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Introduction to a mathematical theory
of the graded stationary population

By S. Vajda, London

1. Fundamental relations

Consider a population divided into k grades. The grade

</(= 1, 2, k) is assumed to consist of l!^_s] + sdsdx members of
exact age x who entered the grade exactly s years earlier. The total
number of members aged x in grade g ist thus

t'x^ j^]h»dsdx W
o

and the total number of members who entered the grade s years
earlier, at different ages is

oo

l«(s)ds f lf_] + ,<lxds. (2)

3

The total number of members of this grade will be

oo oo

l< f l'dx Jl'(s)ds. (3)

0 o

Let members of grades 1 to k — 1 be subject to two independent

decremental forces, a «force of mortality» /.<(x) depending on x only
and a «force of promotion» va(s) depending on the grade and on s,

whereas the members of grade k are only to be subject to /.< (x). Hence

n --1« ,V vl for q 1, 2, k— 1 (4)
[x~s] t'S '[l-s] 8fl-!n x '

M sPx-s ^
where

s »

-//«+/«
S?V, «

0 and fs c
0
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At each moment lBxlu(x)dx members of exact age x leave grade g
and the population itself. But at the same time the

X

j *?«-,] + ."'(*)&<*» (11)

0

members of age x who disappear from their grade, are promoted into
grade g + 1.

Putting g — 1, 2, 3, ..k—A in succession, these are the only
entries into grades 2, 3, k, therefore

X X

J '?*-.] ,sVJ(s)ds J'^s]spx.sh«(s)ds (7)
0 0

where

h»(s) - fsv'J(s).

It will be noticed that apx_a, p°a and hB(s) are only defined for
positive or zero s and x — s.

We assume that entries into grade g ~ I occur only at x 0.

Hence

'[*-.] + 0 for s "I" x
and

- P-(s) for s x,
so that

P(*) (»)
and

'fx] - ~ '[o] xVo h1 (x) • (9)

In future, xp0 will be denoted by Lx.

We now proceed to calculate /j^.

Applying (7) to grades g and g — 1 we obtain

X

'm / '[x-i/.l h"~l (fi) d'!h (10)
0

1
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A further application of (7) leads to

X X-lli

rk= I J fxVi/,]!i^Vx-^^iyd'^iy^dy-zdih (ii)
Ö 0

and so on, by induction, to

'i-rj "" J ' ' ' hv-Vl--• '+Vg-2Pv-Vl~- • --Vg-2
^ ^ (Ug-z) Ctyg-2 * ' ^D\ •

0 0

(12)
Because of (9) this is equal to

x x-ijv~...~yg_^

'U J • • • / L* h!l~l (Vi) h* (Vt-2) ¥ (® — »/1 — • — Vg-2) dyg-2 • • dVl (I3)
0 0

where Lx could be written before, instead of after, the integral signs.

It should ho noticed that ;//1, y 2 appear only as variables of

integration and that the arguments of hl,...,ha"1 add up to x,
which is the upper limit of the first integral sign. The r. h. s. is

therefore only dependent on x.
The special type of integral which appears here is called «convolution»

or «Faltung». Wo shall not make here any further reference to

the theory concerning this branch of analysis, but we introduce the

usual notation by writing (13) as follows

lfx] - Lx h°~l * h°-2 * * h1 (x). (13 a)

The comparison of (13) and (13 a) supplies the definition of the

*-symbol.
(For a systematic use of the Laplace transform in connection with

this type of problem, see H. L. Seal, Biometrika, xxxiii, 1945.)

It follows from (4) that

(14)

and hence
X

I« Lxj 'pi h'J~l * * /i1 (® — s)ds' (I5)
0

00

II (s) pi J' Lx h'J~l — s) dx. (16)
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Now we alter our point of view and combine all grades from g

upwards into one. The number of members in such an amalgamation
will be denoted by a capital L, so that now

Lfx_s} +, ds dx is the number of members of the population of exact

age x who entered the grade g exactly s years earlier, and who are

now in any of the grades g, g + 1, k.

L°xdx is the number of members aged exactly x in grades g,

3 + 1, k and

TJ (s) ds is the number of members in these grades who entered grade g

exactly s years ago, whatever their present age.

IJ ist the total number of members in grades g, g + 1,

The connections between these numbers are analogous to those

existing between the I'a given in (1), (2) and (3). All other formulae
valid for the I's remain correct for the L's providing p® is replaced
by 1, because no promotion can take place out of the amalgamated
grades g, g + 1, k. Furthermore, it is clear that for the highest
grade, k, the expressions for capital L and for small I coincide.

We note that (1) can be written in the form

A further connection between the functions I and L can be found.

It is obvious from general reasoning that L® Z® + /®hl + + 1kx

and we shall now prove this relation mathematically.

Consider the expression

X

(17)
0

x

(18)
0

1/

Lx J IF (s + y) v°1 ^e 0 dy ds
-j

e o

where

i1' (s + y) ~ h<J~2 * * h1 (x —5—//) •
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Integration by parts with respect to y gives

X:3 d -(vO-Hi)dl ?\ -fr9-Ut)di
Ll 4 / / -rr;F(s + y)e 0 dyds Lx J \e o F(x) — F(s)

o 6 y o

x

But F (x) 0 and J F (s) ds is easily seen to be TJ'1 by the
o

definition above. Hence we obtain
v

XX7S 8 -fvn-i(i)di
JA~LV ^x\ \ -j-F(s + y)e 0 diJds-

0J
o 8v

Now
3 3

— F{* + y) —F(* + y)
8y 8 s

so that the right hand term reduces to

w v
x,:s 8 -/yB-i(t)dl X x-v _l va-l{t)ät 8
I —F(s + y)c0 dyds — e« —F(s + y)dsdy

Ö o
ds oJ

o
ds

v u
x -J,,a-i{i)dt x

Je o [F(x) — F(y)]dy - - J e o F(y)dy
6 o

/H'x J

by (15). We have finally L«x L'J~{ — /®_1 and, since Lkx lkx,

iz ii + i'+l+... -his ii—/i—zi—/r1 (19)

for <j — 2, 8, />;
•

In particular, for y '2

X-S

x X -f,d{t)dt
Ll Llx — £ Lx f h1 (a — s) ds Lr f v1 (x — s) c ö ds

0 o

ds.

Lc

so that

— fvl (t)dl I

1 — 6° \=LX — ll

Ll Lx
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Comparing (18) with (18 a) we have

Ux Lxflf*d8=-. J l[x_s]sVx_sds (20)
0 "X-S

which is also obtainable from first principles.

From the latter formula we can derive a relation which will be

used in Chapter 3. We calculate

clLi (I L, _
d r /f„]

dx
rliquids+ Lxjl r

J L. * dx Jdx
o

dx J Lx_s

U
Because of (20) the first integral —. To the second term we

I
Ac

apply the rule for differentiation of an integral with respect to an

upper limit which appears also as a parameter of the integrand. Thus

Now

hence

and

dUx
_

d Lx L\
dx Ldx + LX

ä V[x-S]

dx L,_„

lW f d
d

77 rJ dxL„_:ds

d %S I

d t> fj u

dL'( d Lx L\
d x d x L

d II dL

-r- + Lx
Hoi

A, A
'foj lU

"+t;
i'j'[1

L'dx Lxdx
'

LI

Of course, if /j^ 0, then

dUL

' ftX
' ll

A

dL.
IAdx Ij.dx

(21)

i. e. the force of mortality ßx is the only decremental force affecting
the function Ll.
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2. Limited ranges for promotions

The functions v and hence p and h of the preceding paragraphs
may have any form. But in order to relate them more closely to
realistic assumptions we assume now that promotions from one grade
into the next can only take place within a certain range of values of s.

More precisely assume that the values vg(s) only differ from zero inside
the range from a.g to ßg, the limits excluded; then formula (18), which
is the basis of all the other relations, can be given an explicit form.

This assumption leads to

pi 1 for « < a,, pi plt for * > ß„

hg (s) 0 for .s < a and for s > ßg.

First only take account of the fact that v°(s) 0 for s < xg.
This gives hg(s) 0 and pi 1 for s < ctg. We accordingly examine

(18) and in particular the limits of the integrations. In view of the

ralation just obtained, we can replace the lower limits of the
integrations for yl yg_2 by a„_,, a2 respectively.

We then observe that

x- /V2)

is only different from zero if x --yl — — // a > a, v where the
values y• exceed It follows that we must have

Vs-2 < x 2/x ~" SE/a ' • ' y,h-, t i

Vg-.\ < x — !Ji — Hi H„-4 — *2 — «i
(22)

Ik < ~ Ui — — *„-4 — • • • — a2— ai

!h < v — «,H) — • • • — «a — •

This shows that the upper limits of integration will be the right

hand terms of (22) and the complete integration will have the following

ranges:

9—,. —oi x—f/i—a„ 3—..f/t—- fjr-3

I / I / • t'28»

«,-1 »J

17
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Substituting new variables, viz.

Va Hg-2 ' a2' zg-3 Vg-a
and

x — x — atJ_x —

(13) is transformed into

X X—Zi X—2\-~.

4 J J J irl4 + a^) /r3 («„ + a^) ...k2 (zg_2 + a2) ¥ (i-zx
0 0 0

We write for this expression LxHx(v.lt a t)

The r. h. s. of (13), can, of course, be written

LxHx(()> •••<>)•

If there is also an upper limit to the values of y for which h"(y) I- 0,

so that y < ßg, then that part of the (<y -1) dimensional space for
which one or more y s fall outside these limits must be substracted
from the part of the space considered in (24).

We must, therefore, when calculating /^, subtract from (24)

LxHx(ßi> «2. • •. Vi)' AA(ai> ß*> aa> > Vi)' imd so 011 UJ' to

LxHx(aj, a 2, ß x). But in this way the area where two or more

y's are larger than their respective ß's has been subtracted too often.
Thus the final formula to replace (13) is

lU h Vh («„..., a,.,) + (-1)1«' "HI•v. 1 Hx (ax, /4t) + (25)

_h V:!, 4_2, ß^) +•••+(- 1){^" • "V--i| Hx(ßv ..,ßj

where {} stands for the number of ß appearing as arguments.

If the total of the a's and ß's appearing as argument in any H
exceeds the subscript x, the expression is to be replaced by zero.
If all H expressions are used, i. e. if x exceeds ßx + + ßg_x, then
'[i] must, of course, reduce to zero, <i. e. no promotion takes place at
age x.

OCg • • A i if ] CLt} ;

— a2 — a,

-...~zg_2-t-u.x)dzg_,...dzx.

(24)
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From (25) there follows immediately the formula for

and
\x—s] + s

~ s] sVx-s Ps

LI lg n[»—sl S L X—S "[;r—«Jfs [a;--s]

If we calculate now lg jlfx_s]+ads we find that x occurs only
o

as subscript in the H's and in Lx, and that consequently integration
can be applied to every term in (25) with the result

it - 4
-«„-t X-ni-. —ßg-\

I • • > Vl)P°ds + ^ J Hr-s(a-1. • • • ' ßff-l) p'läs + • • • etc.
Ö 0

(26)

The upper limits of the integrals are fixed by the rule attached to
formula (25).

We find, further,

3.'—«! 1 nl—

I H-x-a (ai» • • > aff-1) ds -f- 1) J Hx_s (oq, ßg_J ds -f- etc.
i) o

(27)

It may be worth pointing out that although the expression in

(25) within square brackets reduces to zero if all H > 0, no analogous

reduction occurs in (26) or (27), because here the various integrals
have different upper limits.

Finally, we habe

oo

Lg (s) f 4 [H„ («!,..., Vl) + (- I)!"1 ^H_, («!-•••> ß'j-i) + efcc-]dx

"'"lK"+Vl
(28)

and lg(s) is then found by means of the relation lg(s) — Lg(s)pg
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3. Special assumptions concerning v*(s)

The simplest ease appears when we assume that ^(.s) has a

constant value cg for all values of s. This leads to pjj --- c~V and

hg(s) cge~co3. We give here a summary of the results which derive
from the first 20 formulae of Chapter 1 under two different assumptions:

(I) that all cg are different for different <:/, and

(II) that c2 — — ck.

We obtain then
(I)

W, v, • • • S TI
'

i t rfi Gj — c{

it I Cj — ci

1-1 I
f'(s) - c, c„_, e-V V [J j [),jlx

,=i Hi Cj — cW

- cf- v.iTI—'— f <r"ixLxdx
' 1 ?~t ' Ci — c; o

(If)

(x — s)«-'1

- L^'l'reX-77-^7

l\ - L,cg AG-"

(y — 2)!

a:»-1

('/-!)!
c"~l

/° (s) --= f (x — s)"~ r

c<j-i ~
la I (x — s)'J~l e~cxLxclx.

(«-!)! oJ

(Actuaries will recognise in these integrals the functions which
they denote by N, S etc. The function which, in actuarial practice,
is called lx, has here been denoted by Lx.)
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The expressions for a, Le {s) and IJ can be found from
those for the corresponding I by multiplication by «V. For L® the

following formula holds:

(I)

- h v e-'i' IJ

(HI

U L.
a- •

1— Vc'-br"
i=i

„.'-i

(i- 1)!

Formulae referring to a limited range of promotions [see (21) to

(28)] are given by Seal, 1. c.

It is clear that if the cg tend to a common limit c, then the formulae

under assumption (I) will tend to coincide with those under (II). If
they are different but fairly close together, then it will be possible

to find a value c so that a formula under assumption (II) gives a

satisfactory approximation to its counterpart under (I).

The value of c which satisfies this latter condition depends on the

particular formula under consideration: we here consider first L®.,

and then /®. The method could equally well be applied to any other

functions.

Some algebraic theorems will be needed in what follows and they

are set out here for convenience to avoid repeated interruptions to

the main argument at later stages.

The equation

±qeJ"! 1

i=i rl ' cj ci

is of order ;/— I in | and has the <) solutions cx, ,cy. Hence it
is an idontity and

i i i t' cj ci
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Also

2 n i'
; i Hi Gj c t

is satisfied by cv cq. Hence it is an identity for / 1,2 y — 1,

and it follows that

217 for 1 1,2, ...,„-1. (b)
1 1/4.1 Cj — g• »=i/4 i Cj—ci

(cf. The Theory of Equations, Bumskle & Panton, 3rd Ed. p. 319.)

We shall also use (1. c. p. 820)

a cf1
217—— (-!)' (<o

,=i y-p» c,j—ci
and

2 U -._l_ (_1)»(Cl+...+Cff). (d)
1 1/4.1 cj —c;

Let us now turn to a comparison of the formulae for under assumptions

(I) and (II).

We want to find c so that

(G X)'~l ff-l „ Ci

• (2.i)
,•=1 (1—1)! i=i Hi Cj — Cj

Expanding the expotentials we have for the 1. h. s.

~ (—cxY <cxY 9-2 a-2 (ex)1 H (cat)'
2 s 2("-i)'-1 -.Ww, +22 (-i)'--A
--0 .s! il i=o( ; v.{t—»)! i=o«=4T-i ^!(f — i)!

a-2 i (— l)'-' t2 (cx)1
-= 2 W2 .7, + 2 2(-1)'"',, • (2-2)

1=0 1=0 ^!(l — »)! i=o-t »=0 ^!(f— t)!

Now in the first sum the term for t 0 is unity whilst the other
terms disappear, because they are

(— 0'
- - (1 — 1)' - 0, for t I. 0.

<!
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The lowest term in the second sum is

(cx),,yM
sr-l
V,

^ ; 1 (cxy

>0 i 1(0 — 1 —4)! (0 — 1)! (0—1)!

Thus we have as a first approximation for the 1. h. s.

(cai)"""1
1

(0-1)!

Consider now the r. h. s. Expanding the exponential once again
we get

i ~ (— clXy \ (—x)s Ü rr cic,-s 2 -v • n - 2 s n ri | s o 6 j j i Gj — C s 0 S i — l j \ i Cj — G^

Tlie first term is 2/7tA- 1' because of (a).
i-irH c,- — c;

The next tj —-2 terms disappear according to (b).

The next term is thus

(— A')4"' IM cfV X»-1

('/• n: ff _Ct"'' v*
((/- i):'

The r. h. s. is therefore as a first approximation

(2.4)

.1 — 6'« G„i -." (0—1)!

We thus conclude that the two approximations coincide if

(.c-1 Clc2 c^. (2.5)

Now consider E in lieu of Lg. It is our problem to find c so that

(cx)g
1

v.S '>HTI
i l i I i ei — (;i
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In the expansion of the r. h. s. the first ((/ — I) terms disappear
because of (b), and the next two terms are

Vi
J-rX r'J

+ "~T (6'i + • • • + ca)

ct+ +cg

rti~i «1-1
o-1 x

e

('/-I)! .</!

Hence if we take
Ct -f— -b C,.

(2.6)
(I

and if clt cg_x can each he taken as approximately c, then it is

this value (2.6) which makes I9 under assumption (II) a good
approximation for the exact value given under (I).

The use of constant forces of promotion v9 (s) has the advantage
of great simplicity, but it suffers from a disadvantage which is serious

in practical application. They cannot be used in a case in which all
members of a certain grade have been promoted after a maximum
length of time s spent in the grades. To cope with this problem, it is

necessary to let v9 (s) tend to infinity as s approaches its limit and the

c
form v9 (s) has been found useful (b and c may have different

b — s

values for different grades).

We have, of course, lim v9(s) CO This expression leads to a

simple form for p9, viz.

-fih** I b—s\
Pl <> 0^' with pi 0. (2.7)

We have also

h9 —— —— 1 d(b — s)e-\ say (2.8)

4. Short outline of computation

Practical computation starts off with the values Lx Ls. From
these values llx is found for every x, using llx Lxp\. The difference
between Lx and llx is l.x —1\ — L2X.



Ha,villi; thus obtained the values in the grades 2 and above for
every x, we can calculate from (21) and then

^[X-Sl + S _ ^[x—sJ sP.t-8

We calculate now H( Lj^5j+,s pls which leads to

X

L ~ l fas] |S^'S'-
6

From now on all steps are periodically repeated: first J/x — l'x - L\
and then, again from (21), we find ij^. The succeeding steps produce
T>jVs]j-s> 'p-sjis' '*> ••• et|C- through all the grades.

If a check is desired, (7) can be used to recalculate lfa for every
grade // — 2, 15, />;.

The procedure outlined is based on the assumption that the form
of v (or of p or It) and all parameters involved are known. But this
is not the case which arises most frequently in practice. There we are

usually faced with the problem of finding the parameters, if only the
form of v"(a) is known and a «hierarchy» is given. By this expression
we mean the set of values I1, I*, ,!'', or the equivalent set,
Ij1, L2, ...,//. We could proceed by trial and error, but for

c
vi(s) a more satisfactory procedure has beeii developed.

b—s ^
Let us consider I3 j L3(s) p3ds, which follows at once from (3).

Let us further assume that v"(s) - — for a < s < b and 0
b — s

outside tins range. Iben

p"s 1 for k < a

/b — sV
I for a < ,s < b

sb — a)

for -S' > b.

It follows that

(i ^ / b s\c
l3 f IJ(s)p>d# [TJ(s)d# + f TP (.s) ds. (3.1)

o ,i \b ®/
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We are concerned with finding an approximation for the second

integral on the r. h. s. By one of the mean value theorems of the

integral calculus we have

i fb — s\c rfb — sV

where st is a value between a and b.

The last integral is equal to

1 r b — a
I (b — sYds (6.2)

(b-ayj c+ 1

We have thus, from (8.1)

i W(8i){b--a)
I« TJ>(s)ds + - -. (8.8)

o c + 1

Now if L"(s) does not vary much with s (and this is the case in
b

many applications) 77 («^(b—•«). fj'J(s)ds and formula (8.8) can
a

he written
a 1 b

~ [ Lg(s)ds-1 f 77 (s) du. (8.4)
5 o -r 1 ;!

Hence, if 77 (s) is known, and the required lg is given, c can be found

approximately from (8.4) and all functions can be calculated as

described at the beginning of this Chapter.

For the applications of the theory we are actually not so much
concerned with values like /TJ{x_sj j, and so on, but rather with
the integrals of these values between certain limits of the arguments,

V s- 1 (+1 !/+1
such as Jlfx]dx, f (Lfx_s^sdxds and others. The computation,

v i y

however, still proceeds on the lines described above and a numerical
illustration will make the whole process clear.
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5. Example

v 11

We assume that, the values f Lxdx are known for every integral y;
and that they are as follows:

!l

,/H
fLrdx

II

0 12:} 4 5 0780 t() It 12 l;i 14 15

921 915 909 902 894 88fi 877 860 855 842 828 811 791 767 741

The total of these numbers is j Lxd% -- 12,805.
15

f
o

Then let us assume that the following hierarchy has been fixed:

Grade 1 3528

» 2 6282

» 3 3000

ft is further required that promotions shall start in grade I after
.i =- 8. By s - ti all members are to have been promoted to grade 2

c
at least and the form of the force of promotion is to be rl(s) —-

c
6 s

which is, in grade 1, also =- The force of promotion from grade 2
6 — x

into grade 3 is supposed to be constant, commencing at s 2 and

ceasing at s 7. This means that all those who have not reached

grade 3 after having spent 7 years in grade 2 will never be promoted.

c
We have first to fix the value of c in v1(s) - — - This will

6 s

be done by the aid of (3.4). With the present assumption this formula
reads

1 !'

3,528 - | TJ(s)ds + j V(s)ds
o

l! + 1
:>

2682

~ 2745 4-

c+ I

'therefore c ^ 2.45.
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Our first step consists of calculating, for y - 3, 4, 5

H+i i,+ i »+i
J llxdx J Lxflxdx J Lx I dx.

V !/ !/

.'fhis is, with sufficient accuracy,

i/4 i ?/ j-1 / (; x \ 2.45 a I-1 j J

—— I dx f L.dx —

(4.1)

Ji-'/t-a:
J Lxdx j dx J Lxdx

V
8.45 32-45

[(6-#45-(5-#45J

Thus we have

y 0 1 2 8 4 5 0 etc.

r/+i
f IjxcIx

V

921 915 909 902 894 886 877 etc.

factor 1 1 1 .053 .194 .0190 0

yhl
1 Pxdx

V

921 915 909 589 173 1.7 0

f L\ dx
V

0 0 0 313 721 809 877 etc.

The total of the third line is 8524 which is near enough to 3528.

The last line is found from

J/ l-t !/+l 1/ -I-1

j'Lldx f LJx—flldx.
y y y

The numbers in grades 2 and above must now be split up according
to seniorities.

Namely, we first want to find

#+i i
J j'Lfx_s]+Sdsdx.
v o

As no promotions from grade 2 occur within the first year, this is also

i/ i-i i

j fP[x-s]+adxd.s.
y o
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We can use an argument which is analogous to the derivation
of formula (21). Out of 902 members of the total population between

ages 8 and 4 there will be 894 survivors after one year. Therefore
894

out of 818 members in grade 2, in the same year group, 818 810
902

can be expected to survive, so that 721 — 810 411 is the number
of the survivors of those who have entered the grade during the last

year and are now aged 4—5. In this way the following numbers of

surviving members with a seniority of not more than one year («New
Entrants ») are, found:

y 3 4 5 6

• !/+l
J Lldx

V

313 721 869 877

Probability of surviving one year
894

902

886

894

877

886

Survivors at age y + 1 to y + 2 310 715 860

New Entrants into grade at age

y to y -1- 1
313* 411 154 17

* In this group all members are, of course, «New Entrants».

These numbers can now be carried forward by multiplying them

again by their probabilities of survivorship, taken as

y-t-2

j hxdx
v+i

i/+i
J m®
V

and we thus obtain the following complete table of the distribution of
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(trades 2 and above

Ages last birthday Totals

Seniority
/// (a) ch

.9
3 4 5 fi 7 S 9 10 11 12 13 14

0—1 313 411 154 17 895

1—2 310 408152 17 887

2—0 307 404 150 10 877

1 304 398 149 10 807

4—5 301 393 140 10 850

5- -0 297 387 144 10 844

(J—7 293 381 141 15 830

IS 287 373 137 15 812

8—!) 281 305 133 14 793

9—10 274 353 129 750

10 -11 200 341 007

11 -12 257 257

Total

v I '

f Llclx
313 721 809 877 800 855 842 828 811 791 707 741 9281

n

The totals in the last line are already known and thus provide
a check on our computations.

We must now obtain from these figures those which relate to
grade 2 alone. Consider equation

2 7 12

U - j'/J(s)ds + f lß(s) p;eis + J'Is
where p; c and p~

2 (f^c
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By trial and error we find that P 6282 can be obtained by
putting c — .153. Then

2

f L2(s)ds 1782
Ü

12

j L2 (a) p2 ds 3225-.46533 1501
7

and

7
g M-t M-l 6 Ml ß-(/-2)c

I J2 [s) p2 ds ~ V | L2(s)ds I c-W'ds 2 f L*(*)ds-
1=21 t 2/ .153

.which can be calculated as follows:

t 2 3 4 5 6

Ml
f Tr («) ds

i
877 867 856 844 830

„-.153(1-2) 153(1-1)

153
.92725 .79569 .68281 .58595 .50288

1 11

f P (*) ds

i
813 690 584 494 417 Total 2998

The total in grade 2 alone is therefore 1782

I- 2998

4-1501

6281

The reducing factors shown in the penultimate line of the above
table and the further factor e"'153x5 .46533 must now be applied
to the table for grades 2 and above given on the previous page in
order to obtain
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(irade 2 only

Ages last birthday Totals

Seniority 8 + 1

J I2 (s) da

33 4 5 6 7 8 9 10 11 12 13 14

0—1 313 411 154 17 895

1—2 310 408152 17 887

2—3 284 375 139 15 813

3—4 242 317 119 12 690

4—5 205 268100 11 584

5—6 174 227 84 9 494

6—7 147 191 71 8 417

7—8 133174 64 7 378

8—9 tat 170 62 6 369

9—10 127164 60 351

10—11 124 159 283

11—12 120 120

Total

u [-1

j l^dx
313 721 846 786 678 576 486 419 385 369 357 345 6281

ii

The differences between the last lines of this table and of the previous
& i-i

one give the values of fl\dx as follows:
u

Ages last birthday: Total

3 4 5 6 7 8 9 10 11 1'2 13 14

Members in Grade 3 — — 23 91 188 279 356 409 426 422 410 396 3000

The analysis of this grade according to seniority can he done in the

same way as that shown for grades 2 and above. The result is



— 273 —

Grade 3 (highest)

Ages last birthday Totals

Seniority s H
f f (s) ds

s5 6 7 8 9 10 11 12 13 14

0—1 23 68 98 93 81 59 25 6 1 454

1—2 23 67 97 92 80 58 24 6 1 448

2—3 23 66 95 90 78 57 24 6 439

3—4 23 65 94 88 76 55 23 424

4—5 23 64 92 86 74 53 392

5—6 22 63 90 83 71 329

6—7 22 61 87 81 251

7—8 22 59 84 165

8—9 21 57 78

9—10 20 20

Total

v+i
f %dx

23 91 188 279 856 409 426 422 410 396 3000

u

18
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