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Risk Theory and the Single-server Queue

By Hilary L. Seal, Yale University

In certain circumstances the probability that (a) a risk business with positive
sums at risk and an initial risk-reserve of w will not be technically ruined in an
interval (0,t) is exactly the same as the probability that (b) a potential (virtual)
customer arriving at an orderly queue at an epoch t after the server commenced
business with an empty queue would not have to wait longer than an interval w
for his service to commence. Under the same conditions the probability that (c)
a risk business whose latest claim has just left it with a risk-reserve of w will not
be technically ruined through the «th following claim is equivalent to the
probability that (d) the nth customer arriving after the single server commenced
business by serving a customer (number zero) would have not more than an
interval w to wait for the commencement ofhis service.
There is a substantial literature on queueing theory with excellent texts that
include detailed treatment of the first problem (Benes, 1963; Cohen, 1969;
Prabhu, 1965) or the second (Cohen, 1969; Feller, 1971; Pollaczek, 1957;
Prabhu, 1965) or both. Many of the theoretical results of risk theory were
discovered independently by queueing theoreticians (Seal, 1969, passim) and
there are queueing formulas that could well be applied to risk theoretical
models. It may be convenient for actuaries to have a short, simple article
demonstrating the probability equivalences mentioned in the first paragraph so
that they may save themselves from developing risk formulas that are already in
the queueing literature.

Basic assumptions

There are several random variables that are basic to both risk and queueing
models:

(i) A series of random variables representing successive interclaim (inter-
arrival) intervals. In the general formulation the process of claim (arrival)
epochs is supposed stationary - and stationarity may sometimes be

achieved only after rescaling of time measurements. Successive intervals are
not necessarily independent and multiple claims (arrivals) are not excluded.
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Because ofstationarity the intervals all have the same distribution function
A(-) with mean a. The mathematics of such stationary point processes is

found in McFadden (1962), McFadden & Weissblum (1963) and Kuznecov &

Stratonovic (1956). Simple examples of stationary point processes are
Poisson and renewal processes, the latter introduced in queueing theory by
Palm (1943). Others are listed by Seal (1969, Ch. 4).

Expressions for probabilities (a) and (b) can be obtained in the general case

(Benes, 1963; Seal, 1969) but they are only equivalent (as we shall see) when the

intervals between claims (arrivals) are independently and identically distributed
(iid) or, more exactly, are exchangeable random variables. This restriction
applies also to probabilities (c) and (d).

(ii) The random variable B denoting the individual claims sizes (service times)

supposed to be independent ofone another and of the epoch ofoccurrence
of the claim (customer arrival). We write B(-) for the distribution function
of B and b for its mean.

(iii) The random variable X(t) representing the aggregate claim amounts

(service times) that are presented for payment (service) in the interval (0,t).

This random variable is the sum of the N(t) random claim (customer

arrival) variables B that have occurred in the interval. Note that N(t) is itself

a random variable whose distribution can be determined in terms of the

distribution function of the interval between an arbitrary epoch and the

occurrence ofthemth following claim (arrival), m 1,2, 3,... (McFadden,

1962). Write p„(t) Pr{N(t) n}.
The basic results presented in this paper are obtained under the assumption
that X(t) has independent and stationary increments.

The random variable X(t) is related to the A(-) and B(-) of (i) and (ii) above by

means of the following formula common to risk and queueing theory:

Pr{X(t)<x)=F(x,t)= Sp„(t) Bn"(x) (D

Bn,(*) being the distribution function of the aggregate ofn claims (service times).
Let us adopt the convention that the Laplace-Stieltjes transform of a

nonnegative random variable A(-), say, is written as Ä(s) so that

A( s) r°°e_S!<dA(x)
"0-
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the 0- in the lower limit of the integral denoting that any spike ofprobability at
x 0 is included. Then

^ jk^n" (2)

Nonruin by epoch t

We will now consider the first pair ofprobabilities (a) and (b) introduced in the
first paragraph. The risk-reserve of a risk business at an epoch t after the
business commenced with a capital of w > 0 is defined by

R(t) w + (1+t?) bt/a - X(t) (3)

where (1 +t?) bt/a is 1 +v times the expected claim outgo in the interval (0,t) and
1 > 0 is called the risk loading. An essential feature of (3) is that the premiums
are supposed to be payable continuously throughout the interval.
The probability of nonruin of the business during the interval (0,t) is the

probability that R(t), t < t, is always nonnegative or, equivalently, that the
smallest value ofR(v), t, is nonnegative. Write

U(w,t) Pr{infR(r)>0)-

Pr-jinffw + (1+T?) rb/a — X(r)] > 0}
T<*

Pr{w + inf[(l+7?) rb/a - X(r)] > 0}

Prlsup[X(r) -(1+T?) rb/a] < w} (4)
T< -t

The last expression is the probability that the excess of claims over premiums
does not exceed w, the initial risk-reserve, at any epoch in the interval (0,t). We
notice particularly that both functions within the brackets refer to the first part
of the interval, namely to (0,t).
Turning now to the single-server queue in which the server is supposed idle at
epoch 0 we introduce an indicator event Q (•) (read as "no queue") such that
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_ j 0 if server busy with a customer at epoch u
Q(u) [ j jf server idle at epoch u

and a random variable W(t) representing the time a customer would have to

wait for the commencement ofhis service ifhe arrived at the server (or the end

of the queue) at an arbitrary epoch t.

The interval (0,t) commences with an idle period during which the server is

waiting for his first customer. This customer arrives and, in effect, presents the

server with a service load that is a realization of the random variable B. The

server immediately starts to reduce this service load (the size of which is

unknown to him) and will again become idle unless a second customer arrives
before the server has finished with the first. The waiting time of a customer

arriving for service at epoch t is thus equal to the aggregate service load imposed

on the server by customers arriving during the interval (0,t) minus the time

during which the server has been reducing this load by providing service. The

deductive item is equal to the time elapsed t less the aggregate of the server's idle

periods. We thus have

W(t) X(t) — t + jjQ(u) du (5)

and will demonstrate (Benes, 1963 Lemma 1.1) that

W(t) sup [X(t) — X(r) - t + r] (6)
T<t

Using (5) for any epoch r< t we have

W(t) X(t) - t + /fO(u) du

and on subtracting this from (5)

W(t) W(r) + X(t) - X(r) - t+r+/TQ(u)du

> X(t) - X(r) - t + r since the other terms are nonnegative.

On the other hand supposing that a is the last epoch prior to t at which the server

was idle.
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W(t) X(t) — X(o) - t + a namely the overload since epoch d
< sup [X(t) - Xfr) - t + r] by definition ofa supremum

Combining the inequalities for W(t) (6) results.

Now in general sup [X(t) - X(r) - t + r] ¥= sup [X(r) - r],
r<t

But if the discrete increments in X(r) are independently and identically
distributed we can, as it were, reverse the time scale and write X(t) -X(t) X(t-t) in
probability. Then

Pr{W(t) < w} Pr{sup [X(t) - X(r) t + r] Prfsup [X(r) - t] < w} (7)
T<t T<t

Comparing (4) and (7) we see that they are equivalent provided

l+p=| (8)

This is not a restriction since, in the risk model, b is in monetary units which
may be chosen arbitrarily but consistently so that w and R(t) are also expressed
in those units. In both models« is in time units and is often chosen as unity. We
note that the ratio b/a is sometimes written as p in queueing theory.
Furthermore U(w,t) in risk theory, defined as zero when w 0-, written as U(0,t)
> 0 when w 0, and increasing monotonically to unity as w >oo, can be

regarded as the distribution function ofa random variable W(t).

Nonruin through the nth claim

The initial conditions are different for the second pair of probabilities (c) and
(d) specified in the first paragraph. The time origin must be chosen at the
occurrence of a claim (customer arrival). In the risk theoretic case w is the risk
reserve after paying this claim and in the queueing model the initial customer is

assumed to be served before the count of n (n 1, 2, 3, further customers
begins.
We now write Aj for the random variable representing the interval between the
occurrence (arrival) of the (j-l)th andyth claim (customer), j 1, 2, 3, Ai
thus being the epoch of the first claim (customer arrival) after the new time
origin. Let Bj be the amount (service time) of the yth claim (customer). The Aj's
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and Bj's have distribution functions A(-) and B(*), respectively. For convenience

we choose a, the mean of A(-), to be the unit of time in both models.
In the risk theoretic model Bj - (1 +n)bAj is the reduction in the risk-reserve
between the (j-l )th andyth claims. Write

Sn= .S {Bj - (l-M7)bAj> (9)

for the aggregate ofsuch depletions through the nth claim; then the risk reserve

after the nth claim is defined to be

Rn=w-Sn n 1, 2, 3,... (10)

and technical ruin will have occurred at or before the nth claim ifany member of
the series R^, R2,... R„ is negative.

Writing Wh (w) for the probability ofnonruin through the nth claim

Wn(w) Pr{min[R1,RlJ...RrJ>0}

Pr(max[0,S1, S2,... Sn]l< w} by (10) (11)

Reverting to the queueing model write Wj for the waiting time ofcustomer /(j

1, 2, This customer arrives at epoch A1 + A2 + + Aj, his service

commences at epoch Ad + Az + + Aj + Wj and it terminates at epoch A1 +

A2 + + Aj + Wj + Bj. The next customer arrives at epoch At+ Az+ ••• +

Aj + Aj+i and has a waiting time

Wj+i= (A1+A2+ Aj+Wj+Bj) — (Ai+Az+ +Aj+i)

Wj + Bj - Aj + i

provided this is positive; and in the opposite case Wj-n 0 implying that the

customer is served immediately.
It is convenient to write Bj -Aj+1= Zj *1 (j 0,1,2,...), B0 being the service time

of the customer whose service commences at the time origin. Assuming that
both A's and B's are iid the Z's are iid. We then have



177

Wn max(Wn l+ ZnA, 0)

max f{max(Wn-i+ Zn.a), 0} + Zn-t, 0]

max[max(Wn_2+ Zn.2+ Z„.u Zn.t), 0]

max[Wn_2+ Zn.2+ Zn<, Zn.t, 0]

max[Wn.2+ S*n.2, S^, 0]

where s*k= "iZ,
K j«k

1

namely the sum of the last n-k Z's through where each Z has the same
distribution. Continuing the recurrence it is seen that

Wn max[S*, S* S*t, 0] n 1, 2, 3,...

Ifwe now write Sk^= s' Z, k= 1,2,3,...
jaO

S^has the same distribution as S*n_k since each is the sum of k random
variables Z. Hence Wn has the same distribution as max[Sn_l5 Sn_2, S4, 0] and

Pr{Wn < w}= Prjmax[0, ^ SnJ < w}- (12)

Ifwewrite(l +n)b 1 [cp.(8)] Snof relation (9) is the sum ofn random variables
each of which has the same distribution as B-A Z. With this choice of
monetary units in the risk theoretic case Sy, has the same distribution as S^and
(11) and (12) are identical.
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Zusammenfassung

Die Wahrscheinlichkeitsverteilung der Wartezeit eines Kunden m emer Warteschlange und diejenige

des Maximums des Verlustes im Risikoprozess sind eng miteinander verbunden In dieser

Arbeit wird dieser Zusammenhang unter besonderer Berücksichtigung versicherungsmathematischer

Terminologie und Interessen dargestellt

Summary

The probability distribution of the waiting time of a customer in a single-server queue and that of
the maximum loss m the risk process are closely related The connection is discussed with particular
emphasis on actuarial language and interest

Resume

Les fonctions de distribution de la penode d'attente d'un client qui se joint ä une queue et du

maximum de la perte dans un processus stochastique du risque sont etroitement liees Dans cet

article on deduit ce rapport en tenant compte specialement de la termmologie et de 1'interet dans les

assurances

Riassunto

Le funziom di distnbuziom del tempo di attesa di un chente che si aggiunge a una fila d'attesa e del

massimo della perdita in un processo aleatorio del rischio sono strettamente unite
In questo articolo si dimostra questo rapporto con particolare riguardo alia terminologia e

all'mteresse assicurativo
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