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F DeVylder, Denderleeuw, and M. Goovaerts, Leuven

Upper and Lower Bounds on Stop-loss Premiums in Case of
Known Expectation and Variance of the Risk Variable

1 Primal problems

Let [a,b] be a finite interval, e,m,m2 real numbers We consider the following
problems

/b b b b \
Pi (m, m2) sup I j (x — e) + dF(x)j J xdF(x) m,§ x2dF{x) m2, J dF(x) 1 I,

\a a a a J

/b b b b \
qi(m,m2) mfl j(x —e) + dF(x)/ jxdF{x) m,\x2dF(x) m2,\dF(x) 1 I,

\a a a a J

where the supremum (mfimum) is over the distributions F on [a,b] satisfying the

constraints indicated after the slash Thus, m is the first-order and m2 the second

order moment of the probability distribution F The corresponding variance is

s2=m2 —m2. We consider m,m2 as independent parameters with domain C to be

specified later and s2 as an abbreviation for m2 — m2 Of course, we assume that
the retention e is m the interval [a,b] We assume a and b to be finite, but it is

possible to let b\oo m most of the final results
The value of problem pl(m,m2) is the indicated supremum pi(m,m2) No
confusions arise from the fact that px (m,m2) denotes at the same time the whole

problem and its value A solution of problem pi(m,m2) is a distribution F
satisfying the constraints of that problem and such that

b

j (x - e) + dF(x) =pi(m,m2)
a

Similar agreements and terminology are applied to problem q1(m,m2) and to
other problems to be considered later

Using the methods developed m De Vylder (1982), we shall find the value and
solution of problem pi(m,m2). Of course, these methods also apply, after
obvious adaptations, to problem q1(m,m2). The just mentioned paper shall be

abbreviated as DV m the rest of this note

Mitteilungen der Vereinigung Schweiz Versicherungsmathematiker Heft 1 1982
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Some aspects of problem pl{m,m2) are developed by Bowers (1969), Taylor
(1977) and Heilmann (1981).
We say that a probability distribution F is n-atomic if all its probability mass is

concentrated in n points at most. Then the latter are called the atoms of the

distribution. From a general result by Taylor (1977) (or DV 2.6.2) results that the

problems p1(m,m2), q1{m,m2) have 3-atomic solutions. We shall see that
Px(m,m2) has in fact a 2-atomic solution and qx (m,m2) a 3-atomic one.

If a,ß are two different atoms of the 2-atomic probability distribution F
satisfying the first-order moment constraint \xdF=m, then the corresponding
probability masses pa, pß must necessarily be

m—ß m —a
Pa > Pß n ~ '

a—ß ß—a

If a, ß, y are different atoms of the 3-atomic probability distribution F satisfying
the moment constraints \xdF=m, \x2dF=m2, then the corresponding
probability masses can only be

s2 + (m—ß)(m—y) s2 + (m — a) (m — y) s2 + (m — a) (m — ß)
Pa

(a-ß)(ot-y) ,Pp (ß-<x)(ß-y) 'Py (y-oO(y-ß)

Indeed (in case of the 3-atomic distribution), the moment constraints and the

relation expressing that F is a probability distribution furnish three linear
equations in pa, pß, py with the unique indicated solution.
Thus the 2 and 3-atomic solutions of the problems Pi(m,m2), qi(m,m2) are

completely specified by the atoms of these solutions.
Before we state the unique theorem of this paper, it is a pleasure to mention that
this note has been motivated by the intrest of Dr. H. Schmitter, as results from
private correspondence with one of the authors.
The rest of this paper is devoted to the demonstration of the following theorem.

Theorem

For (m,m2) belonging to the domain C' (defined and explicited in 3.1), the

problemsp1 (m,m2), qx (m,m2) have the value and solution indicated in table 1 (at
the end of the note).
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2 Related problems

To the problemspx (m,m2), q3 (m,m2), we associate the dual problems (DV 1.4.2,

1.7.3, 2.3.1)

p2(m,m2) mf {y1m+y2m2+y3/y1x+y2x2 +y3>(x-e) + (a<x<b)),

q2{m,m2) sup(yt m + y2m2 + y3jy1 x + y2x2 + y3 <(x -e) +, (a<x<b%

where the infimum (supremum) is over the triplets (yj, y2,y3)eR3 satisfying the
constraints indicated after the slash.

With the change of variables

y\=zi+k, j2=z2, y3=z3-i,
we have

p2(m,m2) j(m -e) +p3(m,m2), q2(m,m2) =\{m-e) + q3{m,m2),

where

p3(m,m2) inf(zjm + z2m2 + z3lzxx + z2x2 + z3 > j\x — e\, (a<x<b)),

q3(m,m2) sup[z^m + z2m2 + z3/z1x + z2y? +z3<j\x—e\, (a<x<b)),

where the infimum (supremum) is over the triplets {z.x, z2, z3)eR3 satisfying the

constraints indicated after the slash.

This change of variables has nothing essential, but it makes some discussions more

symmetric.

3 Domain of parameters. Solution of the problems on the frontier of this
domain

3.1

The domain of the parameters m,m2 is defined to be the set

C \^\xdF, J x2dF^jF probability distribution on [a,b]

of all possible values of the couple (m,m2) corresponding to some probability
distribution Fon [a,b].
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Let E' be the curve (fig. 1, see p. 154) with parametric equations

X x, Y x2, (a<x<b).

Then the interior C'° of C' is the interior of the smallest convex set containing E'
(DV 1.2.2,1.10.3, A19). This smallest convex set is delimited by the curve E' and
by the straight line segment joining the extremities a', b' of E'.
The equation of E' is Y= X2 (a < X< b). Writing m for X and m2 for Y it is also
x2=0 (a<m<b). The equation of the segment a'b' is

Y(b-a) (X-a)b2 + (b-X)a2, (a<X<b)
or

s2 (m—a)(b— m), (a<m<b).
Thus,

C'° {(m,m2)/a <m<b, 0 ks2 <(m —a)(b —m)}.

We shall prove that

C {(m,m2)la<m<b, 0<s2<(m — a)(b — m)},

i.e. that all frontier points of C'° belong to C'.

3.2

Let m,m2 satisfy a<m<b,s2 m2-m2 0. Then the 1 -atomic distribution with
probability mass 1 at m has m and m2 for first and second-order moments resp.
This means that all points of E' belong to C'.
We notice that the relation s2 0 is characteristic of the 1-atomic probability
distributions.

3.3

Let m,m2 satisfy a<m<b, s2 ={m—a){b—m). Then the 2-atomic distribution
with probability masses

b — m m— a

at the points a, b resp. has m and m2 for first and second-order moments resp. This
means that all points of the segment a'b' belong to C'.
The relation s2 (m —a)(b —m) is characteristic of the 2-atomic probability
distributions with probability mass concentrated at the extremities of [a,b].
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Indeed, let F be any probability distribution on [a, b] such that s2 (m— a) (b — m)
Then

b

j (x — a) (b —x) dF(x) mb + am—ab—m2 0
a

Then the nonnegative function (x —a)(b —x) on [a,b] must be zero /"-almost

everywhere on [a,b], 1 e that F has all its mass concentrated at a and b

Conversely, if the probability distribution F has all its mass concentrated at a
and b, then it is easily verified that s2 (m—a) (b—m)

34

For (m, m2) on the frontier of C', the direct verification of the validity of table 1 is

easy now
From now on (except, of course, m the final table 1) only points (m,m2) m the

interior C'° of C shall be considered

4 General method of demonstration

Let E be the curve with parametric equations

X=x, Y=x2, Z j\x—e\, (a<x<b)
Let £\ (E2) be the part ofE corresponding to the parameter values x < e (x > e) See

fig 2 The projection ofE on the VF-plane is the curve E' considered before LetC
be the smallest convex set containing E Then the projection of C on the VF-plane
is the domain of parameters C'

Let (m,m2) be a point m C'° The vertical through (m,m2,0) intersects the upper
frontier of C m a point, say P (m,m2,p) It intersects the lower frontier of C in a

point, say Q (m, m2, q) Then, by DV 1 10 1, p —p2 (m, m2) is the value ofproblem
p3(m,m2) Similarly, q q3(m,m2) is the value of problem q3(m,m2)
Let Z — zxX + z2Y+z3 be (the equation of) a plane through P tangent to C Then,
by DV 1 10 1, (z1,z2,z3) is a solution of problem p3(m,m2) Similarly, if Z zxX
+ Z2F+Z3 is a plane through Q tangent to C, then (zl,z2,z3) is a solution of
problem q3(m,m2) Only m exceptional cases, the considered planes and

corresponding solutions are not unique
From the value and solution ofproblemp3 (m,m2) (q3 (m,m2)), we obtain the value
and solution of problem p2(m,m2) (q2(m,m2))



Fig. 2

Convex set C
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By DV2.4.1, the problemsp2 (w,m2) andpx (m,m2)have the same value :p2 (m,m2)
=pl(m,m2). Similarly, q2(m,m2) q1(m,m2).
Finally, if (yi,y2,y3) is a solution of problem p2(m,m2) (q2{m,m2)\ then by DV
2.5.1, the atoms of any atomic solution of problem/?! (m,m2) [q2 (m,m2)) must be

roots of the atoms equation in x,

yxx+y2x1+y3=^{x-e)+.

In most cases (exceptions follow), this equation completely determines the atoms
of the solution and then also the solution itself (see discussion in section 1).

Once an atomic solution of problem p1 (m,m2) (q1 (m,m2)) is found, the following
verifications must be possible (they are left to the reader in most cases, in the

sequel):

- the atoms are in [a, b]

- the corresponding probability masses are nonnegative

- the sum of all probability masses is 1

- the two moment constraints are satisfied

- for the solution, say F, the integral J (x —e) + dF equals the value of the problem
(obtained more directly from the upper or lower frontier of C, as described

before)

- the duality equality (see DV 1.6.1)

\(x-e) + dF=ylm+y2m2Fy3,

where (yi,y2,y3) is solution ofp2(m,m2) (q2(m,m2)), must be satisfied.

That duality equality can also be used in order to extend to C' results proved for
C'°. In section 3, we already justified in a more direct way the validity of table 1 on
the frontier of C'.

5 Geometry of the curve E

5.1

The main problem left is the determination of the smallest convex set C containing
E. This smallest convex set C is the intersection of all half-spaces containing E.

(Any plane in R3 divides R3 in two half-spaces.) The determination of C shall be

immediate from the considerations of this section.

For any number x in [a, b], we also denote by x the point of E corresponding to the

value x of the parameter, i.e. the point (x,x2,j-|x— e\). Accents are systematically
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used for projections on the ZT-plane of points or sets in R3. Thus,

a',x', C",... are the projections on the TT-plane of the points a,x,
and the sets E,C, respectively.

5.2

The curve £j is in the plane Z j(e — X). The curve E2 is in the plane Z=j(X — e).

5.3

The plane through the points a, e, b of E is

Z= -{-(a + b + 2e)X+2Y+(a + b)e).
2(o —a)

5.4

Let x be a point of £j, y a point of E2. Then the plane through x and y, tangent to
E2 at y, is

Z 2(y-x)2^(X+y)2 ~4ey)X+2(eY+e(y2 ~x2 + 2*y) -2xy2).

Indeed, if Z zlX+z2Y+z3 is the equation of that plane, then z1,z2,z3 must
satisfy the relations

j (e — x) — Zj x + z2x2 + z3 (the plane contains x)

j(y —e) z1y + z2yz + z3 (the plane contains y)

j zx +2 z2y

The last equation, expressing the tangency at y, is the derivative in y of the

preceding equation.

5.5

Let x be a point of E1, y a point of E2. Then the plane through x and y, tangent to
£j at x, is

Z —— -—-j ((4ex-(x + y)2)X+ 2(y — e)X+e(y2 —x2 —2xy) + 2x2y).
2(y —X)
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5.6

In 5.4 and 5.5, suppose that the points x and y are at the same height j (e—x)

j(y — e). Then the plane of 5.4 is the same as the plane of 5.5. Its equation is

Z=
1

N (~2eX+ Y+e2 +(e —x)2).
4(e-x) v ;

Thus, this plane contains x and y and is tangent to £j at x and tangent to E2 at y.

6 Value and solution of the primal maximization problem

6.1. Partition of the domain ofparameters in the case e<c

We use c as an abbreviation for \ (a + b).
Let us assume first that the point b is higher than the point a, i. e. j (e — a) < j (b — e)

or e < c. Let ax be the point of E2 at the same height as a, i. e. j (e — a) j(at — e) or
a + al=2e. In the variables m X and m2= Y, the equation of the straight line

through the projections a', a[ is s2=(m —a) (zq —m) (compare with the equation of
the straight line through a', b' in 3.1), or

sme e n,

where we use the abbreviation

sme=+(s2 + (m-e)2)112.

We denote by C,', C2 the parts of C' characterized by the relations

C{: sme<e—a (delimited by E' and the segment a'a'f),

C2: sme>e—a (delimited by E2 and the segments a'afa'b').

6.2. Case C[

On C[ the upper frontier of C is composed of horizontal straight segments xy
joining points x ofEx and y of E2. This follows from 5.6. The plane of 5.6 is tangent
to C along the segment xy. The points of the projected segment x'y' are
characterized by the relation sme e—x (compare with the equation of the straight
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line through a', a[ in 6.1). Let (m,m2) be a fixed point on the segment x'y'. Then

1 1

Pi (m,m2) -— - 2 em + m2 + e2 + s^e) - sme,
^Stne ^

pl(m,m2)=p2(m,m2)=p3(m,m2)+r (m-e)=^ (sme + m-e).

The solution of problem p3(m,m2) is

z7=-
e*+4ie

2s ' 1 45 ' ^ 45~ °me TJ»ie

The corresponding solution of problem p2(m,m2) is

1 1 _(e~sme)2
y 2

(e Smy2~ 4S ' yi 4 s"LJme Tl,me TJme

The atoms equation is

- 2 (e - sme) x + x2 + (e-sme)2=4sme(x-e) +

or
(x-(e-sme)f=4(x-e)+sme.

The roots of this equation are e — sme ande + 5me. These roots are in [a, b] because

y —e e —x sme and the points x,y are on E.

The points e—sme, e + sme are the atoms of the 2-atomic solution of /j1(w,w2).

6.3. Case C2.

On C'2 the upper frontier of C is composed of the straight segments adjoining the

point a of Ey to a higher point y of E2. Let x a in 5.4. Then the plane of 5.4 is

tangent to C along the segment ay. The points of the projected segment a'y' are

characterized by the relation
s2

s2 (m—a) (y—m) or y m-\
m —a

Let (m,m2) be a fixed point of a'y'. The height of a,y is respectively t(e—a),
j(y—e). Then, by the linear interpolation formula (in symmetric form),

1

p3{m,m2)=j--a ((m-a) j (y-e) + (y-m) $ (e-a))

1 1

4 1 ^~TT2 {(m-a)2(m-e)+sz(m-a)+s2(e-a))
2 (m—a) +r
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Then

p1(m,m2)=p2(m,m2)=p3(m,m2)+^(m-e)

and this gives the value indicated in table 1.

From the equation of the plane in 5.4 (with x a), we find the solution (zx ,z2 ,z3) of
problem p3(m,m2). The corresponding solution of problem p2(m,m2) is

a2 +y2 —2ey e—a 2eay —ea2 —ay2
yi (y-af ' yi (y-a)2' 73

(y-a)2

The corresponding atoms equation is the equation in x

(a2 +y2 — 2ey)x + (e— a)x2 + (2eay —ea2 — ay2) (x — e) + (y —a)2.

For x>e, this equation is (e—a) (x —y)2 0. Its unique root isj>. Clearly e<y<b
because the point y is on E2. For x<e, the atoms equation becomes

(x—a) ((e—a)x+y2—2ey + ea) Q.

Only the root a is in [a,b] (the other is always smaller than a).

Summarizing, the atoms equation has exactly the roots a,y in [a,b]. They are the

atoms of the 2-atomic solution of problem pl(m,m2).

6.4. Partition of the domain ofparameters in the case e>c

In this case the point a is higher than the point b and some point bx of £j is at the

same height as b. The domain C' is now partitioned in two parts by the straight line

through b[ and b'. The equation of that line is sme b—e. Thus we consider the

subdomains C3, Q of C' characterized by

6^3 • Sme ^b £,

Q: sme>b—e.

6.5. Case C3

This case is treated in the same way as case C{ and gives the same results.

6.6 Case C4

On C4 the upper frontier of C is composed of the straight segments yb joining the

point b of E2 to a higher point y of Et. In 5.5, substitute y for x and b for y. Then

the plane of 5.5 is tangent to C along the segment yb. The points of the projected
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segment y'b' are characterized by the relation

s2
s2 (m—y)(b—m) or y m—-

b —m

Similarly as in case C2, the value of problem p3(m,m2) is found to be

1 1

/73(m,m2) - -2—7 rj ((b-m)2(e-m)+s2(b-m)+s2(b-e)]
2 s +(b—m)

The corresponding value of problem pl(m,m2) is indicated in table 1.

Using the plane of 5.5 (with the indicated substitutions), the solution (zt ,z2,z3) of
problem p3(m,m2) is easily written down and then also the solution (jy ,y2,y3) of
problem p2(m,m2). The corresponding atoms equation is the equation in x

—2y(b —e)x + (b —e)x2 +y2(b —e) (x—e) + (b —y)2.

Forx<e, its unique root isy. Of course a <y<e, because the pointy is on Ex. For
x>e, the equation becomes

(b—x) ((b— e)x— (y2+eb— 2ey)) 0.

Only the root b can be used (the other is always larger than b).

Summarizing, the atoms equation has exactly the roots y, b in [a,b]. They are the

atoms of the 2-atomic solution of problem p1(m,m2).

7 Value and solution of the primal minimization problem

7.1. Partition of the domain ofparameters

We consider the points a',e',b' of E' corresponding to the value a,e,b of the

parameter x, respectively. The equation of the straight line through a' and e', e'

and b', a' and b' is, resp.

a'e': s2 (m—a)(e—m),

e'b': s2 (m—e) (b—m),

a'b': s2 {m—d) (b —m).
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We consider the subdomains C$, Q, C) of C' defined by:

Q : ^<(m—a) (e—m), (delimited by E' and the segment a'e')

Q : s2<(m—e) (b—m), (delimited by E' and the segment e'h')

C7 : s2>(m—a) (e—m), s2>(m—e) (b—m),
(delimited by a'e', e'b', b'a').

7.2. Case C3

On C5 the lower frontier of C is the corresponding part of the plane Z y(e —X)
(see 5.2). Let (m,m2) be fixed in C3. Then

q3(m,m2)=j(e-m),

(m,m2) q2(m,m2) q3(m,m2)+^(m -e) 0.

The solution of q3(m,m2) is Zj — \, z2 — 0, z3 =-. The corresponding solution of
q2(m,m2) is yi=y2=y3 0.

The atoms equation is (x—e)+ =0. Its set of roots in [ci,b] is [a,e]. Because there

are more than 3 roots in [a,b], we cannot conclude to an atomic solution of
problem q^im^^. We shall try the 3-atomic solution with atoms a,y,e, wherey is

unspecified in (a,e) for the moment. The corresponding masses must be (see

section 1):

s2 —(m—y) (e—m) (m—a)(e—m)—s2 s2 + (m—a) (m—y)
Pa

(e-a)(y-a) ' Py (y-a)(e-y) ' Pb (e-a)(e-y)

The points a,y,e shall be the atoms of a 3-atomic solution iffpa,py,Pbare ^ 0- This
is the case for y m and then also for all y close enough to m (note that x2>0
because we are always supposed to be in C'°). We conclude that the problem
qx(m,m2) has the 3-atomic solution with atoms a,m,e but that this solution is not
unique. It is easily verified that the atoms of a 3-atomic solution of problem
^1(w,m2) cannot be chosen arbitrarily in [a,e],

7.3. Case Q

This case is similar to case C3. Now the plane Z j(X — e) is used. The value of
problem qi(m,m2), for (m,m2) in Q, is found to be equal to (m —e). The atoms

equation is (.v— e) (x — e)+. Again, it has more than 3 roots and we cannot
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conclude directly to a specific 3-atomic solution. Problem q1(m,m2) has several 3-

atomic solutions, in particular the one with atoms e,m,b. (For the verification of
the latter fact, the already obtained value m—e must be used.)

7 4. Case Cj

On C), the lower frontier of C is the corresponding part of the plane considered in
5.3. Let (m,m2) be a fixed point m C). Then

1

q3(m,m2) ——-—- (-(a + b-\-2e)m + 2m2 + (ct + b)e).
2 (b—a)

The corresponding value of problem q1(m,m2) is indicated in table 1.

From the plane in 5.3, we find the solution (z1,z2,z3) of problem q3(m,m2) and
then the following solution of problem q2{m,m2):

a + e 1 ae
)>1= — 7 5 T2=7 5 T3=7 •

b—a b—a b—a

The corresponding atoms equation is

— {a + e) x + x2 + ae (x — e) + (b — a).

Its roots are a,e,b These are the atoms of the 3-atomic solution of problem
qx{m,m2)

8 Remark about verifications

The atoms of any atomic solution of problem p1(m,m2) (q1(m,m2)) must
necessarily satisfy the atoms equation. From this fact and the discussion in section
1 it easily follows that, if the atoms equation has 3 roots at most m [u,h], they lead

to an atomic solution of the problem. Then the verifications indicated in section 4

may be interesting, but are in fact superfluous. In that case, the value of the

problem can also be calculated from its solution. It is not necessary then to
calculate it independently.
The situation is different if the atoms equation has more than 3 roots m [a,b] (see

cases C5, Q).
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Table 1

Value and solution oj the primal problems

Abbreviations: c j{a + b), s2 =m2—m2, s%ie s1 + (m — e)2

Domain of parameters: a<m<b, 0 <s2 <(m — a) (b—m).

Conditions Value of problem Atoms of solution

e<c, sme<e—a

e<c, sme>e-a

e>c, sme<b—e

e>c, sme>b—e

iVme + m-e)

s2 + (m —e) (m—a)
(m a) 2 { 12s2 + (m-aY

iVme + m-e)

(b — e)^
s1 -\- (b —m)2

s2

a, m H (> e)
m—a

e-sme, e + sme

s2

m (< e), b
b —m

Maximization

s1 <(m—a) (e—m)

s2 <(m —e) (b —m)

s2>(m—a) (e—m))

s2>(m—e) (b—m))

0

m—e

s2 -h(m—a) (m—e)

b —a

a, m, e

e, m, b

a, e, b

Maximization
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Summary

We consider a risk R with values in a given interval and with known expectation and variance Under
that incomplete information on the distribution function Fof R, we solve the following problems:

- Find the maximum value of the stop-loss premium E(R—e) + corresponding to the retention
limit e.

- Find the minimum value of E(R — e)+

- Find the distribution F leading to the maximum of E(R — e)+

- Find the distribution F leading to the minimum of E(R — e)+

Zusammenfassung

Die Autoren betrachten ein Risiko R mit Werten m einem gegebenen Intervall und mit bekannten
Erwartungswert und Varianz Bei diesen unvollständigen Informationen werden die folgenden
Probleme gelost.

- Man finde den maximalen Wert der Stop-Loss-Pramie E(R — e)+ mit Selbstbehalt e.

- Man finde den minimalen Wert von E(R — e)+

- Man finde die Verteilung F, die zum Maximum von E(R — e)+ fuhrt

- Man finde die Verteilung F, die zum Minimum von E(R — e)+ fuhrt

Resume

Les auteurs considerent un risque R prenant des valeurs dans un Intervalle donne et au sujet duquel
on connait l'esperance mathematique et la variance Iis resolvent, sur la base de cette information
incomplete, les problemes suivants

- Trouver la valeur maximum de la prime stop-loss E(R — e)+ correspondant ä un plem de

conservation e

- Trouver la valeur minimum de E(R — e)+

- Trouver la distribution F conduisant au maximum de E(R — e)+

- Trouver la distribution F conduisant au minimum de E(R — e)+
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