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B.

Wissenschaftliche Mitteilungen

Semi-continuous linear programming
By Fl.de Vylder

Abstract

The kind of problems that we consider in this paper is to maximize
jb(x)dF(x) under the constraints §Ai{x)dF(x) < cii(i 1,2,where b(x), At (x)
are given functions and where F(x) is an unknown distribution function. In
order to emphasize the analogy with discrete linear programming problems,
we write rather Ax{bx, Fx) instead of Ai(x)(b (x),F(x)) and we consider the set

of doubly indexed elements Af as a matrix with a finite number of rows i and

an infinite number of columns x, but this interpretation has nothing essential.

The paper is inspired by Taylor, G.C. (to be published). New and essential,
in the present paper, is the simultaneous consideration of a problem and its
dual problem. The dual can often be solved by methods of classical analysis
and usual discrete linear programming theory. Then its solution gives,

practically automatically, a solution to the original problem.
As a simple illustration, we consider the Gagliardi/Straub (1974) problem (in
fact, the problem we treated is only a small part of that one solved by these

authors) where a maximal stop-loss distribution is sought under certain
constraints. For reasons of lenghtiness of the present note, a similar more
difficult problem is solved in another paper De Vylder (probably to be presented
to the ASTIN Colloquium in Sicily in 1978). In the latter paper it is also
shown how equality constraints can be treated by the duality technique.
In practical numerical work, continuous problems are often replaced by close
discrete problems. Then approximate solutions are obtained. Here the point
of view is different: the purpose is to show how semi-continuous problems
can be solved exactly if the number of constraints is small.

1. Discrete linear programming

LL Generalities. Notations

For a matrix with elements A\, Aj is the element at the intersection of row
i and column j, Ai is the row i, A> is the column j, A is the matrix itself.

Mitteilungen der Vereinigung Schweiz. Versicherungsmathematiker, Heft 1. 1978
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If A has m rows and n columns, then A is said to be a matrix. Let M be

a subset of the row-indices, N a subset of the column-indices. Then A^ is the

submatrix of A obtained by retaining only the rows with index in M and the

columns with index in N. If M is the set of all the row-indices, then M is

omitted in the notation A^. Similarly for N.
The relations A > 0,A > B, mean that A\ > 0, A\ > B\, for each i, j.
These agreements apply to J matrices (rows) and to ^ matrices (columns).

1.2. Problems in linear programming

1.2.1. Definition of the problems

The following problems are considered in the sequel. The dimensions of the
matrices involved are those indicated here:

A, a, b, x, y
n 1 n 1 m
m m 1 n 1

The unknown is x for the moment.

Problem (A,a,b,x,max): maximize bx under the constraints x > 0, Ax < a.
Problem (A,a,b,x,min): minimize bx under the constraints x > 0,Ax > a.
Problem (A,a,b,x,max, =): maximize bx under the constraints x > 0, Ax a.

1.2.2. Dual problems. The problems (A,a,b,x,max), (A\b\a\y\min) are called
dual problems. Of course, in the latter, the unknown is y.

1.2.3. Associated problems. We define the augmented matrices

A- (A, 1), b. (b, 0), x ^ -

m+n n m m+n n m 1

n mm 1 11 m+n

where £, is a column of unknown slack variables.

The problem (A.,a,b.,x,max, is the associated problem to the problem
(A,a, b,x, max). If x is a solution of the last problem and ^ a —Ax, then x
is a solution of the first problem. Conversely, if x is a solution of the first
problem, then x is a solution of the last problem. Such solutions are associated

solutions.
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1.3. Fundamental results

1.3.1. The problem (A. a, b, x, max) has a solution iff its constraints can be

satisfied and

sup bx < oo

x > 0,Ax < a

1.3.2. The problem (A,a,b,x,min) has a solution iff its constraints can be

satisfied and
inf bx > — oo

x > 0, Ax > a

1.3.3. If the constraints of the problem (A, a, b, x, max) and of its dual (A', b\ a\ y\
mitt) call be satisfied, then each has a solution.

1.3.4. Let x,y satisfy the constraints of the problem (A, a, b, x, max) and of its
dual (A\b\a\y\min) respectively. Then x,y' are solutions of these problems
iff bx ay.

1.3.5. The problem (A,a,b,x, max) has a solution iff its dual (/T,£>\a',y',min) has

a solution.

1.3.6. If the problem (A,a,b,x, max, has a solution, then it has a solution
with at most m the number of rows of A) positive components x*.

1.3.7. The problem (A, a, b, x, max, has a solution iff its constraints can be

satisfied and

sup bx < oo

x > 0,/4x a

1.3.8. Let the problem {A, a, b, x, max) and its dual (A\b\a\y\min) have
solutions. Then they have solutions x,y' satisfying

xM (AA)-la, Xj_M 0,y bA(A ',

where J is the set of column-indices of A. and where M c J, M contains
exactly m indices.
These results can be found e.g. in Karlin.S. (1959). By a "solution" a "finite
solution" is always meant.
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2. Semi-continuous linear programming

2.1 .Semi-continuous matrices.

Suppose that the number Af be defined for i e I {l,2,...,m} and xeK, where

K [a, to] is a closed finite interval in R. Then we may consider that A is a

semi-continuous matrix, or a ^ matrix, where c stands for "continuous infinity".
/ is the set of row-indices of A and K the set of column-indices. For M c 1,

N c K, the matrices Afp AM, /Fv are defined similarly as in the discrete case

(1.1). We also consider | rows, i.e. continuous rows with elements bx(xeK).
If A is a £ matrix, the matrix A. (A, 1), where the 1 is the {Jj unit matrix,
is defined similarly as in 1.2.3. We imagine m supplementary indices oi,02,.-,
am, called slack indices for the indexing of the m last columns of A., the

augmented matrix. The augmented row b. is the row b followed by m zero's,

similarly as in 1.2.3.

2.2. Distribution

2.2.1. A distribution function on R is a function Fx(xeR), never decreasing and
continuous on the right. Such a function defines a measure pF on the Borel
sets of R. In fact we are interested only in the measure of sets in K. The

measure of sets not in K is irrelevant. We call pF (or simply F) a distribution
on K.
If pF(K) 1, < 1, hf(K) < 1, the distribution is said, respectively, a

probability distribution, a defective distribution, a strictly defective distribution.
If the total mass in K is concentrated at a finite number of points, then the

distribution is said to be discrete or atomic. An atom of a distribution F is a

point x such that pF{x} > 0.

All integrals in this paper are Lebesgue/Stieltjes integrals. Unless stated

otherwise, they must be taken over K.
Only weak convergence of distribution functions is considered. The Helly/Bray
lemma and the compactness theorem for distribution functions are supposed
to be known.

2.2.2.It is easily proved that if each nF(n 1,2,...) is atomic with at most m

atoms and if nF->F, then F is atomic with at most m atoms.
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2.2.3. Let F be a distribution on K. We show how to approximate it by a

sequence of discrete distributions nF. Let n be fixed for the moment. Partition
K [a,co] in n intervals nKj(j 1,2,...,n) of equal lenght (to — oc)/n. Take nK\
closed and each other nKj open on the left and closed on the right. At the right
end point nXj a+j(u> — a)/n of nKj place the mass pF(nKj) „rrij. Let nF be

the corresponding distribution function. Then nF-*F.

2.3. Problems in semi-continuous linear programming

2.3.1. Definitions
In the following problems, A is a semi-continuous matrix with elements

Af(iel, xeK), a is a column of elements üi(iel), b is a continuous row of
elements bx(xeK), F is an unknown distribution on K.
Problem (A,a,b,F, max): maximize §bxilFx under the constraints

\AxdFx < at(iel).

Problem (A,a,b,F, max, ): maximize \bxdFx under the constraints

$AfdFx afiel).

The dual problem of the problem (A, a, b, F, max) is the Problem (A\b\ a\ y\min):
the unknown being the f row y, minimize ya under the constraints

y > 0, £yL4? > bx(xeK).
iel

2.3.2. The boundedness constraint
If for a fixed iel, the function Ax of xeK satisfies A? > s(xeK) for some
e > 0, then we call the constraint JA?dFx < a* or jAfdFx ai a boundedness

constraint. Indeed, then for any F satisfying that constraint, we must have

r.pp(K) < \A°tdFx < at, Pf(K) < at/e and the measures induced by these F
are uniformly bounded. Among other things, such a constraint makes it
possible to use the compactness theorem for distributions.

2.4. The existence of discrete solutions ifany solutions exist

2.4.1.Th. Let the problem (A,a,b,F, max, have a solution F. Suppose that
bx and, for each ieI,Ax are continuous in xeK. Then, if there is a boundedness

constraint, the problem has a discrete solution G with at most m( number
of rows of Ä) atoms.
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Demonstration. We consider the distribution nF with, for j 1,2,..., n, the

mass „m, attached to the point nXj, defined in 2.2.3. Since nF-*F, we have

by the Helly/Bray lemma

n

£ nBlnrrij \AxdnFx^>\AxdFx a, (iel),
j-1 n

n

X nCjnm} \bxdnFx-*\bxdFx max,
j-i n

where nB\ nt> bnxi(iel\j 1,2,...,«).

For each n let us consider the discrete problem

(nB, na,nc,z, max, where nat \AxdnFx. (1)
n 1 n 1

m m 1 n

The constraints of that problem are satisfied by z nm, the \ column of
components nm.(j l,2,...,n). By 1.3.7 and the boundedness constraint, the

problem (1) has a solution and even a solution with at most m positive
components by 1.3.6. To such a solution corresponds a discrete distribution
nG with at most m atoms (in an obvious way; see also 2.6.1). Then we have

n

fAxdnGx — n®i §AxdnFx, J"bxdnGx > jbxdnFx {=
i-i

because nm satisfies the constraints of (1) and because nG corresponds to a

solution of (1). Going over to a subsequence, we may assume, by the

compactness theorem that nG -* G for some G. Then in the limit, by the

Helly/Bray lemma,

\AxdGx at(iel), \bxdGx > max,

where only equality is possible in the last relation since F is a solution of the

original problem. Then G is also a solution of that problem and the theorem
results from 2.2.2.

2.5. The identification of solutions

2.5.l.Th. Suppose thatF and y satisfy the constraints of the problem (A,a,b, F,

max) and its dual (/4',6',a',y',min) respectively and that

\bxdFx M
i

Then F,y are solutions of these problems.

(2)
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Demonstration. Since F satisfies the constraints of the original problem and y
those of the dual, we have

J'AxdFx < en, yl > 0(ie/); > bx(xeK).
i

Suppose that F is not a solution. Then there is a distribution G satisfying

jAfdGx < cii(iel), jbxdGx > M.

But this leads to the contradiction

M \bxdFx Xyr/j > £ > \bxdGx.

Similarly, if y is not a solution of the dual, then there is a z satisfying

z* > O(iel); £V/4^ — bx(xeK)', £Va; < M

and this leads to the contradiction

M \bxdFx < lY.ziAXidF* ^

2.5.2. Remark. Note the generality of the preceding theorem. There are no
conditions on A, a or b. Even K might be quite arbitrary.

2.6. The research for solutions

2.6.1. Discrete distribution defined by a relation

Consider the ^ matrix A with elements A?(ieI,xeK) and the augmented
matrix A. (4,1). Suppose that for a subset M of the set of column-indices
of A., containing m indices, we have

A2' z a, (3)
m 1 1

in m m

wherez > 0. For example, let M (xi,x2,..., xm-\,xm), where xi,x2,...,xm^eK
and where xm is a slack index. Then, if we place the masses z1; z2,..., zm_i
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at the points xi,x2,..., xm_i respectively, we have a discrete distribution F.

From (3) and the relation zm > 0 results that

\AxdFx < au (isl). (4)

Moreover,
bF'z §bxdFx, (5)

because the last m elements of b. are 0. We call F the discrete distribution
defined by the relation AF*z a.

Suppose now that repetitions may occur in M, say x\ x2. (Of course then M
must rather be considered as being a sequence, rather than a set. However,
there is no need for a change of terminology here, since the concept of a finite
set with repetitions is logically clear, although unusual in modern
mathematics.) Then we have just to place the mass zi + z2 at the point xi x2.

Similarly, in the case of more repetitions.

2.6.2.Th. Consider the problem (A,a,b, F.max) and its dual (/4\/3',a',/,min).
Suppose that a > 0 and that there is a boundedness constraint. Suppose that
bx, A?(iel) are continuous functions of xeK. Suppose that the constraints of
the dual problem can be satisfied. Then the initial problem has a discrete
solution F with at most m atoms, defined by a relation A*'z a and the dual

problem has a corresponding solution y satisfying yA-1' b.u The solutions
satisfy §bxdFx X-V'flr a subset of the set of column indices of A.,

repetitions may occur.)
Demonstration. For n 1,2,... let nN c K be the set nN {nxunX2,-,nXn}
where nxj cx+j(co — oc)/n,(j — 1,2,...,>?).

Consider the discrete problem

(A"'\ a, b» v, Z. max) (6)
n 1 n 1

m m 1 n

and its dual. Since the constraints of the semi-continuous dual can be satisfied,

those of the discrete dual can be, ä fortiori. Since a > 0, the discrete dual has

a solution by 1.3.2. Then (6) has a solution by 1.3.5. By 1.3.8, there exist

solutions nZ,ny of (6) and its dual respectively, satisfying

A'F'nZ a^yAV b"vnz n'a, (7)

where

nz nZn.w, nM c nN + S, S set of slack indices.
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Let „M {nti,nt2,-,ntm}, where nti < nt'i < < ntm- For a fixed/' 1,2,

...,m consider the sequence ify, 2f/, 3t;, Some elements of that sequence may
be in X, others may be slack indices. Anyway, a subsequence exists with
limit Xj, where x;-eX or where Xj is a slack index. Indeed, note that X is a

compact subset of R. On the other side, if e.g. for some n all

n+itj,... are slack indices, then at least one of them must occur infinitely
often. Thus, the indicated subsequence with limit xj always exists. So, taking
successively subsequences, we may assume that reti-+xi,nt2->x2,...,nfm->xm.
Note that if x^-eX, then A.n'i—>Axj, b.n'i-*bV by the continuity assumptions.
The same limit relations are evidently true if Xj is a slack index. From the
boundedness constraint it results that the components of nz remain bounded
when /? 1, 2,.... Therefore, making use of a further subsequence, we may
assume that nz-*z where z is a finite vector. Going over to the limit in the
last relation (7) we have b?'z lim nya, where M {xi,X2,...,xm}. Then, from
a > 0 it results that the components of ny also remain bounded when
71 1,2,.... Therefore, by using a further subsequence, we may assume that

ny->y, where y is a finite vector. Finally, in the limit, the relations (7) become

/LMz a,yA!VI b1}1, b.Mz ya. (8)

The first relation (8) defines a discrete distribution F and from the discussion
in 2.6.1 results that the constraints (4) of the initial problem are satisfied by
F. From (5) and the last relation (8) follows that \bxdFx £37*0,-. Then,
by 2.5.1, the theorem is demonstrated if we verifie that the constraints of the
semi-continuous dual problem are satisfied by y. Since ny is a solution of the
dual problem of (6), we have

Y^nfAfi > b»*Hn 1,21,2,...,«). (9)
i

By the continuity assumptions and since any point xeK can be approached
as closely as wanted by points nx., we have J^y'Af > bx(xsK) from (9).

Finally, since ny > 0(n 1,2,...), we have y > 0. This terminates the proof.

2.6.3. The duality technique.
Some conditions are very probably superfluous in the statement of the

preceding theorem, e.g.the condition a > 0. Evidently, the reason for such a

condition is the simplification in the demonstration. Here we describe a

technique for resolving the problem (A,a,h,F,max) based on that theorem,
but we suggest to make use of it even if all conditions are not satisfied. Indeed,
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if step 4 is conclusive, we are sure, by the very general theorem in 2.5.1 that
we have a solution, that the conditions in the preceding theorem be satisfied

or not. The following technique has been tested in various cases, in cases where

some iM < 0, in cases where K= [0,oo[ It was always successful, provided
step 1 could be executed.

Step 1. Find a solution y of the dual problem (A\b\a\y\ min). This can
often be done by classical analysis or by discrete linear programming, or by
combination of both.

Step 2. Find a set M of m column indices of A. satisfying y/lT' b!l!. Note
that M can be constructed element after element. For each x, slack or not,
satisfying yAf b?\ we may have xeM. Often, multi-choices are possible for
M and lead to different or identical final solutions. In M repetitions may occur,
but, in view of step 3, they should be avoided if possible.

Step 3. Find z > 0 satisfying A'}'z a. Note that if A'}' is inversible, a frequent
case, then z can only be z (A?'Yla.
Step 4. Let F be the discrete distribution defined by the relation A3'z a

(2.6.1) and verify that §bxdFx £yhq. Then F is a solution of the problem
(A,a,b, F,max).

2.6.4. Equality constraints.
The constraint §AfdFr a-, is equivalent to the couple ofconstraints jAfdFx <
auS(-A*)dFx < —Of. Thus, the duality technique can be used if equality
constraints are present. An illustration of such a situation is given in De

Vylder probably to be presented to the ASTIN Colloquium in Sicily in 1978).

Surprisingly and fortunately, it is only apparently that the equality constraints

augment the number of constraints when they are replaced by inequality
constraints. This is due to a simplification in the duality technique in such

cases. For more details, see the paper just mentioned.

3. Illustrations of the duality technique

3.1. The Gagliardi/Straub problem

3.1.1. Initial problem
We search for a probability distribution F (a claim size distribution) on
K [0,ro], constrained by Jx</Fr < /;(,/ fixed, p < o) such that the stop-loss
premium

j(x-e)dFx,
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corresponding to a fixed excess e (0 < e < co), be maximal. This is nearly
the Gagliardi/Straub (1974) problem, where the constraint is \xdFx /c.

However, it will turn out that our solution is at the same time a solution
of the latter problem.

3.1.2. Transformed problem

10

The quantities jxdFx, \(x — e)dFx are not influenced by the probability mass

at the origin of K. Therefore it is equivalent to look for a defective distribution,
because, if a strictly defective distribution were obtained for solution, it would
be sufficient to place the missing probability mass at the origin. Thus, our
problem is the problem

(A,a,b,F, max) where Af=l,Ax x,a
c 1 c
2 2 1

bx
0 for x < e

x — e for x > e

3.1.3. Solution
<Ne apply the duality technique explained in 2.6.3.

Step 1. Writing y (u, v), the dual problem is to find u,v minimizing u + vfi
under the constraints u,v > 0,u + v x > bx(xeK). Of course, the last constraint
can be replaced by u + v x > x — e (e < x < co), since for 0 < x < e it is satisfied

anyway. We consider x as a parameter and represent the portion Px Qx of
the straight line u + vx x — e situated in the positive quadrant of the (n,v)

plane (fig. 1). When x varies from e to co, Px moves upside and Qx moves

(fig-1)
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to the ri;ht. Therefore it is clear that the point (u,v) minimizing u + vyc under
the givei constraints must be on PmQa. For reasons of linearity, it must be

at Pa 01 at Qm. It easily seen that it is at P^ Thus the solution of the dual

problem is u 0, v (co —e)/co and the corresponding minimum of u+v/j. is

min (o — e) —.
CO

Step 2. Ve look for xeK (it will not be necessary to try slack indices here)

satisfying yA? b?, i.e.

co — e\/T\ f0 if 0<x<e
0,-

co J \xJ I x-e if e < x < co

The solitions are x 0 and x co. Thus, we can try M {0,co} and then
the corresponding matrix

AM (l 1

VO co.

Step 3. Ve have to find z (zi,z2)' satisfying ,4.Mz a,i.e.

1 'YZ1W
0 o)J\z2J \ß

ß P
The sohtion is z\ 1 z2 —.

co co

Thus wi have obtained the discrete distribution F with 2 atoms 0 and co and

respecti'e masses

P P
m0 1 ,m0}

co co

C° ß
Step 4. Ve have f (x - e)dFx (co-e)

e CO

Since ths is the value min found in step 1, we have the result: The discrete

probabiity distribution F with atoms at 0 and co and probabilities mo, given
in step 3 maximizes the stop-loss premium corresponding to the excess e,

under tie constraint fxdFx < n. The maximal stop-loss premium is (co — e)—.
co

3.1.4.0>servations
For the distribution F, we verifie that jxdFx /i. So we have a solution of
the Gagiardi/Straub problem.
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In step 2, we did not try slack indices. In fact we can use the first slack
index ax.Then,with M {co,ax}, step 3 gives the strictly defective distribution
with single atom a> and corresponding mass mm p/a>. By 3.1.2, this gives the

same final answer.

3.2. A special illustration

It is the purpose of the following illustration to show simultaneously two
facts: that the duality technique may succeed even if K is an infinite interval
and that it may happen that no repetitions can be avoided in M. These facts

are unrelated: examples can be given with K an infinite interval and no
repetitions in M, others can be constructed with K a finite interval and

repetitions in M unavoidable.
The problem is to maximize §xdFx under the constraints §dFx < 1 jxWz < v,

in the case K [0,oo[.

Step 1. With y (m,v), the dual problem is to minimize w+vv under the
constraints u,v > 0, u+vx2 > x(x > 0). If we imagine the straight line
u+vx2 x represented in a (u, v) plane, for each value of the parameter x,
we find a superior envelope with equation v 1/4«. It is clear that the

solution of the dual problem is on this envelope.
It is easily found to be u |/ v/2, v 1/2), v and the corresponding minimum
is min ]/v.

Step 2. We look for x > 0 (clearly no slack index can suit here) satisfying

X.
2 '2VvJ\x2

The unique solution is x ]/v and so M can only be M {]/v, |/v

Step 3. We look for zx, z2 satisfying |
M |

\vvJ\z2J \v
The system is indeterminate, but not impossible. Any zi,z2 > 0 satisfying
zy + z2 1 can be used, but the resulting distribution F is anyway that one
with unique atom ]/v and mass 1 at that atom.

Step 4. For this F we have \xdFx j/v and since this is the value min found
above, F is a solution of the problem. Indeed, as already noted in 2.5.2, there
is no restriction on K in the theorem of 2.5.1.
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Remark. Note that the preceding considerations include a proof of the well-
known inequality

j \dFt < j x*dFx

valid for any defective distribution F on [0, oo].

4. Extensions

The theory extends in the following directions:

- K must not necessarily be a compact interval in R;
the functions A*,bx of x may have discontinuities;

- x may interpreted as being a point xeRn, rather than a point xeR
(multidimensional semi-continuous linear programming).

Of course, in these more general situations, the preceding results must be

adapted
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Zusammenfassung

Das Problem ist die Maximierung von J7>(x)t/F(x) unter den Nebenbedingungen j/l,(x)r/F(x) < a,

(i=l,2, 11) worin F die unbekannte Verteilungsfunktion ist Das zugehörige duale Problem
lautet Minimiere JV«, unter den Bedingungen y< > > h(\) worin nun die i' die
Unbekannten sind Die Losung des dualen Problems fuhrt fast automatisch auf eine Losung des

ursptunglichen Problems.

Resume

Le probleme initial consiste ä rendre maximum jb{x)dF{x) sous les contraintes J/t,(x)i7F(x) < u,

(t= 1, 2, n) ou F est la fonction de distribution inconnue A ce probleme est associe un
probleme dual consistant ä iendre minimum sous les contraintes y> > 0, £y!,4,(x) > b(x)
ou les y< sont maintenant les quantites inconnues. La solution du probleme dual donne, assez

automatiquement, une solution au probleme initial

Riassunto

II problema e dl trovare ll massimo dl Jb(\)dF(x) alle condizioni J A,(x)dF(x) < a, (i 1, 2, n)
sc F mdica la legge dl distnbuzione incognita II problema duale consiste nel trovare ll minimo
di JVa, per y' > 0 e ^VdUx) > b(x) dove ora gli y' sono le variabili incogmte. La soluzione del

problema duale conduce quasi automaticamente a una soluzione del problema originale

Summary

The initial problem is to maximize \b(x)dF(x) under the constraints j/L(x)TF(x) < a,(i 1,2, n)
where F is the unknown distribution function To this problem is associated a dual problem
consisting in minimizing TVa, under the constraints y< > 0, ^y'/Lfx) > b(x) where now the y'
aie the unknown quantities The solution to the dual problem gives, quite automatically, a solution

to the initial problem.
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