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Numerical calculation of the probability of ruin
in the Poisson/Exponential case

By Hilary L. Seal, Yale University

Consider a nonlife insurance company operating through an interval

of time (0,<). The probability distribution function of the independent

intervals between successive claims is

A{r)=l — eXz 0<t<oo; A>0 (1)

and the probability distribution function of individual claim size is
assumed to be

B{y) l~e"v 0<y<oo; ju>0 (2)

The size of a claim is thus independent of its epoch of occurrence
and of the number of claims that have already occurred. This situation
may conveniently be called the Poisson/exponential model since
the assumption about claim occurrences implies that the probability
distribution of the number of claims in an interval (r,, r2) is Poisson
with parameter A(t2 — ry).

The Poisson assumption for claims is not unreasonable for a multiple

line company; if claims are occurring randomly and independently
in each line of business the overall number of claims follows the
Poisson distribution. On the other hand the use of (2) as the distribution

function of claim sizes is more unrealistic; the tail of the claim
distribution is known to be much longer for a given mean claim jX1
than (2) can accommodate. Nevertheless it may be defended as a first
approximation for which, as we shall see, the mathematics are beautifully

explicit.
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The distribution of aggregate claims

Under the assumed circumstances the distribution function of

X(t), the aggregate claims in the interval (0,t), written F(x,t), maybe
derived as follows. Write B" (x) for the distribution function of aggregate

claims stemming from exactly n claims. Then

00 (U)n
P{X(t)^x\ F(x,t) V, ext

K ' B"*{x), 0^x<oo, (3)
,Wo n!

since the probability of n claims in the interval is given by the Poisson

distribution with parameter M. Now the distribution function of the

sum of n claim sizes may be obtained iteratively from

v

Bn* (y) f B("~tr(y—z) dB1" (z) n 1,2,3, (4)
6

[0 ¥<0
BP{y)-B{y) B°*(y)=\

I 1 2/^0

the integrand of (4) being the probability of suffering a first claim of

size z followed by n — 1 claims the aggregate of which does not exceed

y-z.
It is well-known that when B(-) assumes the form (2) relation (4)

specializes to

Bn* (y) f P'"1 dz
7

n 1,2,3, (5)
r(n) J r(n)

and this can be substituted into (3). There is, however, a more convenient

formula for numerical calculations.
On differentiating (3) with respect to x (noting the discontinuity

at x 0 where F(0,t) e~u =/(0, t) by definition)

d °° (XiY //'
F(x, t) f(x, t) V e~u W* x"'1 x> 0

8x ;^i n! F(n)

u ~ ^ (/Ufa;)"-1
Xut e~u^x V —£i«!(»-!)!
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Define
CO

J(z) 2 7T.O > ^
then

n=0 (02

J'(z) =2-77 ~n, '

and the foregoing expression for f(x,t) becomes in an obvious notation
(x>0)

fAx'1) e~u-"x J'{k/xtx) t-f,Jt;x). (7)
cc

We mention that J' (•) is related to the modified Bessel function
of unit order (Olver, 1967) by the formula

J'(x) x^I^fx).
It is convenient to derive the Laplace-Stieltjes transform (moment

generating function) of F(-,t), namely

co

ff(s) =F(0,t) + f e~s*f(x,t) dx
0

co Ot/f)71'1 00

e~"+ Xut eu y-Lf e^+^x^dx
nl(n-1)! d

-Ai i „-At xn+ 2 —i U" exp{-lfs/(s+/A)|.
n«!(s + /i)

The probability of ruin before epoch t

We now suppose that the insurance company receives a
continuous stream of premiums from its customers. The aggregate premium
collected in the interval (0,t) is equal to the expected claim outgo,
namely

M
E{X(t)} -yjUs) H

from (8)
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plus a risk loading rjt. The premium intensity is thus Xj/x + r] payable
uniformly throughout the interval (0,f). It is usual and convenient to
write X 1 so that the unit of time is the expected interval between

claim occurrences, and also [x 1 so that the average individual claim
size is the monetary unit. The premium intensity throughout the interval

is then 1+ rj.
The insurance company is supposed to pay premiums as they are

received into a risk reserve whose value at the commencement of the
interval is R(0) w. AH claims are paid from this reserve as they occur
and interest on the reserve is paid out as a dividend to the stockholders.
The reserve at epoch r is thus

R(t) id + (1 + rj) r — X (t) (9)

and if it becomes negative (technical) ruin is said to have occurred and

the insurance company is supposed to borrow capital to pay claims until
premiums accumulate to repay the capital and once again produce a

non-negative value of R(-).
We now consider U (w, t), the probability that the risk reserve does

not become negative in the interval (0,f), which may be written

U(w,t) P{P(r)A:0, 0<r<f|P(0) w}

P{inf[w + (1 + 9?)T —X(t)]^0}
T<*

P {sup [W (t) — (1 + rj) t] W) iü} (10)
T<f

11 elation (10) shows that U(w,t) is a non-decreasing, non-negative
function of w for fixed t and assumes the value unity as w -> °° However

w is not a specific value of a random variable W and U(iv t) is only
a pseudo probability distribution function over the non-negative
values of w.

Let us first consider U(0,t), the probability that ruin does not

occur in the interval (0,t) given that the risk business started the interval

with a zero risk reserve. Suppose that the aggregate claims in the

interval amount to z where z must be less than the total premium paid,

namely (1 -f rj)t. The probability of this event isf(z,t)dz.
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Now if ruin has not occurred during the interval preceding epoch t
the premium received in any interval (0,r), namely (1 + ??)t, must
have exceeded the aggregate claim outgo of that interval. Since the
interval (0,t) produced a claim outgo of z the excess income during the
period is tl + rj)t — 2 and, intuitively, the probability that the income
throughout the interval has been larger than the claims is proportionate
to the size of (1 + rj)t—z in relation to the total premiums (1 + rj) t. We

may guess, then, that the probability of non-ruin in the interval (0,f),
knowing that the aggregate claims amounted to 2 at the end of the interval,

is {{l+rj)t — z}/(l + r])t.
The foregoing result is proved as an extension of " the ballot

theorem" (Feller, 1968, Ch. Ill) in which n claims of unit amount occur
in to equal intervals of time during each of which a unit premium has
been paid. The excess income of the period is to—n and the probability
that the income has remained in excess of the aggregate claims at the
end of each of the to intervals is (to— w)/to (Feller, I.e.). The extension
is first to premiums of 1 + r\ per interval and then to the continuous
case in which the intervals between n claims and the claim amounts are
independent realizations of two random variables which, in our case,
are exponentially distributed with unit expectation (Finetti, 1970,
Ch. VIII. 6). The result is found not to involve the number of claims but
only their aggregate amount and is thus true generally1).

Summing over all permissible values of z we have

(11)

j. t

F(1+^ • t, t) - f zfiyTr, Z, t) dz
t J

F(l + ri.t,t)-(l + rj) f e(t~z)r!f(l + r/-t,z)dz (12)
0

by means of (7).

*) We will see later that U(0,t) is the probability of an empty single-server
queue at epoch t. A non-combinatorial inductive proof of our result may then be
obtained, for example, from Prabhu (1965, Sec. 2.3) or Tackäcs (1962 a, Lemma 1).
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The important specialization that (12) represents in comparison
with (11) is that in this Poisson/exponential case a fixed quantity iv may
now be added to the risk reserve at time zero thereby increasing the fixed
claim outgo throughout (12) by a similar quantity. Thus (to )> 0)

t

U (iv,t) F(iv + 1 + rj-t. t)—(1 + »?) Je(t~s)vf(iv-r 1 +rj • t, z)dz (13)
o

(14)
t

e~'+ el fe~(1+v)zJ'(z(w + 1 + rj t)){(w + 1 + rj • t)e7wz,t — (1 + rjjze^dz
6

by means of (7).

We may use (13) to find an asymptotic value for U(iv,t) as t oo,

conveniently written U (w, oo). The first term on the right of (13) tends

to unity and using (7) we have

t

Ü (w, oo) 1 — lim (1 + rj) j J' (2 • w + (1 + rj) t) dz

0

g-r)w/(1 + 1) (l + rf)a-w

*
'-n 0

e "
_ r

1 — lim e
a

ye
11 J (ay) dy

/-»oo 1 + rj d

with a t + wftl + rj)

g-Jjw/(l+>7) 2g~a /(l+l)«-»
_1 — lim •--7= f x2 e~x21,(2 ja x) dx

/->cc 1 + 1? ja J

The above integral with an infinite upper limit is equal to eaja/2
(Magnus et al., 1966, 3 8.3) and it remains to investigate

V(1+i)a-w

-j--- J x2ex2I1(2xja)dx
V(1 -\-rj)a-w

/#2x\!a

—0(a: (/a)"1] da;.
e~a g _

a3'4!m
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The expression on the right is less in absolute value than

1 "
-»üifi : \ iif {(x — l/a)2 4- 2 Ja (x— |/a) + u}
a {(1 ^v)a W\ \ n {(I + Ja-W)!* '

[1 — 0 (a: [/a)_1] dx

which tends to zero as a ->oo. Hence

Ü (to, oo) 1 — (1 + rj)'1 e^t"/(1+,,). (15)

There is a discontinuity at w 0 where

V
U(0, CO

1 + »7

which is true generally.

The form assumed by (15) suggests that there is no particular
advantage in standardizing the pseudo random variable W. The moment
generating function (Laplace-Stieltj es transform) can be derived but
does not assume a simple form.

Historical remarks

The risk process in which claims occur as a Poisson process and
their sizes are independent random variables was introduced by Lund-
berg (1903). The three opening paragraphs of Chapter I of his article
suffer from severe compression and have been regarded as impenetrable,

but we can rewrite them quite briefly in modern terminology and
notation without any distortion of the original. Let

Pr {an individual claim size y{} i 1, 2, 3,

and suppose that pi dt is the probability that a claim of size yi is made
in the time element (t,t + dt). [Lundberg writes <p'- for our and
for our pfdt. Cramer (1969) says that he is considering pi as a function
°f <•] The probability of two (or more) claims is of order (dt)2 and may
be ignored. Write f(x,t) for the density function of the aggregate
claims made in the interval (0,<), then by considering the mutually
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exclusive events that are produced by the occurrence of one claim or
no claims, respectively, in the interval (t, t + dt) we have

cc co ]

f(x,t + dt) dtV p.f^-y^t) + ll-dt^pAf&t). (16)
i — 1 I

» 1 J

[This relation occurs on p. 5 of Lundberg (1903).] Changing to
continuous variables x and y the foregoing may be written

f(x,t + dt)—f(x,t) df (x, t) f {/{x~y,t) —f{x,t)}p[y)dy, (17)

and this is Lundberg's relation (3) except that he suppresses t in

f(x,t).
Lundberg goes on to consider the special case where p (•) degenerates

into the unit probability at y 1; (17) then becomes

df(x,t)—--= f(x-\,t)—f{x,t) x 1, '2, 3, (18)
dt

which is relation (3) of Lundberg. In order to solve this Lundberg
considers (by implication)

8elf(x, t) etdf(x,t)
dt dt

el - '
— + e'f(x,t)

elf(x — l,t) by means of (18)

and says that the solution of (18) is

i

f(x,t) e~l J esf(x,s) ds x 1, 2, 3, (19)
o

Lundberg does not state how he calculates the initial value f(0,t) for
insertion in (19) but we may assume that he rewrote (16) as

f(0,t+dt) (l—dt)f(0,t)

and obtained

1(0, t) e->.
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Repeated substitution into (19) then results in the Poisson process
defined by

ff{x,t) e_i—- x 0,1,2,...

We add that in his 1919 paper Lundberg stated that the above
equation (17) is satisfied by

co fn
f(x,t) 2 e"' (20)

nl

where

X

jjn*(x) f p(n'ir (x-ij) p{y) dy n =-- 1, 2, 8,
0

and

1 0 x =j= 0

P{X)=
1 01 x 0

The explicit formula for the particular case in which p (x) is
exponential, namely (7), was first provided by Ackermann (1939).

Lundberg continued his general approach to the Poisson risk
process in his 1909 article. Attention is now paid to the random variable
R(t) defined by (9) except that: (i) w may be a random variable, (ii) rj
is supposed to be a function of X(r), (iii) negative claims are permitted,
and (iv) dividends may be paid from the risk reserve. The probability
of ruin is considered and a general inequality found for it as t -*oo.
However the argument is not particularized to the exponential claims
distribution and the result (15) was first given by Lundberg in 1926.

Twenty four years later Arfwedson gave the result for the Poisson/
exponential case valid for all t. In the 1950 paper he obtained (7) and
(14) (his (77) and (48), respectively), the latter using rather deep mathematics

and the former by writing 1 +rj 0 in (14). In his 1952 paper
Arfwedson developed a series expansion for calculating Ü (w,t) and
produced two-decimal values of it for w — 0,11,110,1100 and t 10',

] l,2,3,4,oo, with rj 0 and 0.1, respectively. This numerical
achievement has not hitherto been duplicated.
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Formulae (7) and (14), the explicit solutions of the two central problems

of risk theory, are identical with two formulae in a queueing

theory model in which a single server, idle at epoch zero, handles the
service demands of customers who arrive as the realization of a Poisson

process with arrival intensity L Customers are served in order and wait
in a queue if the server is busy. The lengths of customers' service times

are independent of each other and of their arrival epochs and are
distributed exponentially with mean y1. The density function of the

aggregate service load offered to the server through epoch t conditional
on n customer arrivals is dBn*{y)jdy and the unconditional density is

then given by (7). However in order to translate (14) into the corresponding

queueing formula we must rescale the time and monetary units by
writing w' wjy, t' f/A and g"1 =itt/A 1-^-rj. It turns out that
the probability on the right of (10) is then the distribution function of

the random variable W (t), the waiting time for service of a customer
assumed to join the queueing system at epoch t. These equivalences

were first made explicit by Prabhu (1961).

Although W (t) is an important random variable in queueing theory

at least as much attention has been paid to Q (f), the length of the

queue (including the customer being served) at epoch t. Of course when

Q (t) 0 an arriving customer has no wait for service and the probability
of this empty system is U (0,£). In the Poisson/exponential case

(denoted M/M/l in the queueing literature) the distributions of Q (t)

and W (t) are related as follows.
If there are k individuals in the system at epoch t the aggregate

unsatisfied service load is made up of the remaining service demand of

the customer being served plus the sum of the service times of the fc —1

customers in the queue. Since the distribution of a partially elapsed

interval whose length is distributed exponentially is also exponential
(without parameter change) we have, with appropriate choice of time
scale,

CO

U(w,t) =2^(0 B*>) (21)
k=o

where Pk(t) P{Q(t) fe} and !?*(•) is given by (5).

Furthermore, a relation for Pk(t) in terms of U(-, may be

obtained as follows. If the system contains fc> 0 customers at epoch t
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suppose that the customer receiving service arrived at epoch t—r,
commenced service at epoch t — y (so that his waiting time was y)
and continued to be served at least until epoch t (i.e., at least for a
period r— y). The k— 1 customers waiting in the queue arrived after
the designated customer, namely during the interval with
probability e~lT(Xr)&_1/(fe — 1)!- We thus have (k t, 2, 3,...)

The foregoing queueing model was introduced by Erlang in 1909
when he showed that the assumption that telephone calls were uniformly
distributed in any interval of time led to a Poisson distribution for the
number of independent calls in a specified period. He proceeded to
derive the distribution of W (t) on the assumption that individual
service times were constant. His arguments and mathematics are easily
understood. Erlang's first use of the exponential distribution for service
times was in 1917 and he there provided the asymptotic waiting time
distribution (15) as a special case of a formula valid for more than one
server.

The first major contribution to the so-called transient case (f finite)
of queueing theory (M/M/l) was made by Ledermann and Eeuter (1954)
and then, more simply, by Bailey (1954) for the function dPk(t)jct and
for G(-), the distribution function of the length of a (busy) period
during which ther server is never idle. No attempt seems to have been

made to obtain U (w, t) directly for w =j=- 0 and reference is invariably
made to (21) in text-books on the subject (e.g., Takäcs, 1962 b; Prabhu,
1965; Cohen, 1969).

Another function of interest in queueing, and possibly also in risk
theory, is Wn(-) the probability distribution function of the waiting
time for service of the nth arrival at the queue. This function has played
a central role in Pollaczek's idiosyncratic contributions to telephone
engineering which commenced in 1930. It has received considerable
attention since the early fifties because of its connections with"fluctua-

(22)

The probability of ruin before the wth claim
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tion theory". Lindley (1952) wrote down the following self-explanatory
recurrence relation

W

Wn{w) j W^w-z) dK(z), n 1, 2, S, (23)

-co

(0 w < 0
WQ{io)

(l w^O

where K(-) is the probability distribution function of Z, the difference
between the service period of a customer and the interval of time
between that customer and the next. In order for customer number 1 to
have a possibly non-zero waiting time we assume that customer 0

starts the system at epoch zero with a random service load from which
is deducted the arrival epoch of customer number 1 to provide the first
realization of Z. This is in conformity with the natural procedure in the

risk model where the premium for the interval until the first claim is

added to w and then reduced by the first claim amount corresponding
to the service load of customer 0.

Consideration shows that

CO

Ii{z) f B(zJry) dA (y)
,y=max(0, -z)

or, in our doubly exponential case,

[ueXzj{X-\-u) z< 0
Elz)

F
(24)

[l — z> 0

For this M/M/l case a series expansion has been obtained by Cohen

(1969) namely (q Ijfj)
(25)

w (w\ V r^ V 1±±-+"1 + k + V\ Q"+1

jH r'(j) ft4J02W-? + /v + l\ n-j {l + Qfn-i+k+1

where the gamma ratio is replaced by B°* (w) when j 0.
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The last term of this series (j - n) is equal to

y (n, fiw) q V4"1^, .j, y(n,/j,w) / q\ (i-i-e)/» \i + q) ^=0 r(n) \i+ej'
and the inner sum for the remaining j-values is g"+1/(1 + o)2n"j+1 times

j + k+1 (k+2n—j\ n t:a + e)-
iPo n—1 \n— 1—]

1 » /k\ Zn — j
— \ 0'+fc + i)(i + e)~* 2 7
"W — 1 k 0 1=0 \V I n 1 1~ l

on making use of the relation (Eiordan, 1968)

/ k + p \ /fc\ / V/ H + v \ M P \

I m / r^o \ ^ / \m—l)

Noting that

fi(k1)(i + qYu (i + Q) Y"1 e> o,i o, 1, 2,
Jc=0 V t /

the required sum becomes

1

."s - J"z)s fy + fc+1) (^)a -e)
w — ] ~!, \ w — 1 — ] — LJk=o W

,YYl(-r'(){(!+I>(1+e,---,l4'+'-
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We thus have

4b1 q"
1 yii>ßw) 4~l / 2n — j \

prB(W) y.. ^ — /u ^ ; y ' {(Z + i) (i + e)~jje-I+'
ft, (l-re)*'" (n-j)r(j) ft \n- M ^

V (26)/» \i + eJ

where y(0, /uw) /F(0) is understood to be unity. The right hand side is

a series of n(n +1)/2 4 1 terms.
In risk theory Wn (w) is the probability of non-ruin through the

rath claim starting with a risk reserve of w. Only one example occurs in
the literature, namely Beard's (1971) note in which he used (23) to
derive the values of Wn{-) for n 1,2 (and for n 3,4 when rj 0)

for the Poisson/exponential case. His results agree with (25) with
q (1-^r1.

Numerical calculations

The calculation of F(x, t) by numerical integration of (7) poses no
substantial problems, particularly since I1(z) can be approximated
with better than seven significant figure accuracy by polynomials
(Olver, 1967, Sec. 9.8.3/4). It is well known that if X(t) is the random

X(t)-tvariable having F(-,t) as distribution function then X„ -=— is
v

j/2f
asymptotically standard Normal in distribution. This suggests that t-

wise interpolation of F(x,t) is likely to be more successful for constant

x0—, rather than x—, values.
We accordingly calculated F(x,t) for xQ —5(1)5 and t

1 (1) 50(50) 2000. Trapezoidal quadrature with 128 panels was used first
onF0(-5,t) and then on each.F0(a;0+1,1)- F0(x0,t), x0 —5 (1)4 where

Fg has been written for F when x is replaced by the corresponding
standardized value x0. Actually the Trapezoidal Rule was used with 4, 8,

16, 32, 64 and 128 panels and the Romberg extrapolate based on the
six resulting values (Henrici, 1964, § 13.7) was found to agree with the
128 panel result to at least five decimal places. The following Table 1



Table 1

F0(x0,t), x0 {x-t)j]/2t

t IIIoH -3 -2 -1 0 1 2 3 4 5

1 - - - _ .65425 .86099 .94679 .98036 .99296 .99753
2 - - - .13534 .60350 .85194 .95123 .98528 .99583 .99888
3 - - - .14133 .58333 .84875 .95419 .98777 .99703 .99933
4 - - - .14653 .57172 .84707 .95628 .98932 .99768 .99954
5 - - - .14952 .56392 .84604 .95786 .99040 .99810 .99966

10 - - .00234 .15470 .54489 .84384 .96236 .99308 .99897 .99987
20 - .00001 .00844 .15685 .53164 .84266 .96609 .99493 .99944 .99995
30 - .00003 .01124 .15749 .52581 .84224 .96790 .99571 .99960 .99997
40 - .00009 .01289 .15780 .52234 .84203 .96903 .99616 .99968 .99998
50 - .00015 .01400 .15798 .51997 .84190 .96982 .99647 .99973 .99999

100 - .00037 .01669 .15833 .51411 .84163 .97186 99718 .99983 .99999
150 - .00051 .01785 .15844 .51152 .84154 ' .97280 .99748 .99987 1.
200 - .00060 .01853 .15850 .50998 .84149 .97337 .99765 .99989 1.
400 .00001 .00079 .01980 .15858 .50705 .84142 .97447 .99796 .99992 1.
600 .00001 .00088 .02036 .15860 .50576 .84139 .97497 .99810 .99993 1.
800 .00001 .00094 .02068 .15862 .50499 .84138 .97527 .99818 .99994 1.

1000 .00001 .00098 .02091 .15862 .50446 .84137 .97547 .99823 .99994 .99999
1500 .00002 .00104 .02125 .15863 .50364 .84136 .97578 .99830 .99994 .99999
2000 .00002 .00108 .02145 .15864 .50315 .84135 .97598 .99835 .99994 .99999

oo .00003 .00135 .02275 .15866 .50000 .84134 .97725 .99865 .99997 1.
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extracted from the computer output may thus be regarded as correct
to within a unit in the fifth decimal place. It is interesting to note how

quickly F0 converges towards its asymptotic value when x0 — +1 but
how relatively incorrect the asymptotic F0 is at the mean x0 0 even
for fairly large f-values.

Belation (14) allows U (w,t) to be calculated by approximate
integration for any combination of rj, w and t. The following arbitrary rule
was adopted: if the Bömberg extrapolate based on six approximations
by the Trapezoidal Eule with successive halving of the panel width
differed from the sixth quadrature by 8 or less in the fifth decimal place
the extrapolate was to be judged essentially correct to five decimals.

Experiments were carried out with rj 0.1 (a 10% risk loading).
Using up to 64 panels calculation of U (w,t) for to 0(11) 22 and t

1(1)100(2)150 resulted in five decimal accuracy for U(0,t) throughout,

for D"(22,f), t =9(1)66, and for a few other isolated sets of values.

In order to produce five decimal accuracy throughout the number
of panels was increased to 128, and the ranges were extended to w

0(11)110 and f 50 (50) 2000. All the resulting values of U (w,t)
satisfied the arbitrary accuracy criterion, very few fifth place differences

being as large as 7 or 8. Finally, a further set of 128-panel quadratures

produced values of U (w,t) for tv 1 (1) 10 and t 1 (1) 50, the

extrapolate now never differing from the final quadrature by more than
5 in the fifth place.

Table 2 summarizes the results obtained in the foregoing computations.

AAA notice that there is at most a unit difference in the third
decimal place between U (w, 1000) and the corresponding asymptotic
value. The final line of the Table provides Segerdahl's Normal approximation

to £7(w, 1000) (see Seal, 1969, p. 115). AA'hile the values are, for
w (A 22, slight improvements over the asymptotic results they do not

justify the extra calculations involved.
The upper part of the Table is interesting because it shows how

quickly U (w,t) tends to unity for given small t. The step at w 0 is

larger than one-half when t 1 showing that, with no initial capital
and a 10 % risk loading, there is only slightly better than an even chance
of avoiding ruin during the interval at the end of which the first claim
is expected.

Table 8 provides the corresponding values of U (w,t) for the no-

loading case, rj =0.0. Euin is eventually certain whatever w is but for



Table 2

U (w, t), 11 0.1

t w 0 1 2 3 4 5 6 7 8 9 10
1 .53660 .76194 .88029 .94085 .97121 .98616 .99342 .99690 .99855 .99933 .99969
2 .40714 .64543 .79433 .88367 .93560 .96499 .98127 .99012 .99486 .99735 .99865
3 .34479 .57402 .73154 .83524 .90118 .94191 .96645 .98093 .98932 .99409 .99677
4 .30669 .52472 .68359 .79471 .86979 .91907 .95061 .97035 .98246 .98977 .99410
5 .28040 .48811 .64558 .76049 .84164 .89734 .93464 .95906 .97474 .9S463 .99077
6 .26088 .45957 .61455 .73125 .81646 .87701 .91901 .94752 .96649 .97890 .98688
7 .24566 .43653 .58863 .70596 .79389 .85812 .90397 .93600 .95797 .97277 .98258
8 .23337 .41745 .56658 .68384 .77359 .84064 .88962 .92469 .94934 .96637 .97796
9 .22319 .40130 .54753 .66430 .75524 .82444 .87601 .91369 .94074 .95983 .97311

10 .21457 .38742 .53087 .64690 .73857 .80943 .86312 .90305 .93224 .95323 .96810
20 .16816 .30939 .43267 .53879 .62889 .70438 .76683 .81785 .85904 .89191 .91785
30 .14798 .27393 .38578 .48419 .57000 .64413 .70760 .76147 .80678 .84458 .87584
40 .13621 .25289 .35738 .45033 .53247 .60458 .66744 .72188 .76871 .80872 .84269
50 .12836 .23872 .33804 .42696 .50618 .57639 .63827 .69253 .73985 .78090 81631

t w 0 11 22 33 44 55 66 77 88 99 110
50 .12836 .84671 .98438 .99904 .99996 1. 1. 1. 1. 1. 1.

100 .11001 .77244 .95621 .99373 .99933 .99994 1. 1. 1. 1. 1.
150 .10282 .73611 .93517 .98695 .99786 .99971 .99997 1. 1. 1. 1.
200 .09902 .71512 .92050 .98080 .99602 .99929 .99989 .99998 .99999 1. 1.
400 .09343 .68177 .89287 .96584 .98979 .99716 .99927 .99982 99994 99998 .99999
600 .09191 .67215 .88372 .95977 .98652 .99565 .99865 .99960 .99986 .99996 .99998
800 .09136 .66853 .88009 .95715 .98494 .99482 .99826 .99943 .99980 .99993 .999971000 .09112 .66698 .87848 .95593 .98416 .99437 .99802 .99932 .99976 .99991 999961500 .09095 .66582 .87725 .95496 .98350 .99397 .99780 .99920 .99970 .99989 .99996

2000 .09092 .66562 .87702 .95478 .98337 .99387 .99773 .99914 .99966 .99985 .99993
oo .09091 .66556 .87697 .95474 .98335 .99387 .99775 .99917 .99970 .99989 .999961000 .09091 .66556 .87698 .95492 .98376 .99431 .99807 .99936 .99979 .99994 .99998



Table 3

U (w,t), rj 0.0

t w 0 1 2 3 4 5 6 7 8 9 10

1 .52378 .75406 .87580 .93842 .96993 .98551 .99309 .99674 .99848 .99929 .99967
2 .38575 .62804 .78207 .87572 .93072 .96212 .97963 .98921 .99436 .99708 .99851
3 .31871 .54911 .71164 .82083 .89140 .93557 .96249 .97853 .98789 .99327 .99630
4 .27757 .49389 .65684 .77381 .85457 .90852 .94357 .96580 .97960 .98802 .99304
5 .24910 .45252 .61280 .73344 .82085 .88216 .92399 .95183 .96996 .98154 .98881
6 .22789 .42005 .57647 .69846 .79019 .85703 .90442 .93721 .95941 .97414 .98376
7 .21131 .39368 .54586 .66786 .76234 .83332 .88524 .92233 .94825 .96603 .97800
8 .19789 .37172 .51963 .64085 .73699 .81105 .86666. .90745 .93675 .95740 .97169
9 .18674 .35307 .49683 .61680 .71384 .79020 .84879 .89276 .92508 .94840 .96493

10 .17729 .33697 .47678 .59522 .69263 .77066 .83168 .87837 .91338 .93916 .95782
20 .12576 .24501 .35614 .45764 .54860 .62869 .69804 .75713 .80675 .84783 .88137
30 .10279 .20198 .29653 .38535 .46767 .54295 .61092 .67157 .72505 .77168 .81191
40 .08907 .17577 .25939 .33912 .41433 .48454 .54942 .60878 .66260 .71093 .75395
50 .07969 .15768 .23343 .30632 .37584 .44158 .50321 .56053 .61341 .66181 .70578

t w 0 11 22 33 44 55 66 77 88 99 110

50 .07969 .74543 .96330 .99701 .99985 1. 1 1. 1. 1. 1.
100 .05638 .59118 .87760 .97439 .99617 .99958 .99997 1. 1. 1. 1.
150 .04605 .50370 .80017 .93780 .98492 .99712 .99956 .99995 1. 1. 1.
200 .03988 .44602 .73716 .89789 .96746 .99145 .99813 .99966 .99995 .99999 1.
400 .02821 .32649 .57755 .76124 .87868 .94462 .97728 .99161 .99721 .99916 .99977
600 .02303 .26976 .48941 .66709 .79802 .88612 .94037 .97100 .98690 .99450 .99786
800 .01995 .23503 .43204 .59985 .73294 .83137 .89935 .94323 .96975 .98477 .99275

1000 .01784 .21098 .39098 .54918 .68043 .78330 .85956 .91305 .94859 .97098 .98436
1500 .01457 .17310 .32433 .46300 .58528 .68902 .77373 .84033 .89077 .92758 .95348
2000 .01262 .15028 .28314 .40761 .52083 .62083 .70663 .77815 .83608 .88171 .91663

oo always zero for finite w
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small f-values the values of U (w,t) are not much smaller than the
corresponding values for rj =0.1 particularly when w is about 10.
This conforms with intuition. It is mentioned that the whole of Table 3

was produced in 90 seconds of computation on an IBM 7094.

Large values of n pose a problem in the numerical computation of
Wn (w) and, after putting,« 1 and 1 1 + rj, we rewrite (26) in the form

«-1 / 2-j- yj \^n~i
wnM 2 (i+vr hi + PM (2+vr

1=0 \1 -r r)/4 J i j

where

'j\2n-j / 2n—j
j 0,1,2,... n 1

2/ \n—1 — 1/

b. ("-W)1 ("j-1)!_ (* + i) V + v)Ki + ri)-i a w+w
(n—1 —1)1 (n + l + l— j)! n — j ^

and P(j+l,w) P(j, w) — e~m/j j 0,1, 2, n — 1.

In these expressions a - decreases from a0~l/|/(w7r) to an_x l/2n+1
which may be very small. The initial value of & is

j + 2 + rt
b. and the final value is

n— 1

(2 + 77) w — (1 + rj) j
| // '2n-j

j-n~l n-j
1 ' n' I \n-l-j

the latter being very small for the lower values of j. We thus watch
for excessively small values of the terms of the inner sum when j is

small and stop calculations when increasing j causes the outer factors to
evanesce.

Table 4 provides the values of Wn(w) corresponding to the values

of U (w,t) given in the top part of Table 2. Bearing in mind that

lim U (w, t) lim Wn (w),
t 00 n-> co

we are not surprised to see that the two distribution functions are

already quite close for t n 50.



Table 4

Wn(w), t] 0,1

n w 0 1 2 3 4 5 6 7 8 9 10
1 .52381 .82482 .93555 .97629 .99128 .99679 .99882 .99957 .99984 .99994 .99998
2 .40503 .69770 .85810 .93651 .97249 .98835 .99515 .99801 .99919 .99967. .99987
3 .34578 .61443 .79024 .89247 .94730 .97505 .98851 .99482 .99771 .99900 .99957
4 .30883 .55687 .73500 .85047 .91957 .95840 .97917 .98985 .99517 .99774 .99896
5 .28302 .51461 .69034 .81268 .89182 .93997 .96782 .98326 .99151 .99579 .99795
6 .26371 .48206 .65379 .77935 .86535 .92096 .95518 .97534 .98680 .99310 .99647
7 .24857 .45607 .62338 .75012 .84070 .90212 .94184 .96647 .98120 .98971 .99450
8 .23630 .43473 .59766 .72440 .81801 .88390 .92827 .95697 .97488 .98569 .99204
9 .22610 .41681 .57560 .70167 .79722 .86653 .91477 .94710 .96803 .98114 .98913

10 .21744 .40150 .55644 .68145 .77819 .85010 .90156 .93708 .96080 .97616 .98582
20 .17052 .31702 .44618 .55793 .65276 .73165 .79598 .84741 .88773 .91871 .94207
30 .14996 .27939 .39510 .49739 .58673 .66381 .72948 .78472 .83057 .86815 .89854
40 .13793 .25723 .36459 .46045 .54534 .61987 .68472 .74063 .78839 .82880 .86266
50 .12988 .24236 .34396 .43521 .51665 .58887 .65248 .70812 .75645 .79812 .83377
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Zusammenfassung

In einer wenig bekannten Arbeit leitete Arfwedson (1950) einen expliziten
Ausdruck für die Wahrscheinlichkeit her, dass eine Nichtlebensversicherungs-Gesell-
schaft innerhalb von { Jahren nicht ruiniert wird, wenn die Anfangsrisikoreserve w
ist, die Schäden Poisson-und ihre Beträge exponentiell-verteilt sind. Dies entspricht
der Verteilungsfunktion der Wartezeit bis zur Bedienung für einen Kunden, der, im
FallM/M/1, sich einer einfachbedientenWarteschlange im Zeitpunkt! anschliesst.
Diese Punktion wird in einer einfachen Weise hergeleitet, und es werden numerische
Werte geliefert für

(i) w 0 (1) 10 und 4 1 (1) 10 (10) 50,

(ii) w 0 (11) 110 und { 50(50)200(200)1000(500)2000
in den beiden Fällen g_1 1 + jj 1.0 und 1.1.

Bin neuer Ausdruck wird für die numerische Berechnung der Wahrscheinlichkeit
des Nichtruins durch den ra-ten Schaden (oder die Verteilungsfunktion der Wartezeit

des sich der Warteschlange anschliessenden w-ten Kunden) hergeleitet, und dieser
wird ausgewertet für

w 0(1)10 und ii 1 (1) 10 (10) 50 mit Q~1= 1 + 1.1 •

Summary

In a little-known paper Arfwedson (1950) derived an explicit expression for the

probability that a nonlife insurance company will not be ruined within t years when
the initial risk reserve is w and claims and their amounts are Poisson/exponential.
Equivalently this is the distribution function of the waiting time for service of a

customer joining a single-server queue at epoch t in the M/M/l case. This function is

derived in a simple way and numerical values are provided for

(i) ic 0(1) 10 and t 1 (1) 10 (10)50, and

(ii) to 0(11) 110 and { 50(50)200(200)1000(500)2000,
in the two cases p_1 1 + tj 1.0 and 1.1.

A new expression is provided for the numerical calculation of the probability
of nonruin through the nth claim (or the distribution function of the waiting time
of the nth customer joining the queue) and this is evaluated for

w 0(1)10 and « 1(1)10(10)50 with 1 + rj 1.1.
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Resume

Dans un article pas tres connu Arfwedson deduisait une expression explicite de

la probabilite qu'une societe d'assurances non-vie ne soit pas ruinee dans t annees

lorsque la reserve initiale est w et le nornbre des sinistres est distribue selon la loi de

Poisson et les montants des sinistres selon la loi exponentielle. Cela correspond ä la
fonction de distribution de la periode d'attente d'un client, qui- dans le cas M/M/l -
se joint ä une queue au moment t. Cette fonction peut etre derive de fagon simple et

on ajoute des valeurs numeriques pour

(i) w 0(1)10 et t 1 (1)10(10)50,

(ii) w 0(11) 110 et t 50(50)200(200)1000(500)2000,

dans les deux cas g~l 1 + r\ 1.0 et 1.1.

Une nouvelle expression est deduite pour le calcul numerique de la probabilite
que le dommage n n'entraine pas la ruine de la societe (ou de la fonction de

distribution de la p6riode d'attente du client n qui se joint ä la queue) et on utilise
1'expression pour

w 0(1)10 et 1) 1 (1)10(10)50 avec g"1 1 + rj 1.1.

Riassunto

In un articolo non molto conosciuto Arfwedson deriva una espressione esplicita

per la probabilitä che una societä assicurativa del ramo generale non vadi in rovina

entro t anni quando la riserva iniziale sia w e il numero dei danni abbia la distribu-
zione di Poisson mentre gli importi di questi siano distribuiti di modo esponenziale.

Questa distribuzione corrisponde alia funzione di distribuzione del tempo di atteso

di un cliente che - nel caso M/M/l - si unisce a una coda all'instante t. Questa funzione
viene ottenuta in modo semplice e vengono forniti valori numerici per

(i)w 0(1)10 e t 1(1)10 (10)50,

(ii)«j 0(11)110 e t 50(50)200(200)1000(500)2000,
nei casi g_1 l + ?j 1.0 e 1.1.

Una nuova espressione viene sviluppata per il calcolo numerico della probabihta
che l'm-esimo danno non mandi in rovina la societä (o la funzione di distribuzione del

tempo di attesa delFw-esimo cliente che si unisce alia coda) e vengono dati valon
numerici per

w 0(1)10 e rj 1(1)10(10)50 nel caso g_1 1 + rj 1.1 •
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