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B.
Wissenschaftliche Mitteilungen

Semi-continuous linear programming

By Fl.de Vylder

Abstract

The kind of problems that we consider in this paper is to maximize
[b(x)dF(x)under theconstraints [A;(x)dF(x) < a;(i = 1,2,...,n), where b(x), 4;(x)
are given functions and where F(x) is an unknown distribution function. In
order to emphasize the analogy with discrete linear programming problems,
we write rather A7 (b, F;) instead of A4;(x)(b (x),F(x)) and we consider the set
of doubly indexed elements A% as a matrix with a finite number of rows i and
an infinite number of columns x, but this interpretation has nothing essential.
The paper is inspired by Taylor, G.C. (to be published). New and essential,
in the present paper, is the simultaneous consideration of a problem and its
dual problem. The dual can often be solved by methods of classical analysis
and usual discrete linear programming theory. Then its solution gives,
practically automatically, a solution to the original problem.

As a simple illustration, we consider the Gagliardi/Straub (1974) problem (in
fact, the problem we treated is only a small part of that one solved by these
authors) where a maximal stop-loss distribution is sought under certain
constraints. For reasons of lenghtiness of the present note, a similar more
difficult problem is solved in another paper De Vylder (probably to be presented
to the ASTIN Colloquium in Sicily in 1978). In the latter paper it is also
shown how equality constraints can be treated by the duality technique.

In practical numerical work, continuous problems are often replaced by close
discrete problems. Then approximate solutions are obtained. Here the point
of view is different: the purpose is to show how semi-continuous problems
can be solved exactly if the number of constraints is small.

1. Discrete linear programming

1.1.Generalities. Notations

For a matrix with elements 4], 4] is the element at the intersection of row
1 and column j, A; is the row i, A7 is the column j, A is the matrix itself.

Mitteilungen der Vereinigung schweiz. Versicherungsmathematiker, Heft 1, 1978
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If A has m rows and n columns, then A4 is said to be a » matrix. Let M be
a subset of the row-indices, N a subset of the column-indices. Then 4} is the
submatrix of 4 obtained by retaining only the rows with index in M and the
columns with index in N. If M is the set of all the row-indices, then M 1is
omitted in the notation 4. Similarly for N.

The relations 4 > 0,4 > B, .., mean that 4] > 0, 4] > B, .., for each i, j.
These agreements apply to # matrices (rows) and to )} matrices (columns).

1.2. Problems in linear programming

1.2.1. Definition of the problems

The following problems are considered in the sequel. The dimensions of the
matrices involved are those indicated here:

n 1 n 1
m m 1 n

A, a, b, x, vy
m
1
The unknown is x for the moment.

Problem (A4, a, b, x, max): maximize bx under the constraints x > 0, Ax < a.
Problem (4, a, b, x,min): minimize bx under the constraints x > 0,4x > a.
Problem (A4, a,b,x,max, =): maximize bx under the constraints x > 0,4x = a.

1.2.2. Dual problems. The problems (4, a,b,x,max), (4’,b’,a’,y’, min) are called
dual problems. Of course, in the latter, the unknown is y.

1.2.3. Associated problems. We define the augmented matrices

A= (41, b.=(b0, x=(%)
min nm m+n nm 1 %
n mm 1 11 m+n

where £ 1s a L column of unknown slack variables.

The problem (4.,a,b.,x,max, =) is the associated problem to the problem
(A.a,b,x,max). If x is a solution of the last problem and ¢ = a— Ax, then x
is a solution of the first problem. Conversely, if x is a solution of the first
problem, then x is a solution of the last problem. Such solutions are associated
solutions.
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1.3. Fundamental results

1.3.1. The problem (A, a, b, x, max) has a solution iff its constraints can be
satisfied and

sup bx < oo

x>0Ax <a

1.3.2. The problem (A,a,b,x,min) has a solution iff its constraints can be
satisfied and
inf bx > — o

x>0Ax >a

1.3.3. If the constraints of the problem (A4, a, b, x, max) and of its dual (4’,b’,a’,y’,
mih) ¢an be satisfied, then each has a solution.

1.3.4. Let x, )’ satisfy the constraints of the problem (A4,a,b,x,max) and of its
dual (4’,b’,a’,y’,min) respectively. Then x,y” are solutions of these problems
iff bx = ay.

1.3.5. The problem {A4,a,b,x, max) has a solution iff its dual (4’,0’,a’,y’, min) has
a solution.

1.3.6.1f the problem (4,a,b,x,max, =) has a solution, then it has a solution
with at most m (= the number of rows of A) positive components Xx;.

1.3.7. The problem (A4, a, b, x, max, =) has a solution iff its constraints can be
satisfied and
sup bx < oo

% 2> 0.4% =

1.3.8.Let the problem (4,a,b,x,max) and its dual (4’,b’,a’,y’,min) have
solutions. Then they have solutions x, y’ satisfying

xy = (AM)a, x5 = 0,y = bM(AM)1,

where J is the set of column-indices of A. and where M ¢ J, M contains
exactly m indices.

These results can be found e.g. in Karlin,S. (1959). By a “solution” a “finite
solution” is always meant.
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2. Semi-continuous linear programming

2.1. Semi-continuous matrices.

Suppose that the number A7 be defined foriel = {1,2,..,m} and xeK, where
K = [«,w] is a closed finite interval in R. Then we may consider that A4 is a
semi-continuous matrix, or a ¢ matrix, where ¢ stands for “continuous infinity”.
I is the set of row-indices of A and K the set of column-indices. For M ¢ I,
N ¢ K, the matrices A}, Ay, AN are defined similarly as in the discrete case
(1.1). We also consider ¢ rows, 1.€. continuous rows with elements b* (xeK).

If 4 1s a ¢ matrix, the matrix 4. = (4,1), where the 1 is the ” unit matrix,
is defined similarly as in 1.2.3. We imagine m supplementary indices o1, o3, ...,
om, called slack indices for the indexing of the m last columns of A., the
augmented matrix. The augmented row b. is the row b followed by m zero’s,
similarly as in 1.2.3.

2.2. Distribution

2.2.1. A distribution function on R 1s a function F,(xeR), never decreasing and
continuous on the right. Such a function defines a measure up on the Borel
sets of R. In fact we are interested only in the measure of sets in K. The
measure of sets not in K is irrelevant. We call ux (or simply F) a distribution
on K.

If up(K) =1, up(K) < 1, up(K) < 1, the distribution is said, respectively, a
probability distribution, a defective distribution, a strictly defective distribution.
If the total mass in K is concentrated at a finite number of points, then the
distribution is said to be discrete or atomic. An atom of a distribution F is a
point x such that up{x} > 0.

All integrals in this paper are Lebesgue/Stieltjes integrals. Unless stated
otherwise, they must be taken over K.

Only weak convergence of distribution functions is considered. The Helly/Bray
lemma and the compactness theorem for distribution functions are supposed
to be known.

2.2.2.1t is easily proved that if each ,F(n = 1,2,...) is atomic with at most m
atoms and if ,F—F, then F is atomic with at most m atoms.
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2.23.Let F be a distribution on K. We show how to approximate it by a
sequence of discrete distributions ,F. Let n be fixed for the moment. Partition
K = [a,w] in n intervals ,K;(j = 1,2,...,n) of equal lenght (w—a)/n. Take ,K;
closed and each other ,K; open on the left and closed on the right. At the right
end point ,x; = ¢+ j(w—a)/n of ,K; place the mass up(,K;) = »m;. Let ,F be
the corresponding distribution function. Then ,F—F.

2.3. Problems in semi-continuous linear programming

2.3.1. Definitions

In the following problems, A is a semi-continuous matrix with elements
A7 (iel, xeK), u is a column of elements a;(iel), b is a continuous row of
elements b7 (xeK), F is an unknown distribution on K.

Problem (A, a,b, F, max): maximize [b*dF, under the constraints

[AzdF: < ai(iel).
Problem (4, a,b, F, max, = ): maximize [b*dF, under the constraints
jA-leFI = q;(i€l).

The dual problem of the problem (A4, a, b, F, max) is the Problem (A4’,b’,@’, y’,min):
the unknown being the 7" row y, minimize ya under the constraints

y =0, Y yiAF > b*(xeK),

iel

2.3.2. The boundedness constraint

If for a fixed iel, the function A% of xeK satisfies A7 > g(xeK) for some
¢ > 0, then we call the constraint jAdez < a; or jA%de = a; a boundedness
constraint. Indeed, then for any F satisfying that constraint, we must have
eur(K) < [A7dF, < a;i, up(K) < a;/e  and the measures induced by these F
are uniformly bounded. Among other things, such a constraint makes it
possible to use the compactness theorem for distributions.

2.4. The existence of discrete solutions if any solutions exist

2.4.1.Th.Let the problem (A,a,b, F, max, =) have a solution F. Suppose that
b* and, for each iel, A% are continuous in xeK. Then, if there is a boundedness
constraint, the problem has a discrete solution G with at most m(= number
of rows of 4) atoms.
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Demonstration. We consider the distribution ,F with, for j = 1,2,..., n, the
mass ,m; attached to the point ,x;, defined in 2.2.3. Since ,F—F, we have
by the Helly/Bray lemma

n
i=1 "

n

Y. ncinm; = [brd,F, — [b*dF, = max,
j=1 i

where nBl = A%, yci = b*%i(iel;j = 1,2,...,n).
For each n let us consider the discrete problem

(nB,nt,nc,z,max, =) where na; = [A%d,F.. (1)

n 1 n 1
m m 1 n

The constraints of that problem are satisfied by z = xm, the | column of
components nmj.(i = 1,2,..,n). By 1.3.7 and the boundedness constraint, the
problem (1) has a solution and even a solution with at most m positive
components by 1.3.6. To such a solution corresponds a discrete distribution

»G with at most m atoms (in an obvious way; see also 2.6.1). Then we have

n

=1
because ,m satisfies the constraints of (1) and because ,G corresponds to a
solution of (1). Going over to a subsequence, we may assume, by the
compactness theorem that ,G— G for some G. Then in the limit, by the
Helly/Bray lemma,

[A%dG, = a;(iel), [b*dG, > max,
where only equality is possible in the last relation since F is a solution of the
original problem. Then G is also a solution of that problem and the theorem
results from 2.2.2.

2.5. The identification of solutions

2.5.1.Th. Suppose that F and y satisfy the constraints of the problem (4,a,b, F,
max) and its dual (4’,b’,a’,y’,min) respectively and that

[b2dF, = M = Zyiai. (2)

Then F,y are solutions of these problems.
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Demonstration. Since F satisfies the constraints of the original problem and y
those of the dual, we have

[A2dF, < a;, y' > 0(iel); ) y' A? > b*(xeK).
i
Suppose that F is not a solution. Then there is a distribution G satisfying
jAfde < a;(iel), jbxd(}x > M.

But this leads to the contradiction

M = [b*dF, = Y yia; > ) [yiA%dG, > [b*dG,.
Similarly, if y is not a solution of the dual, then there is a z satisfying

zt > 0(iel); Y z1A7 > b7 (xeK); Y zia; < M

and this leads to the contradiction

M =) yia; = [brdF; < [Y 7l A%dF, < )z,

2.5.2.Remark. Note the generality of the preceding theorem. There are no
conditions on 4,a or b. Even K might be quite arbitrary.

2.6. The research for solutions

2.6.1. Discrete distribution defined by a relation

Consider the kA matrix 4 with elements A% (iel,xeK) and the augmented
matrix 4. = (A4,1). Suppose that for a subset M of the set of column-indices
of A., containing m indices, we have

AM z =aq, (3)
m 1 1
m m m

wherez > 0. Forexample, let M = {x1,X2,..., Xp-1,Xm |, Where x1,xs,..., X, 16K
and where x,, is a slack index. Then, if we place the masses z, zs,..., Zm_1
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at the points xi,Xo,..., X, 1 respectively, we have a discrete distribution F.
From (3) and the relation z,, > O results that

[AzdF, < a (i€l) (4)

Moreover,
bMz = [brdF,, (3)

because the last m elements of b. are 0. We call F the discrete distribution
defined by the relation AMz = a.
Suppose now that repetitions may occur in M, say x; = xa. (Of course then M
must rather be considered as being a sequence, rather than a set. However,
there is no need for a change of terminology here, since the concept of a finite
set with repetitions is logically clear, although unusual in modern mathe-
matics.) Then we have just to place the mass z; +z2 at the point x; = xq.
Similarly, in the case of more repetitions.

2.6.2.Th. Consider the problem (A4,a,b, Fmax) and its dual (4°,b,a’,y’,min).
Suppose that @ > 0 and that there is a boundedness constraint. Suppose that
b*, A%(iel) are continuous functions of xeK. Suppose that the constraints of
the dual problem can be satisfied. Then the initial problem has a discrete
solution F with at most m atoms, defined by a relation 43z = g and the dual
problem has a corresponding solution y satisfving yA™ = b The solutions

satisfy [b*dF, = ) yla. (In M, a subset of the set of column indices of A.,
repetitions may occur.)

Demonstration. For n = 1,2,... let ,N C K be the set ,N = {nX1,nX2,-snXn}
where ,x; = a+j(w—o)/n,( = 1,2,..,n).

Consider the discrete problem

(A"Y, a, b, Z, max) (6)
1
n

n 1 n
m m 1

and its dual. Since the constraints of the semi-continuous dual can be satisfied,
those of the discrete dual can be, a fortiori. Since a > 0, the discrete dual has
a solution by 1.3.2. Then (6) has a solution by 1.3.5. By 1.3.8, there exist
solutions ,Z, , of (6) and its dual respectively. satisfying

A{l.‘,nz - a,nyA’.?'” — b’.?l”. b”“llnz = nJa, (7)
where

nZ = nl v, nM C ,N+8,S = seiof slack indices.
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Let oM = {at1,nl2,->ntm}, Where gpt1 < pla < .. < ptpm Forafixedj = 1,2,
...m consider the sequence ¢, of;, 3tj, ... Some elements of that sequence may
be in K, others may be slack indices. Anyway, a subsequence exists with
limit x;, where x;€K or where x; is a slack index. Indeed, note that K is a
compact subset of R. On the other side, if e.g. for some n all ,t5p41t
n+otj, ... are slack indices, then at least one of them must occur infinitely
often. Thus, the indicated subsequence with limit x; always exists. So, taking
successively subsequences, we may assume that ,t1—X1, pte—=Xa,.., ntm—Xm-
Note that if x;€eK, then A.7%7— 4% b7'i—p’i by the continuity assumptions.
The same limit relations are evidently true if x; is a slack index. From the
boundedness constraint it results that the components of ,z remain bounded
when n =1, 2,.... Therefore, making use of a further subsequence, we may
assume that ,z—z where z is a finite vector. Going over to the limit in the
last relation (7) we have bMz = lim ,ya, where M = {x1,Xa,..., X, }. Then, from
a > 0 it results that the components of ,y also remain bounded when
n = 1,2,... Therefore, by using a further subsequence, we may assume that
»y—Y, where y is a finite vector. Finally, in the limit, the relations (7) become

AMz = g, yAM = bM bMz = ya. (8)

The first relation (8) defines a discrete distribution F and from the discussion
in 2.6.1 results that the constraints (4) of the initial problem are satisfied by
F. From (5) and the last relation (8) follows that [b*dF, = ) yia;. Then,
by 2.5.1, the theorem is demonstrated if we verifie that the constraints of the
semi-continuous dual problem are satisfied by y. Since ,y is a solution of the
dual problem of (6), we have

Yyt An > puti(n = 1,2,..5j = 1,2,...n). )

1
By the continuity assumptions and since any point xeK can be approached
as closely as wanted by points X WE have nyA;F > b*(xeK) from (9).
Finally, since ,y > 0(n = 1,2,...), we have y > 0. This terminates the proof.

2.6.3. The duality technique.

Some conditions are very probably superfluous in the statement of the
preceding theorem, e.g.the condition a > 0. Evidently, the reason for such a
condition is the simplification in the demonstration. Here we describe a
technique for resolving the problem (A,a,b, F,max) based on that theorem,
but we suggest to make use of it even if all conditions are not satisfied. Indeed,



48

if step 4 1s conclusive, we are sure, by the very general theorem in 2.5.1 that
we have a solution, that the conditions in the preceding theorem be satisfied
or not. The following technique has been tested in various cases, in cases where
some a; < 0, in cases where K= [0,co[ ..... It was always successful, provided
step 1 could be executed.

Step 1. Find a solution y of the dual problem (A4’,b’,a’,y’, min). This can
often be done by classical analysis or by discrete linear programming, or by
combination of both. |

Step 2. Find a set M of m column indices of A. satisfying yAM = bM, Note
that M can be constructed element after element. For each x, slack or not,
satisfying yA* = b¥, we may have xeM. Often, multi-choices are possible for
M and lead to different or identical final solutions. In M repetitions may occur,
but, in view of step 3, they should be avoided if possible.

Step 3. Find z > Osatisfying AMz = a. Note that if AM is inversible, a frequent
case, then z can only be z = (AM) 1a.

Step 4. Let F be the discrete distribution defined by the relation AMz =a
(2.6.1) and verify that [b*dF, = Y yia; Then F is a solution of the problem
(A,a,b,F,max).

2.6.4. Equality constraints.

The constraint jA;?deg. = a;1sequivalent to the couple of constraints jAfa’Fx =
a;, [(—A47)dF, < —a;. Thus, the duality technique can be used if equality
constraints are present. An illustration of such a situation is given in De
Vylder iprobably to be presented to the ASTIN Colloquium in Sicily in 1978).
Surprisingly and fortunately, it is only apparently that the equality constraints
augment the number of constraints when they are replaced by inequality
constraints. This is due to a simplification in the duality technique in such
cases. For more details, see the paper just mentioned.

3.1llustrations of the duality technique

3.1. The Gagliardi/Straub problem

3.1.1.Initial problem
We search for a probability distribution F (a claim size distribution) on

K = [0,w]. constrained by [xdF, < pu(u fixed, it < ) such that the stop-loss

premium
j(.\‘ —e)dF;,

e
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corresponding to a fixed excess e (0 < e < w), be maximal. This is nearly
the Gagliardi/Straub (1974) problem, where the constraint is j'xdF;,. = U
However, it will turn out that our solution 1s at the same time a solution
of the latter problem.

3.1.2. Transformed problem

The quantities [xdFy, [(x—e)dF, are not influenced by the probability mass
at the origin of K. Theréfore it is equivalent to look for a defective distribution,
because, if a strictly defective distribution were obtained for solution, it would
be sufficient to place the missing probability mass at the origin. Thus, our
problem is the problem

1 0 for x<e
(A,a,b,F, max) where A¥ =1, 4% =x,a = , DT =
i e U x—e for x>e
2 1

[\ R}

3.1.3.Solution
We apply the duality technique explained in 2.6.3.

Step 1. Writing y = (u,v), the dual problem is to find u,v minimizing u+vu
under the constraints u,v > 0,u+v x > b%(xeK). Of course, the last constraint
can bereplaced byu+vx > x—e(e < x < w),since for 0 < x < eit is satisfied
anyway. We consider x as a parameter and represent the portion P, Q. of
the straight line u+vx = x —e situated in the positive quadrant of the (u,v)
plane (fig.1). When x varies from e to w, P, moves upside and Q, moves

Q-‘l‘ Qm
0 (fig. 1) i

Y
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to the rizht. Therefore it is clear that the point (4, v) minimizing u + vy under
the givelr constraints must be on P,Q,. For reasons of linearity, it must be
at P, orat Q. It easily seen that it is at P,. Thus the solution of the dual
problemis u = 0,v = (w—e)/w and the corresponding minimum of u+vu is
min = (0—e) E.

(03]

Step 2. Ve look for xeK (it will not be necessary to try slack indices here)
satisfyin; y A% = bZ, i.e.

Oa)—e 1 _ 0 iIf 0<x<e
o J\x) Ix—e if e<x<w

The solitions are x = 0 and x = . Thus, we can try M = {0,w} and then
the corrsponding matrix

Step 3. Ve have to find z = (zy,z2) satisfying AMz = a,i.e.

L 1\ [z1) (1
0w Zy B u
The solition is z; = 1 — H—, T == ﬁ.

w (0]

Thus we have obtained the discrete distribution F with 2 atoms 0 and w and
respecti’e masses

u u
Mo = 1— — My = —.
w w
Step 4. Ve have [(x—e)dF, = (w—e)
e w

Since ths is the value min found in step 1, we have the result: The discrete
probabiity distribution F with atoms at 0 and w and probabilities mg, m,, given
in step 3 maximizes the stop-loss premium corresponding to the excess e,
under tie constraint [xdF, < p. The maximal stop-loss premium is (a)—e);.
3.1.4.Ojservations

For thedistribution F, we verifie that [xdF, = . So we have a solution of
the Gagiardi/Straub problem.
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In step 2, we did not try slack indices. In fact we can use the first slack
index ¢;. Then,with M = {w, 01}, step 3 gives the strictly defective distribution
with single atom w and corresponding mass m,, = u/w. By 3.1.2, this gives the
same final answer.

3.2. A special illustration

It is the purpose of the following illustration to show simultaneously two
facts: that the duality technique may succeed even if K is an infinite interval
and that it may happen that no repetitions can be avoided in M. These facts
are unrelated: examples can be given with K an infinite interval and no
repetitions in M, others can be constructed with K a finite interval and
repetitions in M unavoidable.

The problem is to maximize [xdF, under the constraints [dF, < 1, [x2dF, < v,
in the case K = [0,c0[.

Step 1. With y = (u,v), the dual problem is to minimize u+vv under the
constraints u,v >0, u+vx2 > x(x > 0). If we imagine the straight line
u+vx? = x represented in a (u, v) plane, for each value of the parameter x,
we find a superior envelope with equation v = 1/4u. It is clear that the
solution of the dual problem is on this envelope.

It 1s easily found to be u = ]/7/2 v = 1/2]/ v and the corresponding minimum
is min = }/v.

Step 2. We look for x > 0 (clearly no slack index can suit here) satisfying

(7 ae)

The unique solution is x = |/'vand so M can only be M = {]/;, ]/;}

1
Step 3. We look for z,, zp satisfying (1 1) (zl) = ( )
vy A vV

The system is indeterminate, but not impossible. Any zj,zs > 0 satisfying
z1+z2 = 1 can be used, but the resulting distribution F is anyway that one
with unique atom /v and mass 1 at that atom.

Step 4. For this F we have [xdF, = l/; and since this is the value min found
above, F is a solution of the problem. Indeed, as already noted in 2.5.2, there
is no restriction on K in the theorem of 2.5.1.
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Remark. Note that the preceding considerations include a proof of the weil-

known inequality
|:| _\‘c!F_(]- < | x2dF,,

0 0

valid for any defective distribution F on [0, co].

4. Extensions

The theory extends in the following directions:

— K must not necessarily be a compact interval in R;

— the functions A7, b7 of x may have discontinuities;

— x may interpreted as being a point xeR”, rather than a point xeR (multi-
dimensional semi-continuous linear programming).

Of course, in these more general situations, the preceding results must be
adapted.
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Zusammenfassung

Das Problem ist die Maximierung von [b(x)dF (x) unter den Nebenbedingungen | A;(x)dF(x) < a;
(i=1,2,...n)worin F die unbekannte Verteilungsfunktion ist. Das zugehorige duale Problem
lautet: Minimiere Z_\"’u,- unter den Bedingungen y’ > 0, Z)‘i A;(x) = b(x) worin nun die v’ die Un-
bekannten sind. Die Losung des dualen Problems fithrt fast automatisch auf eine Ldsung des
urspriinglichen Problems.

Résumé

Le probléme initial consiste a rendre maximum [b(x)dF (x) sous les contraintes [A;(x)dF(x) < a;
(i=1,2, ..., n) ou F est la fonction de distribution inconnue. A ce probléme est associé un
probléeme dual consistant a rendre minimum ) yia; sous les contraintes yt >0, Y yid;(x) = b(x)
ou les y’ sont maintenant les quantités inconnues. La solution du probléme dual donne, assez
automatiquement, une solution au probléme initial.

Riassunto

Il problema ¢ di trovare il massimo di [b(x)dF(x) alle condizioni [A4;(x)dF(x) <a; (i=1,2, ..., n)
sc F indica la legge di distribuzione incognita. Il problema duale consiste nel trovare il minimo
di ) yia; per yi > 0e Y y'A;(x) > b(x) dove ora gli y* sono le variabili incognite. La soluzione del
problema duale conduce quasi automaticamente a una soluzione del problema originale.

Summary

Theinitial problemis to maximize _[b(x)dF(x) under the constraints [A;(x)dF(x) < a;(i=1,2,...,n)
where F is the unknown distribution function. To this problem is associated a dual problem
consisting in minimizing ) y’a; under the constraints y’ >0, ) yi4;(x) > b(x) where now the yi
are the unknown quantities. The solution to the dual problem gives, quite automatically, a solu-
tion to the initial problem.
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