Zeitschrift: Mitteilungen / Vereinigung Schweizerischer Versicherungsmathematiker

= Bulletin / Association des Actuaires Suisses = Bulletin / Association of

Swiss Actuaries

Herausgeber: Vereinigung Schweizerischer Versicherungsmathematiker

Band: - (1982)

Heft: 1

Artikel: Stabilitätskriterien für das Risiko einer Pensionskasse

Autor: Deprez, Olivier

DOI: https://doi.org/10.5169/seals-966977

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

OLIVIER DEPREZ, Zürich

Stabilitätskriterien für das Risiko einer Pensionskasse¹

1 Die jährliche Risikokomponente einer Pensionskasse (PK)

Um Missverständnisse zu vermeiden, sei vorausgeschickt, dass in dieser Arbeit unter Risiko nur das Eintreten bestimmter Ereignisse während der *Aktivzeit* eines Versicherten verstanden wird. Damit sei nicht etwa unterstellt, dass die Risikobelastung einer PK durch die Langlebigkeit der Rentner von untergeordneter Bedeutung sei. Die gegenwärtige Arbeit unterlässt die Untersuchung dieses Risikos einzig deshalb, weil sie von der Fragestellung ausgeht, wie stark das Risiko der Aktiven die Kasse belastet.

Unseren Berechnungen liegt die Modellvorstellung zugrunde, dass die Ereignisse Tod und Invalidität am Ende jedes Jahres eintreffen. Der sehr unwahrscheinliche Fall von Invalidität mit nachfolgendem Tod innerhalb eines Jahres wird somit gedanklich ausgeschlossen. Die Pensionierung erfolge bei Erreichen des Schlussalters *s* am Anfang des Jahres.

Betrachten wir nun einen aktiven Versicherten vom Alter x+t (x=Eintrittsalter). Die PK habe für ihn am Ende des Jahres die Summe $_{t+1}V_x$ angespart ($_{t+1}V_x$ kann auch negativ sein). Falls der Versicherte im Alter x+t < s stirbt (bzw. invalid wird), so soll die PK die Summe Q_{x+t}^{Tod} (bzw. Q_{x+t}^{Inv}) auszahlen. Ist x+t=s, so wird für den Versicherten das gesamte angesparte Kapital $_{s-x}V_x$ frei und in der Regel als Barwert für seine Altersrente verwendet. Da Pensionskassen üblicherweise auch im Risikofalle Renten versichern, sind dann auch Q_{x+t}^{Tod} und Q_{x+t}^{Inv} im allgemeinen Rentenbarwerte. Die Differenz zwischen dem Betrag Q_{x+t}^{Tod} (bzw. Q_{x+t}^{Inv}) und dem vorhandenen (angesparten) Kapital $_{t+1}V_x$ nennt man die Risikosumme

$$RT_{x+t} = Q_{x+t}^{\text{Tod}} -_{t+1} V_x$$
 (Risikosumme im Todesfall). (1)

$$RI_{x+t} = Q_{x+t}^{Inv} -_{t+1} V_x$$
 (Risikosumme im Invaliditätsfall). (2)

¹ Ich möchte Herrn Prof. H. Bühlmann für die zahlreichen Gespräche und Anregungen herzlich danken.

Die Risikosummen können positiv oder negativ sein.

Die PK sichert dem Versicherten die allfällige Aufbringung dieser Risikosumme zu.

Die eben beschriebenen Leistungen der PK haben entsprechende Kosten zur Folge.

Für den Sparprozess beträgt die jährliche Sparprämie (zu Beginn des Jahres)

$$P_{x+t}^{\text{Sparteil}} = v \cdot_{t+1} V_x -_{t} V_x \tag{3}$$

mit $v = \frac{1}{1+i}$ (i = technischer Zinsfuss).

Für den Risikoprozess erhalten wir als Prämien (ebenfalls zu Beginn des Jahres)

$$P_{x+t}^{\text{Tod}} = v \cdot q_{x+t} \cdot RT_{x+t}, \tag{4}$$

$$P_{x+t}^{\text{Inv}} = v \cdot i_{x+t} \cdot RI_{x+t}, \tag{5}$$

wobei q_{x+t} (bzw. i_{x+t}) die einjährige Sterbens- (bzw. Invalidierungs-) wahrscheinlichkeit für einen Versicherten mit Alter x+t ist.

Die durch die Formeln (4) und (5) dargestellten Kosten sind im Sinne der Wahrscheinlichkeitstheorie als Erwartungswerte zu verstehen. Die Abweichungen von diesen Erwartungswerten stellen das eigentliche Risiko der Pensionskasse dar. Die vorliegende Arbeit beschäftigt sich mit der Bemessung dieser Abweichungen.

2 Die Pensionskasse bei individueller Betrachtung

Die Pensionskasse bestehe aus n aktiven Versicherten. Vom k-ten Mitglied der Kasse sei folgendes bekannt:

Die Risikosumme im Todesfall (RT_k), die Risikosumme im Invalidierungsfall (RI_k), die einjährigen Sterbens- und Invalidierungswahrscheinlichkeiten q_k und i_k .

 X_k sei die Zufallsvariable, welche die Schadenhöhe des k-ten Versicherten in einem Jahr darstelle. Der Wertebereich von X_k ist 0, RT_k und RI_k .

Die Zufallsvariablen X_1, X_2, \ldots, X_n seien gegenseitig unabhängig.

Sei F_k die Verteilungsfunktion von X_k , das heisst

$$F_k(x) = \operatorname{Prob}\left[X_k \leq x\right]. \tag{6}$$

Mit Hilfe der Indikatorvariablen

$$l_A = \begin{cases} 1 & \text{falls} & x \in A \\ 0 & \text{falls} & x \notin A \end{cases} \tag{7}$$

ist

$$F_k(x) = (1 - q_k - i_k) \, l_{\{x \ge 0\}} + (q_k + i_k) \, P_k(x) \tag{8}$$

wobei

$$P_k(x) = \frac{q_k}{q_k + i_k} \, l_{\{x \ge RT_k\}} + \frac{i_k}{q_k + i_k} \, l_{\{x \ge RI_k\}} \tag{9}$$

die bedingte (gegeben ein Schaden ist eingetroffen) Verteilungsfunktion der Schadenhöhe des k-ten Versicherten ist.

Der jährliche Gesamtschaden ist

$$S^{\text{ind}} = X_1 + X_2 + \ldots + X_n. \tag{10}$$

Die Verteilungsfunktion F^{ind} der Zufallsvariablen S^{ind} ist

$$F^{\text{ind}} = F_1 * F_2 * \dots * F_n \tag{11}$$

und

$$E[S^{\text{ind}}] = \sum_{k=1}^{n} \left[q_k \cdot RT_k + i_k \cdot RI_k \right]$$
 (12)

$$\operatorname{Var}[S^{\operatorname{ind}}] = \sum_{k=1}^{n} [q_k (1 - q_k) \cdot RT_k^2 + i_k (1 - i_k) \cdot RI_k^2 -2 q_k i_k \cdot RT_k \cdot RI_k].$$
(13)

3 Die Pensionskasse bei kollektiver Betrachtung

Der Einkommensprozess der Pensionskasse bestehe einerseits aus den (Risiko-) Prämieneinnahmen c pro Jahr und andererseits aus den Schadenzahlungen (Risikosummen), die mathematisch durch einen zusammengesetzten Poisson-Prozess beschrieben werden sollen.

Der Poisson-Parameter ist α (α = erwartete Anzahl Schäden pro Jahr), und die Verteilungsfunktion der einzelnen, unabhängigen und gleich verteilten Schäden Y(i) sei P. ($Y(i) \ge 0$, für alle i). Mit p_k bezeichnen wir das k-te Moment von P

$$p_k = E[Y^k] = \int_0^\infty y^k dP(y).$$
 (14)

Der Gesamtschaden (Totalschaden) S(t) zur Zeit t ist

$$S(t) = \sum_{i=1}^{N(t)} Y(i)$$
 mit $S(0) = 0$, (15)

wobei N(t) die Anzahl Schäden bis zum Zeitpunkt t ist und N(0) = 0 vorausgesetzt wird.

Für die Gesamtschadenverteilung F(t,x) von S(t) gilt nach Voraussetzung

$$F(t,x) = \text{Prob}[S(t) \le x] = \sum_{k=0}^{\infty} e^{-\alpha t} \frac{(\alpha t)^k}{k!} P^{*k}(x).$$
 (16)

Es ist

$$E[S(t)] = \alpha t p_1 \tag{17}$$

$$Var\left[S(t)\right] = \alpha t p_2 \tag{18}$$

und die Schiefe

$$\gamma_{S(t)} = p_3 \cdot p_2^{-3/2} \cdot (\alpha t)^{-1/2}.$$
 (19)

Die Prämieneinnahmen c pro Jahr wählen wir als den Erwartungswert der Schäden in einem Jahr, vergrössert um einen Sicherheitszuschlag

$$c = \alpha \cdot p_1 \cdot (1 + \lambda), \quad \lambda > 0. \tag{20}$$

Für die Pensionskasse treffen wir folgende Annahme:

Jedes ausscheidende Mitglied wird jeweils sofort durch ein gleichaltriges Mitglied mit gleichen Risikosummen und gleichem Geschlecht ersetzt. Falls die jährlichen Risikosummen für jedes Alter konstant sind, so ist diese Voraussetzung im Beharrungszustand erfüllt.

Unter dieser Voraussetzung und mit

$$\alpha = \sum_{k=1}^{n} (q_k + i_k) \tag{21}$$

und

$$P(x) = \sum_{k=1}^{n} \frac{(q_k + i_k)}{\alpha} \cdot P_k(x)$$
 (22)

ist das kollektive Modell approximativ äquivalent zum individuellen Modell.

Es ist

$$p_{k} = \frac{1}{\alpha} \sum_{j=1}^{n} \left[q_{j} \cdot RT_{j}^{k} + i_{j} \cdot RI_{j}^{k} \right]$$
 (23)

und

$$E[S(1)] = \sum_{k=1}^{n} [q_k \cdot RT_k + i_k \cdot RI_k] = E[S^{\text{ind}}]$$
 (24)

$$Var[S(1)] = \sum_{k=1}^{n} [q_k \cdot RT_k^2 + i_k \cdot RI_k^2] > Var[S^{ind}].$$
 (25)

Die Verteilungsfunktion F(t,x) des Gesamtschadens im kollektiven Modell lässt sich im allgemeinen nicht explizit angegen. Es wurden deshalb verschiedene Näherungsverfahren entwickelt. Wir wollen eine Methode speziell herausgreifen.

Die NP (normal power)-Approximation

G sei die Verteilungsfunktion einer standardisierten Zufallsvariablen Y. G soll durch die standardisierte Normalverteilung Φ angenähert werden. Mit Edgeworth ist

$$G(z) = \Phi(z) - \frac{\gamma}{6} \Phi'''(z) + o(z^2)$$
 (26)

und mit Taylor ist

$$G(z_0 + \Delta z) = G(z_0) + G'(z_0) \cdot \Delta z + o(\Delta z). \tag{27}$$

Wenn wir (26) und (27) kombinieren, so ist

$$G(z_0 + \Delta z) = \Phi(z_0) - \frac{\gamma}{6} \Phi'''(z_0) + \Phi'(z_0) \cdot \Delta z + o(z_0^2). \tag{28}$$

Wenn wir in (28) die Glieder mit $z_0^k (k > 2)$ null setzen, so ist

$$G(z_0 + \Delta z) = \Phi(z_0) \tag{29}$$

falls

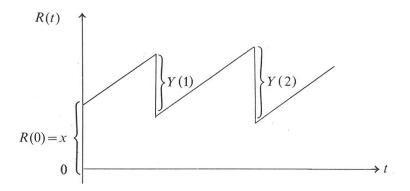
$$\Delta z = \frac{\gamma}{6} [z_0^2 - 1]. \tag{30}$$

Es ist somit

$$G(y) = \Phi\left(-\frac{3}{\gamma} + \sqrt{\frac{9}{\gamma^2} + \frac{6y}{\gamma} + 1}\right).$$
 (31)

Da die Edgeworth-Entwicklung (26) semikonvergenten Charakter hat, ist eine Angabe des Fehlers bei der *NP*-Approximation im allgemeinen nicht möglich.

4 Die Schwankungsreserve


Die gesamten Einnahmen (Prämien plus allfällige Zinserträge) zum Zeitpunkt t sei Z(t) und der Gesamtschaden bis zum Zeitpunkt t betrage S(t). Die Schwankungsreserve R(t) ist

$$R(t) = x + Z(t) - S(t),$$
 (32)

wobei

$$R(0) = x. (33)$$

Für den Fall, wo Z(t) = ct und $S(t) = \sum_{i=1}^{N(t)} Y(i)$, sieht R(t) folgendermassen aus:

5 Die Ruinmodelle

a) Die Ruinwahrscheinlichkeit bei einjähriger Betrachtung

Die Prämieneinnahmen in einem Jahr betrage c. Die Schäden sollen nur in den Zeitpunkten $t \in \mathbb{N}$ eintreffen.

Die einjährige Ruinwahrscheinlichkeit

$$\Psi(x) = \text{Prob}[R(1) < 0 | R(0) = x]$$
 (34)

berechnet sich im *individuellen* Pensionskassen-Modell bei bekannter Gesamtschadenverteilung F^{ind} wie folgt:

$$\Psi(x) = 1 - F^{\text{ind}}(x+c). \tag{35}$$

Im kollektiven Modell ist mit der NP-Approximation

$$\Psi(x) = 1 - \Phi\left(-\frac{3}{\gamma_{S(1)}} + \sqrt{\frac{9}{\gamma_{S(1)}^2} + \frac{6y}{\gamma_{S(1)}} + 1}\right),\tag{36}$$

wobei

$$y = \frac{(x+c) - \alpha p_1}{\sqrt{\alpha p_2}} \tag{37}$$

und

$$\gamma_{S(1)} = p_3 \cdot p_2^{-3/2} \cdot \alpha^{-1/2}. \tag{38}$$

b) Die Ruinwahrscheinlichkeit bei ewiger Betrachtung ohne Berücksichtigung des Zinses

 $\Psi(x)$ sei die Wahrscheinlichkeit, dass die Schwankungsreserve

$$R(t) = x + ct - S(t) \tag{39}$$

zu irgendeinem Zeitpunkt $t \in \mathbb{R}_+$ kleiner als Null werde.

$$T = \inf\left\{t \,\middle|\, R(t) < 0\right\} \tag{40}$$

ist der Ruinzeitpunkt.

$$\Psi(x) = \operatorname{Prob}\left[T < \infty \,\middle|\, R(0) = x\right] \tag{41}$$

hat im Fall der exponentiellen Schadenhöhenverteilung

$$P(y) = 1 - e^{-ay}, \quad (p_1 = \frac{1}{a})$$
 (42)

eine explizite Lösung

$$\Psi(x) = \frac{1}{1+\lambda} \cdot e^{-a\lambda x/(1+\lambda)}.$$
 (43)

Allgemein erfüllt $\Psi(x)$ die Ungleichung

$$\Psi(x) \leq e^{-Rx},\tag{44}$$

wobei R die positive Lösung der Gleichung

$$\alpha + cr = \alpha \int_{0}^{\infty} e^{ry} dP(y)$$
 (45)

ist.

Wenn wir in (45) e^{ry} mit dem Taylorpolynom 3. Grades approximieren, so ist

$$\Psi(x) \le e^{-x(\sqrt{9p_2^2 + 24p_1p_3\lambda} - 3p_2)/2p_3} \tag{46}$$

c) Die Ruinwahrscheinlichkeit bei ewiger Betrachtung unter Berücksichtigung des Zinses

Die Schwankungsreserve der Pensionskasse soll einen kontinuierlichen Zins abwerfen. Die Zinsintensität sei $\delta > 0$. Es ist

$$dR(t) = c \cdot dt + \delta \cdot R(t) \cdot dt - dS(t) \tag{47}$$

und mit R(0) = x

$$R(t) = xe^{\delta t} + \frac{c(e^{\delta t} - 1)}{\delta} - \int_0^t e^{\delta(t - u)} dS(u).$$

$$\tag{48}$$

Die Ruinwahrscheinlichkeit

$$\Psi(x) = \operatorname{Prob}\left[T < \infty \,\middle|\, R(0) = x\right] \tag{49}$$

mit

$$T = \inf\left\{t \,\middle|\, R(t) < 0\right\} \tag{50}$$

hat für den Fall der exponentiellen Schadenhöhenverteilung $(p_1 = \frac{1}{a})$ den Wert

$$\Psi(x) = \frac{\frac{a}{\Gamma(\alpha/\delta)} \int_{c/\delta + x}^{\infty} (ay)^{\alpha/\delta - 1} e^{-ay} dy}{\frac{a}{\Gamma(\alpha/\delta + 1)} \int_{c/\delta}^{\infty} (ay)^{\alpha/\delta} e^{-ay} dy}, x > -\frac{c}{\delta}$$
(51)

(Segerdahl)

Gerber hat dieses Zinsmodell fogendermassen abgeändert:

R(t) soll einen kontinuierlichen Zins abwerfen (solange R(t) positiv ist) bzw. eine kontinuierliche Bezahlung von Schuldzinsen erfordern (solange R(t) negativ ist).

Ruin tritt ein, falls der Strom der ausgehenden Schuldzinsen grösser wird als der Strom der einlaufenden Prämien. Die PK nimmt pro Zeiteinheit $c + \delta R(t)$ ein. Ruin tritt ein, falls $T < \infty$ mit

$$T = \inf\left\{t \left| R(t) < -\frac{c}{\delta}\right\}. \tag{52}$$

Es ist dann für die exponentielle Schadenhöhenverteilung $(p_1 = \frac{1}{a})$

$$\Psi(x) = \frac{a}{\Gamma(\alpha/\delta)} \int_{c/\delta + x}^{\infty} (ay)^{\alpha/\delta - 1} e^{-ay} dy$$
(Gerber)
(53)

6 Auswirkungen der Ruinmodelle auf Pensionskassen anhand von drei Beispielen

Wir betrachten drei Pensionskassen, im folgenden mit PK-231L, PK-77L und PK-87B benannt.

1) PK-231L

Die PK-231L ist eine bestehende Vorsorgeeinrichtung. Sie versichert 189 Männer und 42 Frauen. Das Leistungssystem sieht wie folgt aus:

- minimales Eintrittsalter EA: 20
- Rücktrittsalter s: $s_y = 62$, $s_x = 65$
- Rentensatz: $r(d) = \min(0.6; 0.015d)$, wobei d = s EA
- Altersrente: $AR = r(d)L^{v}$ ($L^{v} = versicherter Lohn$)
- Invalidenrente: IR = AR
- Witwenrente: WiR = 0.6 AR
- Waisenrente: WaR = 0.3 AR
- Durchschnittsbeitrag: 12,5%
- Grundlagen: EVK 80/3,5%

Das Durchschnittsalter der PK-231L ist 38,6 Jahre.

Das totale Sparkapital (Deckungskapital) beträgt 6558000 Fr. (negative individuelle Deckungskapitalien wurden aufgenullt). Für die Struktur der Kasse sei auf den Anhang verwiesen.

2) PK-77L

Der Bestand der PK-77L ist eine Teilmenge des Bestandes der PK-231L, wobei die Anzahl der Versicherten ein Drittel der Anzahl der ursprünglichen

Versicherten ist und die PK-77L ungefähr die gleiche Struktur aufweist wie die PK-231L.

Die PK-77L versichert 63 Männer und 14 Frauen. Das Leistungssystem ist das gleiche wie bei der PK-231L.

Das Durchschnittsalter ist 39,1 Jahre. Das totale Sparkapital (Deckungskapital) beträgt 2242000 Fr. (negative individuelle Deckungskapitalien wurden aufgenullt). Für die Struktur der Kasse sei auf den Anhang verwiesen.

3) PK-87B

Die PK-87B ist eine bestehende Vorsorgeeinrichtung. Sie versichert 78 Männer und 9 Frauen. Die Höhe der Altersrente richtet sich nach den einbezahlten Beiträgen (Beitragsprimat).

- Rücktrittsalter s: $s_v = 62$, $s_x = 65$

- Altersrente: AR

Invalidenrente: IR = AR

- Witwenrente: WiR = 0,6 AR

- Waisenrente: WaR = 0.15 AR

- Beitrag: 9 %

- Grundlagen: VZ 80/3,5 %

Das Durchschnittsalter ist 39,6 Jahre. Das totale Sparkapital (Deckungskapital) beträgt 2630000 Fr. Für die Struktur sei auf den Anhang verwiesen.

Für die Ruinwahrscheinlichkeiten $\Psi(x)=1\%$ und $\Psi(x)=1\%$, und für die Sicherheitszuschläge $\lambda=1\%$, $\lambda=5\%$ und $\lambda=10\%$ ist im folgenden für jedes Ruinmodell die notwendige Schwankungsreserve x (in Fr.) angegeben. In den Ruinmodellen von Segerdahl und von Gerber ist mit den Zinsintensitäten $\delta=3.5\%$ und $\delta=4.5\%$ gerechnet worden. Die Zahlen in Klammern sind die Schwankungsreserven x in Prozenten vom jeweiligen Sparkapital (Deckungskapital).

- a) Die Schwankungsreserve x bei einjähriger Betrachtung
- (i) Individuelles PK-Modell

$$\Psi(x) = 1 - F^{\text{ind}}(x+c)$$
 (durch sukzessive Faltung)

PK-231L				
λ	1 %	5 %	10 %	
$x \text{ mit } \Psi(x) = 1 \%$	$295 \cdot 10^{3}$	$293 \cdot 10^{3}$	$291 \cdot 10^{3}$	
	(4,5 %)	(4,5 %)	(4,4 %)	
$\Psi(x) = 1\%$	$472 \cdot 10^{3}$	$470 \cdot 10^{3}$	$468 \cdot 10^{3}$	
	(7,2 %)	(7,2‰)	(7,1 %)	
	PK-77L			
λ	1 %	5 %	10 %	
$\Psi(x) = 1\%$	$238 \cdot 10^{3}$	$237 \cdot 10^{3}$	$236 \cdot 10^{3}$	
	(10,6 %)	(10,6 %)	(10,5 %)	
$\text{mit } \Psi(x) = 1\%$	$387 \cdot 10^{3}$	$386 \cdot 10^{3}$	$385 \cdot 10^{3}$	
	(17,3 %)	(17,2 %)	(17,2 %)	
	PK-87B			
λ	1 %	5 %	10 %	
$x \text{ mit } \Psi(x) = 1 \%$	$148 \cdot 10^{3}$	$147 \cdot 10^{3}$	$146 \cdot 10^{3}$	
A CONTRACT OF THE SECOND	(5,6 %)	(5,6 %)	(5,6 %)	
$\text{mit } \Psi(x) = 1\%$	$229 \cdot 10^{3}$	$228 \cdot 10^{3}$	$227 \cdot 10^{3}$	
	(8,7 %)	(8,7 %)	(8,6 %)	

(ii) Kollektives PK-Modell (mit der NP-Approximation)

$$x = y_0 \sqrt{\alpha p_2} + \frac{1}{6} (p_3/p_2) \cdot (y_0^2 - 1) - \alpha p_1 \lambda$$
(mit $y_0 = \Phi^{-1} (1 - \Psi(x))$.

PK-231L

λ	1 %	5 %	10 %
$x \text{ mit } \Psi(x) = 1 \%$	$303 \cdot 10^{3}$	$301 \cdot 10^{3}$	$298 \cdot 10^{3}$
	(4,6 %)	(4,6 %)	(4,5 %)
x mit $\Psi(x) = 1\%$	$469 \cdot 10^{3}$	$466 \cdot 10^3$	$464 \cdot 10^{3}$
	(7,2 %)	(7,1 %)	(7,1 %)

PK-77L				
λ	1 %	5 %	10 %	
$x \text{ mit } \Psi(x) = 1 \%$	$247 \cdot 10^{3}$	$246 \cdot 10^{3}$	$245 \cdot 10^{3}$	
	(11,0 %)	(11,0 %)	(10,9 %)	
$x \text{ mit } \Psi(x) = 1\%$	$408 \cdot 10^{3}$	$407 \cdot 10^{3}$	$406 \cdot 10^{3}$	
	(18,2 %)	(18,2 %)	(18,1 %)	
	PK-87B			
λ	1 %	5 %	10 %	
$x \text{ mit } \Psi(x) = 1 \%$	$159 \cdot 10^{3}$	$158 \cdot 10^{3}$	$157 \cdot 10^{3}$	
	(6,0 %)	(6,0 %)	(6,0 %)	
$x \text{ mit } \Psi(x) = 1\%$	$252 \cdot 10^{3}$	$251 \cdot 10^{3}$	$250 \cdot 10^{3}$	
700	(9,6 %)	(9,5 %)	(9,5 %)	

b) Die Schwankungsreserve x bei ewiger Betrachtung mit der Approximation $\Psi(x) = e^{-Rx}$

$$x = \frac{\left(-\ln \Psi(x)\right) 2p_3}{\sqrt{9p_2^2 + 24p_1p_3\lambda} - 3p_2}$$

PK-231L

λ	1 %	5 %	10 %
$\pi \text{ mit } \Psi(x) = 1 \%$	$30855 \cdot 10^{3}$ (470,5 %)	$6344 \cdot 10^3$ (96,7 %)	$3274 \cdot 10^{3}$ (49,9 %)
$\min \Psi(x) = 1 \%_0$	$46282 \cdot 10^{3} $ $(705,7 \%)$	9516 · 10 ³ (145,1 %)	$4912 \cdot 10^{3} $ $(74,9 \%)$
	PK-77L		
λ	1 %	5 %	10 %
$e \min \Psi(x) = 1 \%$	$32685 \cdot 10^{3}$ (1457,9 %)	$6746 \cdot 10^3$ (300,9 %)	$3495 \cdot 10^3$ (155,9 %)
$\alpha \text{ mit } \Psi(x) = 1\%$	$49028 \cdot 10^3$	$10119 \cdot 10^3$	$5243 \cdot 10^3$

PK-87B				
λ	1 %	5 %	10 %	
mit $\Psi(x) = 1 \%$	$17299 \cdot 10^3$ (657,8 %)	$3568 \cdot 10^3$ (135,7 %)	$1847 \cdot 10^{3}$ $(70,2 \%)$	
$\min \Psi(x) = 1\%_0$	$25949 \cdot 10^{3} $ (986,7 %)	$5352 \cdot 10^3$ (203,5 %)	$2771 \cdot 10^{3}$ (105,4 %)	

c) Die Schwankungsreserve x bei ewiger Betrachtung mit Approximation der Einzelschadenhöhenverteilung durch die Exponentialverteilung

$$x = \frac{-\ln \left[\Psi(x) \cdot (1+\lambda)\right] \cdot (1+\lambda)}{a\lambda}, \quad a = \frac{1}{p_1}$$

PK-231L

λ	1 %	5 %	10 %
$x \text{ mit } \Psi(x) = 1 \%$	$16485 \cdot 10^3$ (251,4%)	$3399 \cdot 10^3$ (51,8 %)	$1762 \cdot 10^3$ (26,9 %)
$x \text{ mit } \Psi(x) = 1\%$	$24746 \cdot 10^{3} $ $(377,3 \%)$	$5116 \cdot 10^{3}$ (78,0 %)	$2662 \cdot 10^{3}$ (40,6 %)

PK-77L

λ	1 %	5 %	10 %
$x \min \Psi(x) = 1 \%$	15177 · 10 ³ (676,9 %)	$3129 \cdot 10^3$ (139,6 %)	$1622 \cdot 10^3$ (72,3 %)
$x \text{ mit } \Psi(x) = 1\%$	$22781 \cdot 10^{3} $ $(1016,1 \%)$	$4710 \cdot 10^3$ (210,1 %)	$2450 \cdot 10^3$ (109,3 %)

PK-87B

λ	1 %	5 %	10 %
$x \text{ mit } \Psi(x) = 1 \%$	$11459 \cdot 10^3$ (435,7 %)	$2362 \cdot 10^3$ (89,8 %)	$1225 \cdot 10^3$ (46,6 %)
$x \text{ mit } \Psi(x) = 1\%_0$	$17201 \cdot 10^{3} $ $(654,0 \%)$	$3556 \cdot 10^3$ (135,2 %)	$1850 \cdot 10^{3} $ $(70,3 \%)$

d) Die Schwankungsreserve x bei ewiger Betrachtung unter Berücksichtigung des Zinses δ (Segerdahl)

$$\Psi(x) = \frac{\frac{a}{\Gamma(\alpha/\delta)} \int_{c/\delta + x}^{\infty} (ay)^{\alpha/\delta - 1} e^{-ay} dy}{\frac{a}{\Gamma(\alpha/\delta + 1)} \int_{c/\delta}^{\infty} (ay)^{\alpha/\delta} e^{-ay} dy}, \quad a = \frac{1}{p_1}$$

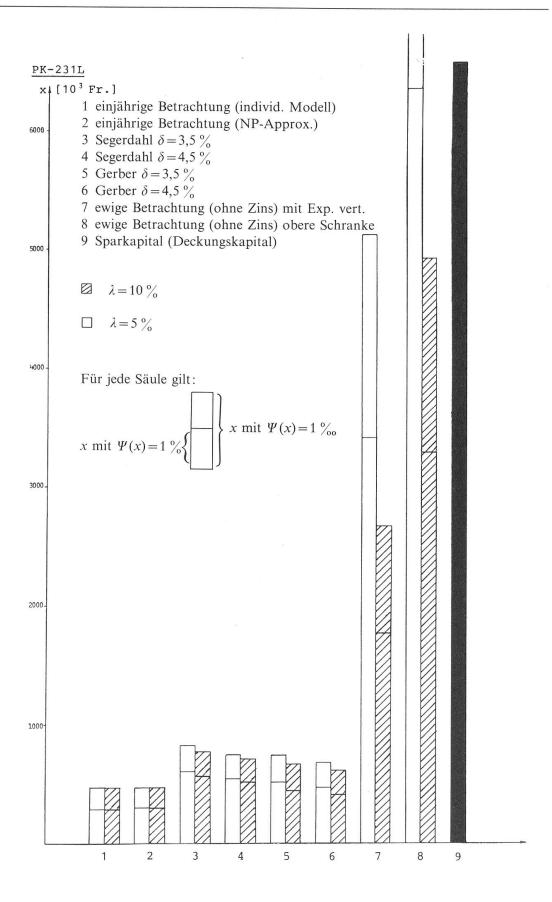
PK-231L

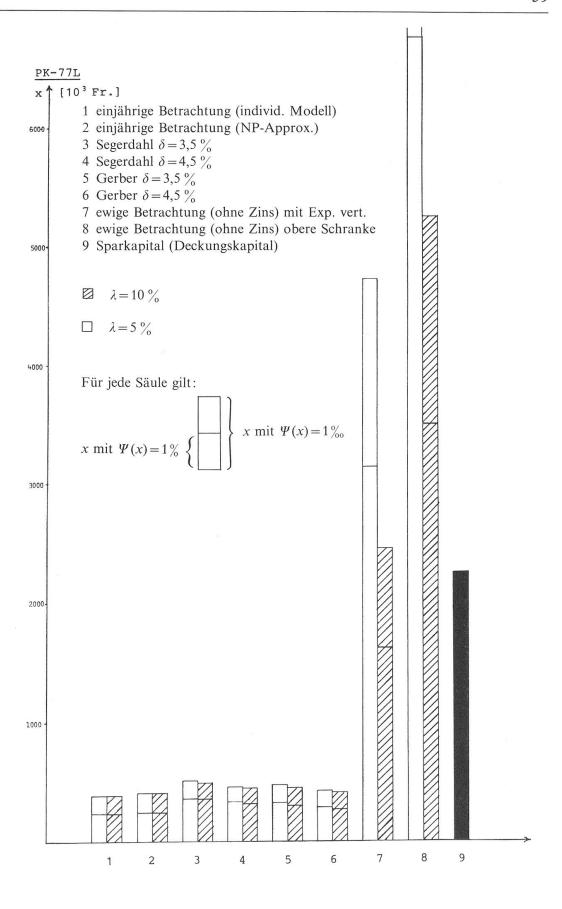
TK-231L				
λ	1 %	5 %	10 %	
$x \text{ mit } \Psi(x) = 1 \%, \ \delta = 3.5 \%$	$645 \cdot 10^3$	$608 \cdot 10^{3}$	565 · 10 ³	
	(9,8 %)	(9,3 %)	(8,6 %)	
$\Psi(x) = 1\%, \ \delta = 4.5\%$	$577 \cdot 10^3$	$546 \cdot 10^3$	$514 \cdot 10^{3}$	
	(8,8 %)	(8,3 %)	(7,8 %)	
mit $\Psi(x) = 1\%, \delta = 3.5\%$	$865 \cdot 10^3$	$821 \cdot 10^{3}$	$773 \cdot 10^{3}$	
	(13,2 %)	(12,5 %)	(11,8 %)	
$\Psi(x) = 1\%, \ \delta = 4.5\%$	$775 \cdot 10^3$	$744 \cdot 10^{3}$	$704 \cdot 10^{3}$	
	(11,8 %)	(11,3 %)	(10,7 %)	
	PK-77L			
λ	1 %	5 %	10 %	
$x \text{ mit } \Psi(x) = 1 \%, \ \delta = 3.5 \%$	$382 \cdot 10^{3}$	$369 \cdot 10^{3}$	$354 \cdot 10^{3}$	
	(17,0 %)	(16,5 %)	(15,8 %)	
mit $\Psi(x) = 1\%, \ \delta = 4.5\%$	$341 \cdot 10^{3}$	$332 \cdot 10^{3}$	$321 \cdot 10^{3}$	
	(15,2 %)	(14,8 %)	(14,3 %)	
$x \text{ mit } \Psi(x) = 1\%, \ \delta = 3.5\%$	$523 \cdot 10^3$	$509 \cdot 10^{3}$	$494 \cdot 10^{3}$	
	(23,3 %)	(22,7 %)	(22,0 %)	
$\Psi(x) = 1\%, \ \delta = 4.5\%$	$474 \cdot 10^{3}$	$461 \cdot 10^{3}$	$451 \cdot 10^{3}$	
	(21,1 %)	(20,6 %)	(20,1 %)	
	PK-87B			
λ	1 %	5 %	10 %	
$\Psi(x) = 1\%, \ \delta = 3.5\%$	$345 \cdot 10^{3}$	$330 \cdot 10^{3}$	$313 \cdot 10^{3}$	
Account of the second of the s	(13,1 %)	(12,5 %)	(11,9 %)	
mit $\Psi(x) = 1\%, \ \delta = 4.5\%$	$311 \cdot 10^{3}$	$300 \cdot 10^{3}$	$287 \cdot 10^{3}$	
The second of th	(11,8 %)	(11,4 %)	(10,9 %)	
mit $\Psi(x) = 1\%_0$, $\delta = 3.5\%_0$	$467 \cdot 10^3$	$451 \cdot 10^{3}$	$434 \cdot 10^{3}$	
and the above	(17,8 %)	(17,1 %)	(16,5 %)	
$\Psi(x) = 1\%_0, \ \delta = 4.5\%_0$	$423 \cdot 10^3$	$410 \cdot 10^{3}$	$397 \cdot 10^{3}$	
and the second	(16,1 %)	(15,6 %)	(15,1 %)	

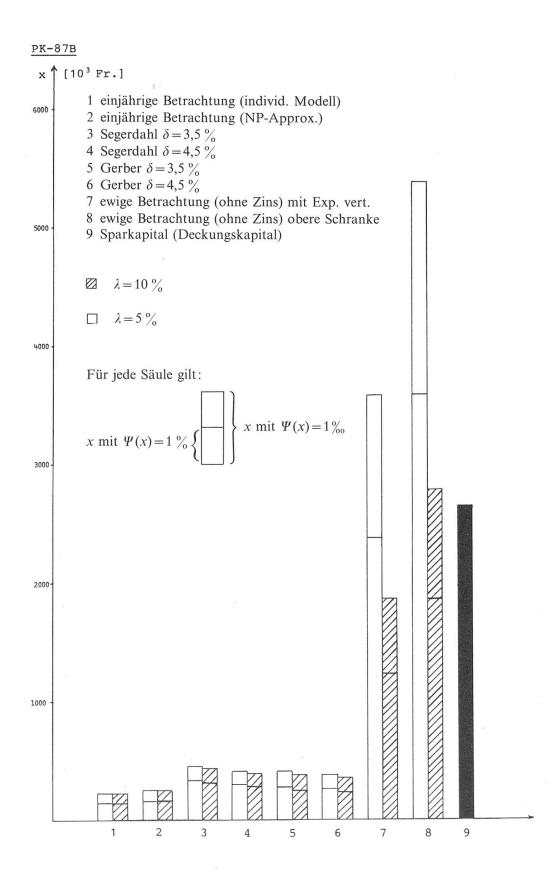
e) Die Schwankungsreserve x bei ewiger Betrachtung mit dem Zinsmodell von Gerber

$$\Psi(x) = \frac{a}{\Gamma(\alpha/\delta)} \int_{c/\delta + x}^{\infty} (ay)^{a/\delta - 1} e^{-ay} dy, \quad a = \frac{1}{p_1}$$

PK-231L


λ	1 %	5 %	10 %
x mit $\Psi(x) = 1 \%, \ \delta = 3.5 \%$	578 · 10 ³ (8,8 %)	518 · 10 ³ (7,9 %)	442 · 10 ³ (6,7 %)
$x \text{ mit } \Psi(x) = 1 \%, \ \delta = 4.5 \%$	$516 \cdot 10^3$ (7,9 %)	$469 \cdot 10^3$ $(7,2 \%)$	$410 \cdot 10^3$ $(6,3 \%)$
$x \text{ mit } \Psi(x) = 1\%, \ \delta = 3.5\%$	$805 \cdot 10^3$ (12,3 %)	$744 \cdot 10^3$ (11,3 %)	$669 \cdot 10^3$ $(10,2 \%)$
$x \text{ mit } \Psi(x) = 1\%, \ \delta = 4,5\%$	$722 \cdot 10^3$ (11,0 %)	$675 \cdot 10^3$ (10,3 %)	$616 \cdot 10^3$ (9,4 %)


PK-77L


λ	1 %	5 %	10 %
$x \text{ mit } \Psi(x) = 1 \%, \ \delta = 3.5 \%$	$342 \cdot 10^{3}$	$321 \cdot 10^{3}$	$296 \cdot 10^{3}$
$(x) = 1/6, \ 0 = 3, 3/6$	(15,3 %)	(14,3 %)	(13,2 %)
$x \text{ mit } \Psi(x) = 1 \%, \ \delta = 4.5 \%$	$306 \cdot 10^3$	$290 \cdot 10^{3}$	$271 \cdot 10^{3}$
	(13,6 %)	(12,9 %)	(12,1 %)
x mit $\Psi(x) = 1\%, \delta = 3.5\%$	$492 \cdot 10^{3}$	$472 \cdot 10^{3}$	$447 \cdot 10^{3}$
	(21,9 %)	(21,1 %)	(19,9 %)
$\Psi(x) = 1\%, \ \delta = 4.5\%$	$442 \cdot 10^3$	$426 \cdot 10^{3}$	$407 \cdot 10^3$
	(19,7 %)	(19,0 %)	(18,2 %)

PK-87B

λ	1 %	5 %	10 %
$x \text{ mit } \Psi(x) = 1 \%, \ \delta = 3.5 \%$	308 · 10 ³ (11,7 %)	285 · 10 ³ (10,8 %)	$256 \cdot 10^{3}$ (9,7 %)
x mit $\Psi(x) = 1 \%, \delta = 4,5 \%$	$279 \cdot 10^3$ (10,6 %)	$261 \cdot 10^3$ (9,9 %)	$238 \cdot 10^3$ (9,0 %)
x mit $\Psi(x) = 1\%_0$, $\delta = 3.5\%_0$	$436 \cdot 10^3$ (16,6 %)	$413 \cdot 10^3$ (15,7 %)	$384 \cdot 10^3$ (14,6 %)
x mit $\Psi(x) = 1\%_0$, $\delta = 4.5\%_0$	$396 \cdot 10^3$ (15,1 %)	$377 \cdot 10^3$ (14,3 %)	$355 \cdot 10^3$ (13,5 %)

7 Schlussbemerkungen

Die NP-Approximation liefert, gemessen am geringen Aufwand, gute Resultate. Die Resultate der Modelle ohne Zins entsprechen nicht der Realität. Der Zins ist bei langfristiger Betrachtung von grosser Bedeutung. In der Formel von Segerdahl und in derjenigen von Gerber tritt der Zins immer in der Form α/δ auf. Eine Verdoppelung des Zinses bedeutet faktisch das gleiche wie eine Halbierung der erwarteten jährlichen Schadenzahl. Der Unterschied der Schwankungsreserven im Modell mit einjährigem Horizont zu denjenigen Ruinmodellen (mit Zins) mit unendlichem Horizont ist erstaunlich gering. Dies lässt für das Modell von Segerdahl die Vermutung zu, dass $E[T|T<\infty]$ klein ist. (Im Ruinmodell mit ewiger Betrachtung (ohne Zins) und mit exponentieller Schadenhöhenverteilung ist $E[T|T<\infty]=(1/\alpha\lambda)~[1+(1/(1+\lambda)~p_1)]$).

Um den effektiven jährlichen Gesamtschaden berechnen zu können, haben wir angenommen, dass die Versicherungsleistungen in Form von Kapitalien entrichtet werden. In der Praxis sind Rentenzahlungen üblich. Der Rentenbarwert wird damit auf eine längere Zeitspanne verteilt und so werden die Konsequenzen des Risikofalles nicht so plötzlich eintreten wie unsere Betrachtungsweise suggeriert. Die Bedingung von Abschnitt 3 verlangt, dass gute wie schlechte Risiken immer wieder durch ebensolche ersetzt werden. Dies muss in Wirklichkeit natürlich nicht so sein. Abschliessend sei noch darauf hingewiesen, dass das methodische Vorgehen für das Studium des Langlebigkeitsrisikos der Rentner ganz analog dem hier vorgezeichneten für das Risiko der aktiven Versicherten wäre.

Olivier Deprez Limmattalstrasse 193 8049 Zürich

Literaturverzeichnis

Beard, R. E., Pentikäinen, T. and Pesonen, E.: Risk theory, 2nd edition, Chapman and Hall, London, 1976.

Bühlmann, H.: Mathematical Methods in Risk Theory, Springer, 1970.

Bühlmann, H.: Capitalization of Risk Ventures.

Gerber, H. U.: An introduction to mathematical risk theory, Huebner, 1980.

Gerber, H. U.: Der Einfluss von Zins auf die Ruinwahrscheinlichkeit, MVSVM, 71. Band, S. 63–70, 1971.

Held, R. P.: Zur numerischen Berechnung von Prämien für die Überschaden-Rückversicherung autonomer Pensionskassen, Höhere Fachprüfung für Pensionsversicherungsexperten, Diplomarbeit, 1980.

Kupper, J.: Methoden zur Berechnung der Verteilungsfunktion des Totalschadens, MVSVM, S. 279–315, 1971.

Segerdahl, C.-O.: Über einige risikotheoretische Fragestellungen, Skand. Aktuarietidskrift, vol. 25, pp. 43–83, 1942.

Straub, E.: Non Life Mathematics, Lecture Notes, University of Berne, 1979.

Zwinggi, E.: Versicherungsmathematik, Birkhäuser, 1945.

Anhang

PK-231L	PK-77 L	PK-87B
$\alpha = 1,49154$	$\alpha = 0.53675$	$\alpha = 0.83094$
$p_1 = 35,52 \cdot 10^3 \text{ Fr.}$	$p_1 = 32,70 \cdot 10^3 \text{ Fr.}$	$p_1 = 24,69 \cdot 10^3 \text{ Fr.}$
$p_2 = 4725,11 \cdot 10^6 \text{ Fr.}$	$p_2 = 4603,24 \cdot 10^6 \text{ Fr.}$	$p_2 = 1839,88 \cdot 10^6 \text{ Fr.}$
$p_3 = 695596,43 \cdot 10^9 \text{ Fr.}$	$p_3 = 821170,40 \cdot 10^9 \text{ Fr.}$	$p_3 = 169803,79 \cdot 10^9 \text{ Fr.}$

Bestand: Männer

	PK-231L				PK-77L		PK-87B		
X	Anz.	L^v	AR	Anz.	L^v	AR	Anz.	L^v	AR
20	2	29473	17684	1	12053	7232	0	0	0
21	6	100848	60509	2	33868	20321	1	25668	15580
22	4	67076	40245	1	19604	11762	3	99600	59134
23	2	30316	18190	1	14720	8832	5	160572	93645
24	5	78604	47163	1	15776	9466	1	32422	18599
25	6	93648	56189	2	30688	18413	2	66385	37176
26	3	50664	29840	1	16028	9376	1	37440	21240
27	6	109608	65192	2	37384	22193	4	132123	71869
28	10	229496	134124	3	68304	40130	3	115000	59291
29	5	90268	52685	2	33304	19251	2	59254	32444

Bestand: Männer

	PK-231L				PK-77L		PK-87B			
X	Anz.	L^v	AR	Anz.	L^v	AR	Anz.	L^v	AR	
30	4	59228	31340	1	14132	7419	1	40000	21285	
31	3	49344	26792	1	17000	8925	2	63503	25780	
32	2	35848	19055	1	18680	9527	3	93465	47284	
33	8	154552	84623	3	62340	34499	1	32646	15487	
34	7	131504	71947	2	34660	18973	2	71080	30985	
35	10	227444	123191	3	77280	43363	3	112322	46503	
36	4	73976	37760	1	17744	8517	0	0	0	
37	3	49296	23407	1	16844	8085	1	34882	14336	
38	5	122080	65918	2	49000	26772	2	80000	32024	
39	7	114572	50010	2	33208	15096	2	70186	27997	
40	6	102101	46956	2	31924	12948	0	0	0	
41	8	165280	76238	2	32836	15811	3	98483	27183	
42	8	150660	68097	3	49860	21831	0	0	0	
43	2	22320	9302	1	16040	5534	0	0	0	
44	7	179072	72756	2	50860	20144	2	64822	22015	
45	5	120484	56636	2	48040	22669	1	40000	13302	
46	4	107696	48192	1	50000	30000	2	72422	23893	
47	2	30856	9411	1	14396	4967	3	108646	31 534	
48	3	44664	17030	1	16760	4777	3	101 266	28647	
49	1	38000	19380	0	0	0	1	40000	10915	
50	2	38 500	14151	1	31400	9891	2	70186	14129	
51	4	104232	32017	1	29300	8351	1	31304	6021	
52	2	39136	12328	1	15680	4939	1	37440	8389	
53	5	121 044	59041	2	59760	34356	2	67950	14380	
54	3	52752	14253	1	19400	5238	1	40000	10111	
55	2	19300	6663	1	4400	2640	1	33316	5231	
56	3	57236	21981	1	17504	4989	2	72198	13498	
57	3	53440	22119	1	6840	4104	0	0	0	
58	3	84600	44052	1	28400	17040	2	71 528	13057	
59	5	151580	86923	2	44180	26233	2	72480	10090	
60	1	24200	9801	0	0	0	2	66120	8628	
61	1	8640	4795	0	0	0	3	109497	18715	
62	0	0	0	0	0	0	1	30856	3615	
63	4	67150	37517	2	27850	14766	2	76240	8536	
64	3	75600	39486	1	24400	13542	1	29739	2238	
65	0	0	0	0	0	0	1	27950	1643	
Total	189	3756388	1884989	63	1242447	632922	78	2688991	966429	

Bestand: Frauen

	PK-231L				PK-77L		PK-87B		
у	Anz.	L^v	AR	Anz.	L^v	AR	Anz.	L^v	AR
20	0	0	0	0	0	0	0	0	0
21	2	25780	15468	0	0	0	2	48968	27455
22	2	22602	13561	1	12380	7428	1	25714	13140
23	3	45300	27180	1	15800	9480	1	26832	14734
24	2	23080	13669	1	11960	6997	1	37200	18687
25	0	0	0	0	0	0	1	34200	18233
26	4	74587	42982	1	23600	13098	1	22990	9771
27	3	47411	27892	1	11011	6607	0	0	0
28	3	50351	28077	1	25100	13931	0	0	0
29	0	0	0	0	0	0	0	0	0
30	1	11448	6869	0	0	0	0	0	0
31	2	42496	22113	0	0	0	0	0	0
32	0	0	0	0	0	0	0	0	0
33	3	52830	27399	2	26530	15169	0	0	0
34	0	0	0	0	0	0	1	32422	14048
35	0	0	0	0	0	0	0	0	0
36	1	14228	8537	1	14228	8537	0	0	0
37	0	0	0	0	0	0	0	0	0
38	0	0	0	0	0	0	0	0	0
39	0	0	. 0	0	0	0	0	0	0
40	1	9676	5806	0	0	0	0	0	0
41	1	10465	4552	0	0	0	0	0	0
42	0	0	0	0	0	0	1	40000	10860
43	0	0	0	0	0	0	0	0	0
44	1	13222	7338	1	13222	7338	0	0	0
45	0	0	0	0	0	0	0	0	0
46	0	0	0	0	0	0	0	0	0
47	O.	0	0	0	0	0	0	0	0
48	0	0	0	0	0	0	0	0	0
49	0	0	0	0	0	0	0	0	0
50	4	33216	14841	1	11255	3377	0	0	0
51	1	14552	4147	Ö	0	0	0	0	0
52	0	0	0	0	0	0	0	0	0
53	1	5680	3408	0	0	0	0	0	0
54	1	4800	2592	1	4800	2592	0	0	0
55	2	9200	5322	0	0	0	0	0	0
56	1	11420	6852	0	0	0	0	0	0
57	1	4800	2808	1	4800	2808	0	0	0
58	0	0	0	0	0	0	0	0	0
59	0	0	0	0	0	0	0	0	0
60`	2	15580	8820	1	4400	2112	0	0	0
61	0	0	. 0	0	0	0	0	0	0
Total	42	542724	300233	14	179086	99474	9	268326	126928

Zusammenfassung

An drei Beispielen wird untersucht, wie stark das Risiko der Aktiven eine Pensionskasse belastet. Als Stabilitätskriterien dienen vier verschiedene Ruinmodelle.

Résumé

L'auteur èvalue le risque occasionne par les assurès actifs d'une caisse de pensions sur la base de trois exemples. Il établit certains critéres de stabilité financière au moyen de diffèrents modéles d'èvolutions tenant compte du risque de ruine.

Summary

In three examples, the risk of the insured persons active at work in a pension plan is analyzed. Stability criteria are derived from four different ruin models.