - 1}{61}\right).$$

Bezeichnen wir abkürzend $\frac{1}{56}$ mit a und $\frac{1}{61}$ mit b, so tritt an Stelle der Gleichung (1):

(1a)
$$\int_{0}^{1} \left[1 - a(\alpha - 1)\right] \left[1 - b(\alpha - 1)\right] dx$$

$$+ \int_{1}^{\alpha} f(x) \left[1 - (\alpha - x) a\right] \left[1 - (\alpha - x) b\right] \cdot dx = 1.$$

denn $F(\alpha - x)$ hat den Wert $\left[1 - (\alpha - x) a\right] \left[1 - (\alpha - x) b\right]$, wobei wir näherungsweise und zur Vereinfachung der Rechnung statt $\frac{1}{56 + \frac{1}{2}}$ und $\frac{1}{61 + \frac{1}{2}}$ bzw.

$$\frac{1}{56}$$
 und $\frac{1}{61}$ und im Integral $\int_{0}^{1} \left[1 - a(\alpha - 1)\right] \left[1 - b\right]$

 $(\alpha-1)$ dx für die variablen Koeffizienten von $\alpha-1$ ihre Mittelwerte a und b gesetzt haben. Gemäss Gleichung (2) ergeben sich aus (1^a) durch fortgesetztes Differenzieren nach α die Gleichungen:

(3)
$$f(\alpha) - a - b + 2(\alpha - 1) \cdot a \cdot b$$
$$+ \int_{1}^{\alpha} f(x) \left\{ -a \left[1 - (\alpha - x)b \right] - b \left[1 - (\alpha - x)a \right] \right\} \cdot dx = 0$$

(4)
$$f'(a) - (a+b) \cdot f(a) + 2 a \cdot b + 2 \cdot a \cdot b \int_{1}^{a} f(x) \cdot dx = 0$$

(5)
$$f''(a) - (a+b) \cdot f'(a) + 2ab \cdot f(a) = 0$$

Gleichung (5) stellt eine homogene lineare Differentialgleichung 2. Ordnung mit konstanten Koeffizienten dar. Eine partikuläre Lösung derselben ist von der Form: $C \cdot e^{A \cdot a}$; C ist eine verfügbare Konstante und A erhält man nach Einführung von $f(a) = C \cdot e^{A \cdot a}$ in (5) vermittelst der Gleichung:

(6)
$$A^2 - 2 \cdot \frac{a+b}{2} \cdot A + 2 \cdot a \cdot b = 0,$$

woraus

$$A_{1,2} = \frac{a+b}{2} \pm \sqrt{\left(\frac{a+b}{2}\right)^2 - 2 a \cdot b}.$$

Die vollständige Lösung der Gleichung (5) lautet daher:

(7)
$$f(a) = C_1 \cdot e^{A_1 \cdot a} + C_2 \cdot e^{A_2 \cdot a}.$$

Die Konstanten C_1 und C_2 bestimmen sich vermittelst der Gleichungen (3) und (4), indem man den Wert von $f(\alpha)$ und entsprechend den von f(x) in denselben substituiert. So ergibt Gleichung (3):

$$-a - b + 2(a - 1) \cdot a \cdot b + C_{1} \cdot e^{A_{1} \cdot x} + C_{2} \cdot e^{A_{2} \cdot x}$$

$$+ \int_{1}^{a} (C_{1} \cdot e^{A_{1} \cdot x} + C_{2} \cdot e^{A_{2} \cdot x})$$

$$(2a \cdot ba - 2ab \cdot x - a - b) \cdot dx = 0$$

Durch partielles Integrieren, Reduzieren und Berücksichtigung der Gleichung (6):

$$A^2 - (a+b) \cdot A + 2ab = 0$$

erhält man hieraus schliesslich:

$$\begin{split} k_1 & \Big\{ A_1 \cdot A_2^2 \left[2\,ab\,(1-a) + a + b \right] - 2\,ab \cdot A_2^2 \Big\} \\ & + k_2 & \Big\{ A_1^2 \cdot A_2 \left[2\,ab\,(1-a) + a + b \right] - 2\,ab \cdot A_1^2 \Big\} \\ & + A_1^2 \cdot A_2^2 \left[2\,(a-1)\,ab - a - b \right] = 0 \,, \\ & \text{oder} \end{split}$$

$$(8) \begin{cases} k_{1} \cdot A_{2}^{2} \left\{ A_{1} \left[2 a b \left(1 - a \right) + a + b \right] - 2 a b \right\} \\ + k_{2} \cdot A_{1}^{2} \left\{ A_{2} \left[2 a b \left(1 - a \right) + a + b \right] - 2 a b \right\} \\ + A_{1}^{2} \cdot A_{2}^{2} \left[2 \left(a - 1 \right) a b - a - b \right] = 0 \end{cases}$$

wobei
$$k_1 = C_1 \cdot e^{A_1}$$
 und $k_2 = C_2 \cdot e^{A_2}$.

Substituiert man aber gemäss Gleichung (7) die Werte von f(a) und f(x) in Gleichung (4), so erhält man

$$\begin{split} 2\,ab + C_{_{1}} \cdot A_{_{1}} \cdot e^{A_{_{1}} \cdot a} + C_{_{2}} \cdot A_{_{2}} \cdot e^{A_{_{2}} \cdot a} \\ - (a+b) \left(C_{_{1}} \cdot e^{A_{_{1}} \cdot a} + C_{_{2}} \cdot e^{A_{_{2}} \cdot a} \right) \\ + 2\,ab \left[\overline{C}_{_{1}} \cdot \frac{e^{A_{_{1}} \cdot a} - e^{A_{_{1}}}}{A_{_{1}}} + C_{_{2}} \frac{e^{A_{_{2}} \cdot a} - e^{A_{_{2}}}}{A_{_{2}}} \right] = 0 \,, \end{split}$$

oder durch Reduktion und Berücksichtigung der Gleichung (6), nämlich:

$$A^{2} - 2 \frac{a+b}{2} \cdot A + 2 ab = 0$$

(9)
$$k_{_{1}}\cdot A_{_{2}}+k_{_{2}}\cdot A_{_{1}}-A_{_{1}}\cdot A_{_{2}}=0.$$

Aus (8) und (9) bestimmen wir nun leicht:

$$k_{\scriptscriptstyle 1} = \frac{A_{\scriptscriptstyle 1}^2}{A_{\scriptscriptstyle 1} - A_{\scriptscriptstyle 2}}; \ k_{\scriptscriptstyle 2} = \frac{A_{\scriptscriptstyle 2}^2}{A_{\scriptscriptstyle 2} - A_{\scriptscriptstyle 1}}$$

Wir bekommen daher schliesslich für f(x) den Wert:

$$(10) \ f(x) = \frac{A_1^2}{(A_1 - A_2) \cdot e^{A_1}} \cdot e^{A_1 \cdot x} + \frac{A_2^2}{(A_2 - A_1) \cdot e^{A_2}} \cdot e^{A_2 \cdot x}$$

denn C_1 ist gleich

$$\frac{k_{1}}{e^{A_{1}}} = \frac{A_{1}^{2}}{(A_{1} - A_{2}) \cdot e^{A_{1}}},$$

und C_2 ist gleich

$$\frac{k_2}{e^{A_2}} = \frac{A_2^2}{(A_2 - A_1) \cdot e^{A_2}}.$$

Der gefundene Wert für f(x) muss natürlich die Gleichung (1^a) erfüllen. Es ist unschwer, zu zeigen, dass dies wirklich auch der Fall ist, wenn die Gleichung (6)

$$A^2 - 2 \frac{a+b}{2} \cdot A + 2 ab = 0$$
 berücksichtigt wird.

Bestimmen wir nun unter der Moivre'schen Hypothese die Zahl der Witwen nach *n* Jahren; sie ist offenbar:

$$400 \cdot (a-1) \cdot a \left[1 - (a-1) \cdot b\right]$$

$$+ 400 \cdot \int_{1}^{a} f(x) \cdot (a-x) \cdot a \left[1 - (a-x) \cdot b\right] dx.$$

Nach Einführung des Wertes für f(x) reduziert sich dieser Ausdruck schliesslich auf:

(11)
$$\frac{e^{A_1(\alpha-1)}[a-A_2]-e^{A_2(\alpha-1)}[a-A_1]}{A_1-A_2}-1$$

wegen $A_1 \cdot A_2 = 2 \cdot ab$. Für $\alpha = 1$ reduziert sich (11) auf Null, wie es auch sein soll. Der Ausdruck (11) wird ein Maximum bzw. Minimum, wenn

$$(12) \quad A_{1} \cdot e^{A_{1}(\alpha-1)} \left[a - A_{2} \right] - A_{2} \cdot e^{A_{2}(\alpha-1)} \left[a - A_{1} \right] = 0.$$

Für den angenommenen Spezialfall ist:

$$A_{1,2} = \frac{1}{2} \left(\frac{1}{56} + \frac{1}{61} \right)$$

$$\pm \sqrt{\frac{1}{4} \left(\frac{1}{56} + \frac{1}{61} \right)^2 - 2 \cdot \frac{1}{56} \cdot \frac{1}{61}} = 0,0171$$

$$\pm i \cdot 0,0171.$$

Ist allgemein $A_{1,2} = p \pm q \cdot i$, so lautet die Gleichung (12):

$$(p+q \cdot i) e^{(p+q \cdot i) (a-1)} (a-p+q \cdot i) - (p-q \cdot i)$$

$$\cdot e^{(p-q \cdot i) (a-1)} (a-p-q \cdot i) = 0,$$

oder nach einigen Reduktionen:

$$(a \cdot p - p^2 - q^2) \cdot \sin q (\alpha - 1) + a \cdot q \cdot \cos q (\alpha - 1) = 0,$$
woraus

(12a)
$$tg \ q(a-1) = -a \cdot q : (a \cdot p - p^2 - q^2).$$

Für unser Zahlenbeispiel ist tg q $(\alpha - 1) = 1,0961$, also q $(\alpha - 1) = 47^{\circ}$ 37' 30'' oder in Bruchteilen von

H:0,831, woraus: $\alpha-1=0,831:0,0171=48,6$ Jahre, d. h. nach der Moivre'schen Hypothese erreicht die Zahl der Witwen in unserem Beispiel nach 49 Jahren das 1. Maximum. Die aufeinanderfolgenden Maxima und Minima stehen in gleichen Zeiträumen voneinander ab. Durch Bildung der 2. Ableitung von (11) nach α findet man, dass für ein Maximum der Ausdruck

$$q(p^2+q^2)[(a-p)^2+q^2]:\sqrt{a^2\cdot q^2+(a\cdot p-p^2-q^2)^2}$$

negativ und für ein Minimum positiv sein muss, d. h. für ein Maximum ist das Vorzeichen der Wurzel negativ und für ein Minimum positiv zu nehmen, was sich auch durch Betrachtung der Gleichung (12^a) bestätigt. Das 1. Minimum ergibt sich aus:

$$q(\alpha - 1) = 0.831 + \Pi = 3.973,$$

also ist $\alpha - 1 = 232,3$ Jahre und die Periode ist 367,4 Jahre.

Umformung der Gleichung (10):

$$f(x) = \frac{A_1^2}{A_1 - A_2} \cdot e^{A_1(x-1)} - \frac{A_2^2}{A_1 - A_2} \cdot e^{A_2(x-1)}.$$

Sei $A_{\scriptscriptstyle 1} = p + q \cdot i$; $A_{\scriptscriptstyle 2} = p - q \cdot i$, so kommt:

(10a)
$$f(x) = \frac{e^{p(x-1)}}{q} [(p^2 - q^2) \cdot \sin q(x-1) + 2p \cdot q \cdot \cos q(x-1)]$$

nach leichten Reduktionen.

Für x = 1 muss man den Anfangswert von f(x) erhalten, das ist f(1) = 2p = a + b.

Zur Probe kann man f(1) auch aus Gleichung (1^a) berechnen, indem man $\alpha = 1 + dx$ setzt. Es dient dann zur Bestimmung von f(1) die Gleichung:

$$(1 - a \cdot dx)(1 - b \cdot dx) + f(1) \cdot dx = 1,$$
also

$$f(1) = a + b$$

mit Vernachlässigung von unendlich kleinen Grössen der 2. Ordnung. Die Maxima und Minima von $f(\alpha)$ ergeben sich nach bekannten Regeln aus der Gleichung:

(13)
$$tg \ q \ (\alpha - 1) = \frac{3 p^2 \cdot q - q^3}{3 p \cdot q^2 - p^3}.$$

Nehmen wir endlich mit Kinkelin die Mortalitätstafel der 17 englischen Gesellschaften als Ausgangspunkt der Rechnung, so bleibt uns zur Berechnung von f(x) bloss der Näherungsweg offen, in dem wir f(x) sukzessive von Jahr zu Jahr berechnen (also während eines Jahres die Sterblichkeit als konstant voraussetzen).

Setzen wir zunächst voraus, die Eintritte finden am Anfang eines jeden Vereinsjahres statt, so dass am Ende desselben die Gesamtzahl wieder genau auf 400 stehe. Weiter nehmen wir an, die eintretenden Ehepaare stehen alle genau im Alter 30, 25 (nicht wie bisher angenommen im Alter $30 - \frac{1}{2}|25 - \frac{1}{2}|$), so tritt an Stelle der Gleichung (1) die folgende:

(1b)
$$\int_{0}^{1} F(\alpha - x) \cdot dx + \int_{\frac{1}{2}}^{\alpha} f(x) \cdot F(\alpha - x) \cdot dx = 1$$

(siehe Figur 1ª).

Die aufeinanderfolgenden Werte für f(x) heissen wir: $f_0, f_1, f_2, f_3, \ldots f_{n-1}$, so ergibt sich nach (1^b), indem man $\int\limits_0^1 F(\alpha-x)\cdot dx$ näherungsweise durch ${}_np_{30}\cdot {}_np_{25}$ und das zweite Integral durch eine endliche Summe ersetzt:

$$(14) \quad {}_{n}p_{30} \cdot {}_{n}p_{25} + [f_{0} \cdot {}_{n}p_{30} \cdot {}_{n}p_{25} + f_{1} \cdot {}_{n-1}p_{30} \cdot {}_{n-1}p_{25} + f_{1} \cdot {}_{n-2}p_{30} \cdot {}_{n-2}p_{25} + \dots + f_{n-1} \cdot p_{30} \cdot p_{25}] = 1.$$

Setzt man in dieser Gleichung für n nacheinander die Werte: 1, 2, 3, ... n, so erhält man das folgende Gleichungssystem:

$$\begin{cases} f_{0} \cdot p_{30} \cdot p_{25} + p_{30} \cdot p_{25} = 1 \\ f_{1} \cdot p_{30} \cdot p_{25} + f_{0} \cdot {}_{2}p_{30} \cdot {}_{2}p_{25} + {}_{2}p_{30} \cdot {}_{2}p_{25} = 1 \\ f_{2} \cdot p_{30} \cdot p_{25} + f_{1} \cdot {}_{2}p_{30} \cdot {}_{2}p_{25} + f_{0} \cdot {}_{3}p_{30} \cdot {}_{3}p_{25} \\ & + {}_{3}p_{30} \cdot {}_{3}p_{25} = 1 \\ \vdots \\ f_{n-1} \cdot p_{30} \cdot p_{25} + f_{n-2} \cdot {}_{2}p_{30} \cdot {}_{2}p_{25} + f_{n-3} \cdot {}_{3}p_{30} \\ \vdots \\ {}_{3}p_{25} + \dots + f_{0} \cdot {}_{n}p_{30} \cdot {}_{n}p_{25} + {}_{n}p_{30} \cdot {}_{n}p_{25} = 1. \end{cases}$$

Aus den Gleichungen (15) lassen sich f_0 , f_1 , f_2 , ... f_{n-1} sukzessive berechnen. Es leuchtet ohne weiteres ein, dass f_0 , f_1 , f_2 , ... f_{n-1} gegenüber den kontinuierlich stattfindenden Eintritten etwas zu gross sein werden, weil die eintretenden Ehepaare dem Risiko des Absterbens während des ganzen Eintrittsjahres ausgesetzt sind (siehe Figur 1^a). Gemeint ist natürlich nur das Risiko, welches die Kasse belastet.

Nehmen wir an, die Eintritte finden am Ende eines jeden Vereinsjahres statt, so dass dadurch der Bestand der Kasse genau wieder auf 400 gebracht werde. Die aufeinanderfolgenden Werte für f(x) wollen wir $f_1, f_2, f_3, \ldots f_n$ heissen, so lässt sich die Gleichung (1^b) näherungsweise darstellen durch:

(16)
$${}_{n}p_{30} \cdot {}_{n}p_{25} + [f_{1} \cdot {}_{n-1}p_{30} \cdot {}_{n-1}p_{25} + f_{2} \cdot {}_{n-2}p_{30} \cdot {}_{n-2}p_{25} + f_{3} \cdot {}_{n-3}p_{30} \cdot {}_{n-3}p_{25} + \dots + f_{n-1} \cdot p_{30} \cdot p_{25} + f_{n}] = 1.$$

Substituiert man in (16) nacheinander für n die Werte 1, 2, 3, ... n, so resultiert das Gleichungssystem (17):

$$\begin{cases} f_{1} + p_{30} \cdot p_{25} = 1 \\ f_{2} + f_{1} \cdot p_{30} \cdot p_{25} + {}_{2}p_{30} \cdot {}_{2}p_{25} = 1 \\ f_{3} + f_{2} \cdot p_{30} \cdot p_{25} + f_{1} \cdot {}_{2}p_{30} \cdot {}_{2}p_{25} + {}_{3}p_{30} \cdot {}_{3}p_{25} = 1 \\ \vdots \\ f_{n} + f_{n-1} \cdot p_{30} \cdot p_{25} + f_{n-2} \cdot {}_{2}p_{30} \cdot {}_{2}p_{25} \\ + f_{n-3} \cdot {}_{3}p_{30} \cdot {}_{3}p_{25} + \dots + {}_{n}p_{30} \cdot {}_{n}p_{25} = 1 \end{cases}$$

Aus den Gleichungen (17) lassen sich $f_1, f_2, f_3, \ldots f_n$ sukzessive berechnen; es ist klar, dass diese Werte gegenüber den kontinuierlich stattfindenden Eintritten etwas zu klein sein werden, da die eintretenden Ehepaare während dem Eintrittsjahr dem Risiko des Absterbens gar nicht ausgesetzt sind, wobei dasjenige Risiko gemeint ist, welches die Kasse belastet.

Nehmen wir drittens an, die Eintritte finden Mitte eines Vereinsjahres statt, so dass am Ende eines jeden Vereinsjahres die Zahl der Ehepaare wieder genau auf 400 stehe. Die aufeinanderfolgenden Näherungswerte für f(x) seien $f_{\frac{1}{2}}$, $f_{\frac{3}{2}}$, $f_{\frac{5}{2}}$, ... $f_{n-\frac{1}{2}}$, so lässt sich die Gleichung (1^b) näherungsweise durch die Gleichung (18) darstellen:

$$(18) \quad {}_{n}p_{30} \cdot {}_{n}p_{25} + \left[f_{\frac{1}{2}} \cdot {}_{n-\frac{1}{2}}p_{30} \cdot {}_{n-\frac{1}{2}}p_{25} \right]$$

$$+ f_{\frac{3}{2}} \cdot {}_{n-\frac{3}{2}}p_{30} \cdot {}_{n-\frac{3}{2}}p_{25} + f_{\frac{5}{2}} \cdot {}_{n-\frac{5}{2}}p_{30} \cdot {}_{n-\frac{5}{2}}p_{25}$$

$$+ \dots + f_{n-\frac{1}{2}} \cdot {}_{\frac{1}{2}}p_{30} \cdot {}_{\frac{1}{2}}p_{25} = 1.$$

Setzt man in Gleichung (18) für n der Reihe nach $1, 2, 3, \ldots n$, so ergibt sich das Gleichungssystem (19):

$$\begin{cases} f_{\frac{1}{2}} \cdot \frac{1}{2} p_{30} \cdot \frac{1}{2} p_{25} + p_{30} \cdot p_{25} = 1 \\ f_{\frac{3}{2}} \cdot \frac{1}{2} p_{30} \cdot \frac{1}{2} p_{25} + f_{\frac{1}{2}} \cdot \frac{3}{2} p_{30} \cdot \frac{3}{2} p_{25} \\ + _{2} p_{30} \cdot _{2} p_{25} = 1 \end{cases}$$

$$(19) \begin{cases} f_{\frac{5}{2}} \cdot \frac{1}{2} p_{30} \cdot \frac{1}{2} p_{25} + f_{\frac{3}{2}} \cdot \frac{3}{2} p_{30} \cdot \frac{3}{2} p_{25} \\ + f_{\frac{1}{2}} \cdot \frac{5}{2} p_{30} \cdot \frac{5}{2} p_{25} + _{3} p_{30} \cdot _{3} p_{25} = 1 \end{cases}$$

$$(19) \begin{cases} f_{\frac{5}{2}} \cdot \frac{1}{2} p_{30} \cdot \frac{1}{2} p_{25} + f_{\frac{3}{2}} \cdot \frac{3}{2} p_{30} \cdot \frac{3}{2} p_{25} \\ + f_{n-\frac{1}{2}} \cdot \frac{1}{2} p_{30} \cdot \frac{1}{2} p_{25} + f_{n-\frac{3}{2}} \cdot \frac{3}{2} p_{30} \cdot \frac{3}{2} p_{25} \\ + f_{n-\frac{5}{2}} \cdot \frac{5}{2} p_{30} \cdot \frac{5}{2} p_{25} + \dots + _{n} p_{30} \cdot _{n} p_{25} = 1 \end{cases}$$

Hieraus lassen sich $f_{\frac{1}{2}}$, $f_{\frac{3}{2}}$, $f_{\frac{5}{2}}$, ... $f_{n-\frac{1}{2}}$ sukzessive berechnen. Die Werte für $\frac{1}{2}p_{30} \cdot \frac{1}{2}p_{25}$, $\frac{3}{2}p_{30} \cdot \frac{3}{2}p_{25}$... kann man durch Interpolation mittelst der Geraden oder der Parabel bestimmen. Bedenkt man, dass

 $\begin{array}{l} _{n+\frac{1}{2}}p_{30} \cdot {}_{n+\frac{1}{2}}p_{25} = \left(\frac{1}{2}p_{30} \cdot \frac{1}{2}p_{25}\right) \cdot \left({}_{n}p_{30+\frac{1}{2}} \cdot {}_{n}p_{25+\frac{1}{2}}\right), \\ \text{und ersetzt man näherungsweise } _{n}p_{30+\frac{1}{2}} \cdot {}_{n}p_{25+\frac{1}{2}} \text{ durch} \\ _{n}p_{30} \cdot {}_{n}p_{25}, \text{ so resultiert aus (19) das Gleichungssystem (20):} \\ \end{array}$

$$\begin{cases}
\frac{f_{\frac{1}{2}} \cdot \frac{1}{2} p_{30} \cdot \frac{1}{2} p_{25} + p_{30} \cdot p_{25} = 1 \\
\frac{1}{2} p_{30} \cdot \frac{1}{2} p_{25} \left(f_{\frac{3}{2}} + f_{\frac{1}{2}} \cdot p_{30} \cdot p_{25} \right) + {}_{2} p_{30} \cdot {}_{2} p_{25} = 1 \\
\frac{1}{2} p_{30} \cdot \frac{1}{2} p_{25} \left(f_{\frac{5}{2}} + f_{\frac{3}{2}} \cdot p_{30} \cdot p_{25} + f_{\frac{1}{2}} \cdot {}_{2} p_{30} \cdot {}_{2} p_{25} \right) \\
+ {}_{3} p_{30} \cdot {}_{3} p_{25} = 1
\end{cases}$$

$$(20) \begin{cases}
\frac{1}{2} p_{30} \cdot \frac{1}{2} p_{25} \left(f_{\frac{7}{2}} + f_{\frac{5}{2}} \cdot p_{30} \cdot p_{25} + f_{\frac{3}{2}} \cdot {}_{2} p_{30} \cdot {}_{2} p_{25} \right) \\
+ f_{\frac{1}{2}} \cdot {}_{3} p_{30} \cdot {}_{3} p_{25} \right) + {}_{4} p_{30} \cdot {}_{4} p_{25} = 1
\end{cases}$$

$$\frac{1}{2} p_{30} \cdot \frac{1}{2} p_{25} \left(f_{n-\frac{1}{2}} + f_{n-\frac{3}{2}} \cdot p_{30} \cdot p_{25} + f_{\frac{3}{2}} \cdot p_{30} \cdot {}_{2} p_{25} \right) \\
+ f_{n-\frac{5}{2}} \cdot {}_{2} p_{30} \cdot {}_{2} p_{25} + \dots + f_{\frac{1}{2}} \cdot {}_{n-1} p_{30} \cdot {}_{n-1} p_{25} \right) \\
+ {}_{n} p_{30} \cdot {}_{n} p_{25} = 1.
\end{cases}$$

Fassen wir das System (17) ins Auge, und setzen wir $n=\infty$; ω sei das höchste vorkommende Alter, so dass $_{\omega+1}p_{30}\cdot_{\omega+1}p_{25}=0$; $_{\omega+2}p_{30}\cdot_{\omega+2}p_{25}=0\ldots$, so gehen die Gleichungen (17) über in (17^a):

Aus diesem Gleichungssystem (17a) greifen wir die Gleichung heraus:

$$1 = f_n \cdot {}_{\omega} p_{30} \cdot {}_{\omega} p_{25} + f_{n+1} \cdot {}_{\omega-1} p_{30} \cdot {}_{\omega-1} p_{25}$$
$$+ f_{n+2} \cdot {}_{\omega-2} p_{30} \cdot {}_{\omega-2} p_{25} + \dots + f_{n+\omega}.$$

Sie besteht unabhängig von n, was nur denkbar ist, wenn $f_n = f_{n+1} = f_{n+2} = f_{n+3} = \dots = f_{n+\omega}$ (lim $n = \infty$), d. h. die aus den Gleichungen (17) fliessenden Werte von $f_1, f_2, f_3 \dots f_n$ bestimmen eine Kurve, welche sich der X-Achse asymptotisch nähert, und zwar im Abstande:

1:
$$(1 + p_{30} \cdot p_{25} + p_{30} \cdot p_{25} + p_{30} \cdot p_{25} + p_{30} \cdot p_{25} + \dots + p_{30} \cdot p_{25}) = 0,03625.$$

Analog findet man, dass die Werte $f_0, f_1, f_2 \dots f_{n-1}$ gemäss den Gleichungen (15) eine Kurve bestimmen, die sich der X-Achse asymptotisch nähert, und zwar im Abstande:

$$1: (p_{30} \cdot p_{25} + {}_{2}p_{30} \cdot {}_{2}p_{25} + {}_{3}p_{30} \cdot {}_{3}p_{25} + \dots + {}_{\omega}p_{30} \cdot {}_{\omega}p_{25}) = 0,03761.$$

Die Gleichungen (20) führen auf die Asymptote

$$1 : \frac{1}{2} p_{30} \cdot \frac{1}{2} p_{25} \cdot (1 + p_{30} \cdot p_{25} + p_{30} \cdot p_{25} + p_{25} + p_{30} \cdot p_{25} + p_{30} \cdot p_{25} + \dots + p_{30} \cdot p_{25} + p_{30} \cdot p_{25} = 0,0365.$$

Die Werte $f_{\frac{1}{2}}$, $f_{\frac{3}{2}}$, $f_{\frac{5}{2}}$, ... $f_{n-\frac{1}{2}}$ gemäss den Gleichungen (19) legen eine Kurve fest, die sich gleichfalls asymptotisch der X-Achse nähert im Abstande:

$$1: \left(\frac{1}{2}p_{30} \cdot \frac{1}{2}p_{25} + \frac{3}{2}p_{30} \cdot \frac{3}{2}p_{25} + \frac{5}{2}p_{30} \cdot \frac{5}{2}p_{25} + \cdots + \frac{1}{2}p_{30} \cdot \frac{1}{2}p_{25}\right) = 0,0369.$$

Wir haben nun die Rechnung nach den Gleichungen (17) und (20) zahlenmässig durchgeführt. Die folgende Tabelle enthält die Werte für f(x) auf Grund der Gleichungen (17):

					1		
x	f(x)	x	f(x)	x.	f(x)	x	f(x)
1	0,016	34	0,039	67	0,035	100	0,036
2	0,016	3 5	0,040	68	0,035	101	0,036
3	0,017	36	0,041	69	0,035	102	0,036
4	0,017	37	0,041	70	0,036	103	0,036
5	0,017	38	0,042	71	0,036	104	0,036
6	0,018	39	0,043	72	0,036	105	0,036
7	0,018	40	0,043	73	0,036	106	0,036
8	0,018	41	0,043	74	0,037	107	0,036
9	0,019	42	0,043	75	0,037	108	0,036
10	0,019	43	0,043	76	0,037	109	0,036
11	0,019	44	0,043	77	0,037	110	0,036
12	0,020	45	0,042	78	0,037	111	0,036
13	0,020	46	0,042	79	0,037	112	0,036
14	0,020	47	0,041	80	0,037	113	0,036
15	0,021	48	0,040	81	0,037	114	0,036
16	0,021	49	0,039	82	0,037	115	0,036
17	0,022	50	0,038	83	0,037	116	0,036
18	0,023	51	0,037	84	0,037	117	0,036
19	0,023	52	0,036	85	0,037	118	0,036
20	0,024	5 3	0,035	86	0,037	119	0,036
21	0,025	54	0,035	87	0,037	120	0,036
22	0,026	55	0,034	88	0,037	121	0,036
23	0,027	56	0,034	89	0,037	122	0,037
24	0,028	57	0,033	90	0,037	123	0,036
25	0,029	58	0,033	91	0,037	124	0,036
26	0,030	59	0,033	92	0,036	125	0,036
27	0,031	60	0,033	93	0,036	126	0,036
28	0,032	61	0,033	94	0,036	127	0,036
29	0,033	62	0,033	95	0,036	128	0,036
30	0,035	63	0,034	96	0,036		
31	0,036	64	0,034	97	0,036		
32	0,037	65	0,034	98	0,036		
33	0,038	66	0,034	99	0,036		

Die nächste Tabelle gibt die Werte für f(x) nach den Gleichungen (20):

$ x-\frac{1}{2} $	f(x)	$ x - \frac{1}{2} $	f(x)	$\left x-\frac{1}{2}\right $	f(x)	$x - \frac{1}{2}$	f(x)
0	0,016	32	0,038	64	0,034	96	0,036
1	0,017	33	0,039	65	0,035	97	0,036
2	0,017	34	0,040	66	0,035	98	0,036
3	0,017	35	0,041	67	0,035	99	0,036
4	0,017	36	0,042	68	0,036	100	0,036
5	0,018	37	0,042	69	0,036	101	0,036
6	0,018	38	0,043	70	0,036	102	0,036
7	0,018	39	0,043	71	0,036	103	0,036
8	0,019	40	0,043	72	0,037	104	0,036
9	0,019	41	0,044	73	0,037	105	0,036
-10	0,019	42	0,043	74	0,037	106	0,036
11	0,020	43	0,043	75	0,037	107	0,036
12	0,020	44	0,043	76	0,037	108	0,036
13	0,021	45	0,042	77	0,038	109	0,036
14	0,021	46	0,041	78	0,038	110	0,036
15	0,022	47	0,040	79	0,038	111	0,036
16	0,022	48	0,039	80	0,038	112	0,036
17	0,023	49	0,038	81	0,038	113	0,036
18	0,024	50	0,037	82	0,038	114	0,037
19	0,024	51	0,036	83	0,038	115	0,037
20	0,025	52	0,036	84	0,038	116	0,037
21	0,026	53	0,035	85	0,037	117	0,037
22	0,027	54	0,034	86	0,037	118	0,037
23	0,028	55	0,034	87	0,037	119	0,037
24	0,029	56	0,033	88	0,037	120	0,037
25	0,030	57	0,033	89	0,037	121	0,037
26	0,031	58	0,033	90	0,037	122	0,037
27	0,033	59	0,033	91	0,037	123	0,037
28	0,034	60	0,033	92	0,037	124	0,037
29	0,035	61	0,034	93	0,037	125	0,037
30	0,036	62	0,034	94	0,036		
31	0,037	63	0,034	95	0,036		

Die anschliessende Tabelle gibt die Zahl w(x) der Witwen, berechnet auf Mitte eines jeden Vereinsjahres [auf Grund der Gleichungen (20)]:

$x-\frac{1}{2}$	w(x)	$x-\frac{1}{2}$	$w\left(x\right)$	$x-\frac{1}{2}$	w(x)	$x-\frac{1}{2}$	w(x)

0	0,004	32	0,356	64	0,362	96	0,400
1	0,012	33	0,370	65	0,363	97	0,399
$\overline{2}$	0,021	34	0,384	66	0,364	98	0,398
3	0,030	35	0,397	67	0,366	99	0,396
4	0,039	36	0,410	68	0,369	100	0,395
5	0,047	37	$0,\!422$	69	0,372	101	0,394
6	0,056	38	0,434	70	0,376	102	0,394
7	0,065	39	0,444	71	0,380	103	0,393
8	0,075	40	0,453	72	0,385	104	0,393
9	0,084	41	0,461	73	0,388	105	0,392
10	0,093	42	0,468	74	0,392	106	0,392
11	$0,\!102$	43	0,473	75	0,395	107	0,392
12	0,112	44	0,476	76	0,399	108	0,392
13	$0,\!122$	45	0,477	77	0,401	109	0,393
14	0,131	46	0,477	78	0,404	110	0,393
15	$0,\!141$	47	$0,\!475$	79	0,406	111	0,394
16	$0,\!152$	48	0,471	80	0,407	112	0,394
17	$0,\!162$	49	0,466	81	0,409	113	0,395
18	$0,\!173$	50	$0,\!459$	82	0,410	114	$0,\!395$
19	$0,\!185$	51	$0,\!451$	83	$0,\!411$	115	0,396
20	$0,\!196$	52	$0,\!442$	84	$0,\!411$	116	0,397
21	$0,\!208$	53	$0,\!433$	85	0,411	117	0,397
22	$0,\!221$	54	$0,\!423$	86	0,411	118	$0,\!398$
23	$0,\!233$	5 5	$0,\!413$	87	0,411	119	0,398
24	$0,\!246$	56	0,403	88	$0,\!410$	120	0,399
25	$0,\!259$	57	$0,\!394$	89	0,409	121	0,399
26	$0,\!273$	58	0,386	90	$0,\!408$	122	0,400
$\frac{27}{20}$	0,286	59	0,379	91	0,407	123	0,400
28	0,300	60	0,373	92	0,406	124	0,400
29	0,314	61	0,368	93	0,404	125	0,400
30	0,328	62	0,365	94	0,403		
31	0,342	63	0,363	95	0,401		
	11						

Literaturangaben.

Herr Professor Rudio in Zürich war so freundlich, mich aufmerksam zu machen auf die Arbeiten von Hilbert und Volterra über die Integralgleichungen. Insbesondere verdanke ich Herrn Professor Dumas in Lausanne folgende Literaturangaben:

Hilbert, Grundzüge einer Theorie der linearen Integralgleichungen.

Volterra, Leçons sur les équations intégrales.

Heywood et Fréchet, L'équation de Fredholm et ses applications à la physique.

Lalesco, Introduction à la théorie des équations intégrales.

Bôcher, An introduction to the study of integral equations.

Kneser, Die Integralgleichungen und ihre Anwendungen in der mathematischen Physik.

Korn, Über freie und erzwungene Gleichungen.

Horn, Einführung in die Theorie der partiellen Differentialgleichungen.

Von diesen Werken war mir zugänglich dasjenige von Volterra. Obwohl ich dasselbe für meine Zwecke eigentlich nicht habe verwendbar machen können, so muss dieses Werk nichtsdestoweniger als grundlegend für die Theorie der Integralgleichungen angesehen werden; auch zeichnet es sich durch zahlreiche Literaturangaben aus. Weiterhin sei bemerkt, dass die von mir abgeleitete lineare Integralgleichung als ein Speziallfall der Integralgleichung von Volterra:

$$\varphi(x) = \int_{a}^{x} K(x, \xi) \cdot u(\xi) \cdot d\xi,$$

anzusehen ist; $\varphi(x)$ und $K(x, \xi)$ sind gegebene Funktionen von x resp. von x und ξ ; $u(\xi)$ ist gesuchte Funktion von ξ ; a ist eine Konstante.

Für die von uns befolgte geometrische Methode waren vorbildlich:

Zeuners Abhandlungen aus der mathematischen Statistik (Leipzig, 1869).

Für die Ableitung von Gleichung (2) sei verwiesen auf:

Czuber, Vorlesungen über Differential- und Integralrechnung, II. Band (1898), S. 149.



