
Zeitschrift: Mitteilungen / Schweizerische Aktuarvereinigung = Bulletin / Association
Suisse des Actuaires = Bulletin / Swiss Association of Actuaries

Band: - (1996)

Heft: 2

Artikel: An extension of Kornya's method with application to pension funds

Autor: Dufresne, François

DOI: https://doi.org/10.5169/seals-551208

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte
an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei
den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les

éditeurs ou les détenteurs de droits externes. Voir Informations légales.

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. See Legal notice.

Download PDF: 13.10.2024

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-551208
https://www.e-periodica.ch/digbib/about3?lang=de
https://www.e-periodica.ch/digbib/about3?lang=fr
https://www.e-periodica.ch/digbib/about3?lang=en


171

François Dufresne, Lausanne

An extension of Kornya's method with application
to pension funds

1 Introduction

Kornya (1983) suggested a method to compute the aggregate claims distri-
bution of a life insurance portfolio. His algorithm gives an approximation
as close as desired to the exact distribution under the so called individual
model. It can be applied when there is only a single death benefit (no dou-
ble indemnity or the like). Later on. De Pril (1986) derived an algorithm
for the exact calculation of the same distribution. De Pril (1989) modified
his algorithm in order to achieve a greater efficiency. Recently, Waldmann

1994) found a way to considerably reduce the number of arithmetic opera-
tions of De Pril's exact algorithm.
The aim of this paper is to extend Kornya's method to the case where there

are two amounts at risk. Such a situation occurs in the risk analysis of a

pension fund when (only) the death and disability benefits of the active
members are taken into account. The net amounts at risk are assumed

nonnegative. This case can be handled by the algorithms of De Pril (1988)
for arbitrary positive claims but our derivation of the algorithm will be

along the lines of Kornya and will focus on pension funds applications. An
alternative approximation has been proposed by Hipp (1986).

2 The Individual Model

In the individual model of Risk Theory (see, for example. Chapter 2 of
Bowers ef «/. (1986)), the aggregate claims random variable 5 is defined by

S A ] + AÇ + • • + Xm. 1

where A^, A'? AT, are mutually independent random variables. The

random variable A"/,, gives the total claim amount of the insured number X

of the portfolio for a given period of time.
In theory, the distribution of S can be obtained recursively by convolution

of the distribution of the partial sum Ay=i A/ ^ith the distribution of A/.,
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À: 2,...This can be extremely time consuming, even if the A'^.s are

distributed on the integers.
From now, we consider the risk induced by the death and disability benefits

of active members of a pension fund. In this context, it is natural to use

the individual model.

Accordingly, the number of active members of the pension fund is denoted

by m. For the A;-th such member, let d/. and denote the net amounts
at risk under the death benefit and disability benefit, respectively, for the
considered period of time. (The net amount at risk is the value of the

benefit less the corresponding reserve.) The probability that this individual
dies in the period of time is çj. and the probability that he or she becomes

disabled is Then, A'/, is defined by

where 1 — q/, — i/,, for A: 1,2,...,to. The distribution of A"/,, is

triatomic if r/;, and e*. are not equal and different from zero.
We further assume that d*. and are positive integers'. In practice,
this would result from an appropriate rounding and change of monetary
unit (scale). It follows from this last assumption that ,S' is distributed on

{0,1.2....}. The probability function of 5 will be denoted by

Occasionally we will also write /s(0) instead of /q. We also assume that
+ À < 1 /2 for all Ac This last assumption will be motivated later.

3 Probability Generating Functions

The probability generating function (p.g.f.) <p^(f) of a (discrete) random
variable y is defined by

(2)

P[S .r] x 0,1,2,... (3)

ip^(f) y[^']. (4)

In section 6, we explain how to deal with net amounts at risk which are equal to zero.
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The p.g.f. of 3' will be denoted ipg(i) and for simplicity we shall write pp(/)
for the p.g.f. of ÀV It is well known that the p.g.f. of a sum of independent
random variables is the product of the individual probability generating
functions.
For the triatomic distribution of we find that

PA- + 9A^ +

PA:f l + ~/^ +^0
V PA: PA /

PA(1 +?A^ + ''A^) (5)

where ^ r^/p*. and ?p

From (1) and (5), it follows that the p.g.f. of A is

m

=n
A= I

m
PA(1 + <7fc^ + 7pf^

A 1

./o + /if + /2^ + + ,/x-f'^ + ' • + ,/pf^ (6)

where L (a constant) is the maximal aggregate claim and the last equality
comes from the definition of the probability generating function. According
to (6), if one wants to determine the probability that 5 equals ap the problem
reduces to finding the coefficient of P*p :r 0,1,.... L.

4 Extension of Kornya's Method

Inspired by Kornya (1983), we rewrite the p.g.f. of 5 in the following way:

m

Ts(f) n +/A-f^' + ''A^')
A=1

/ m x / m

n ^ n^)A=1 ' ^
A=1

/s(0) exp I ^ ln( 1 + + 7/T^) j (7)
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(It is interesting to note that Kornya did not extract ,/'s(0) in his original
paper. This introduces a very small additional error- in his method and is

the reason for the difference between the approximation of De Pril (1988)
and Kornya's approximation.)
Following again Kornya, we use the MacLaurin series expansion of ln(l +2)
and notice that, this time, 0 is a binomial that we expand according to the
binomial formula; it follows that

\n+lf f_1 P+l - 1

VS'O) /s(0) • expi E E I

fc=1n=l " J

/ m 00 / x 77,4-1

/s(0) expi £ E E (")
H:=tn l /=() " ^

(8)

The expansion of ln(l + 2) is allowed since we assumed that ^ < 1 /2.
We note that the argument of the exponential function in (8) is simply a

power series in /. Let B(f) In 95(f). From (8) it follows that

771 OO / ^ l 77

B(f) In/.,(()) + E E ^4T~E /
(9)

/=()

Then we can write

95(f) =e*W. (10)

The desired algorithm is a consequence of the following theorem which is

essentially due to Euler:

Theorem: //2l(s) «ne/ B(.s) «re power series given bv

OO OO

4(s) E 2?(.s) E (11)
z=o 7=0

«ne/ i/) /«rfberraore, fbe /o//owing re/afion ejtisis between 4(s) «ne? B(.s),

4(.s)=e^) (12)

'in a later stage of the development.
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r/ie/i

,4(0) «o exp(£>o) (13)

1

an - - V A:&fca„_fc • n =1,2,3,... (14)
fc=i

Proo/: For the proof, one considers the identity A'(s) Zl'(.s') ,4(,s) and

compares the coefficients of on both sides.

The algorithm results from the truncation of the infinite power series P(t).
Let be the polynomial obtained by truncating 11(f) after the 7-th
term in the infinite sum:

m r /_i\n+l
P^)(t) ln./(s(0)+^ E £ (") (%^')'(T^'M^'.(15)

fc=l 71 1
" /=()

We say that is the approximation of order r of 5(f).

In summary, to find the distribution of 5', one has to
1. Choose r, the order of the approximation.
2. Compute /s(0) n=i the initial value.

3. Determine the coefficients of in i?^' '(f), say 6^.
4. Compute recursively

/E ~E *4^ ' for 1 1,2,3,... (16)
''

A:=l

5 Computational Remarks

For most pension funds, it is useless to classify the risks according to
their individual claim distributions: they would be (almost) all different. Of
course, this depends on the monetary unit used in the calculations, but in
the current practice that would be the case. As a consequence, the preferred
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way to construct the polynomial /}(' '(6) would be given by the following
pseudo-code:

For fc 1 to m
For n 1 to r

For / 0 to n
Accumulate in position / + c/,.(n — Z)

of a one-dimensional array, say B, the quantity
(-1)" + '

<7fc

The outer loop in the preceding pseudo-code means that the polynomial
should be constructed while reading the data from the pension fund. The
calculation of /g(0) would be performed at the same time.
It can be shown (see, for example, De Pril (1988)) that, if + /^. < 1/2 for
all A-, then

OO

£|/*-/^|<e^>-l (17)

x=0

where

/ I
• \ r+1

£ r
''' + ' ^ ~ ^ ~ ^ ^ ^]T /*_, 18)

This last result means that it is possible to determine the order r of the

approximation that will provide the desired degree of accuracy.
If the initial value /q is very small, the algorithm can be unstable. To avoid
such problem, one can use a rescaling strategy as suggested, for example,
in Waldmann (1994).

6 Numerical illustration

We will illustrate the method with the data of Held (1982) as they appeared
in print-'. The underlying portfolio consists of 230 active members of a

pension fund; like Held, we will call it PK-230.

'Dr. Olivier Deprez told the present author that two probabilities in the data of Held were
misprinted. In order to let the reader reproduce our results, we use the printed data. Of course,
our results are slightly different from those of Held.
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To conform to our convention that and e^. are positive integers, one has

to set 5^ or equal to zero if the corresponding net amounts at risk are
zero. Alternatively, one could use the relation /s(0) exp(fy)) where 60 is

the constant term in the right-hand side of (15).

We suppose that a precision of 10"^ on the calculated distribution function
is desired. The first step consists in choosing the order r of approximation.
Table 1 shows the values of t(r) computed according to (18). It appears
that an approximation of order r 5 is sufficient to satisfy our requirement
about the precision.

Table 1 Values of e(r) for PK-230

r £ (r)
1 0 .025570

2 9 .18495 X 10""
3 4 .26274 X 10" *

4 2..22873 X 10""
5 1 .24694 X 10""

6 7 .29702 X 10""

7 4..41431 X 10"'"
8 2..74164 X 10-"
9 1 .74033 X 10"'-

10 1 .12547 X 10"'"
11 7 .39707 X 10"'"
12 4 .93116 X 10""'
13 3..32887 X 10-»"

14 2..27249 X 10"'"
15 1 .56691 X 10"'"
16 1 .09010 X 10-""
17 7 .64491 X 10" 22

18 5 .40011 X 10""
19 3..83922 X 10""
20 2..74544 X 10""

The second step indicated at the end of section 4 is the calculation of /s(0).
In fact, we can perform steps 2 and 3 at the same time while reading the
data from a computer file (as mentioned in section 5). Table 2 shows the first
31 coefficients of the polynomials ,£>^(t). For the illustration,
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the only polynomial which is needed is the other polynomials are

given to show the speed of convergence of the coefficients.

Table 2 The first 31 coefficients of the polynomials

cc r 1 r 2 r 3 r 4 r 5 a;

0 — 1.24741404 -1.24741404 -1.24741404 -1.24741404 -1.24741404 0

l 0.17594565 0.17535644 0.17535965 0.17535963 0.17535963 1

2 0.00637411 0.00637411 0.00637411 0.00637411 0.00637411 2

3 0.00587984 0.00585953 0.00585953 0.00585953 0.00585953 3

4 0.05810848 0.05752379 0.05752976 0.05752970 0.05752970 4

5 0.00000000 -0.00001729 -0.00001729 -0.00001729 -0.00001729 5

6 0.05034425 0.05021945 0.05021984 0.05021984 0.05021984 6

7 0.00000000 -0.00168830 -0.00165425 -0.00165477 -0.00165476 7

8 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 8

9 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 9

10 0.05588196 0.05541370 0.05548349 0.05548147 0.05548151 10

11 0.00000000 -0.00041944 0.00041697 -0.00041698 -0.00041698 11

12 0.05232505 0.05185679 0.05186117 0.05186113 0.05186113 12

13 0.00541659 0.00541659 0.00541659 0.00541374 0.00541385 13

14 0.02555245 0.02551878 0.02551887 0.02551887 0.02551887 14

15 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 15

16 0.01541074 0.01538750 0.01539279 0.01539275 0.01539288 16

17 0.02515861 0.02509621 0.02509641 0.02509641 0.02509641 17

18 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 18

19 0.02058408 0.01927428 0.01929779 0.01929746 0.01929746 19

20 0.09229438 0.09143390 0.09144201 0.09144193 0.09144194 20

21 0.01322054 0.01321352 0.01321353 0.01321345 0.01321345 21

22 0.00888956 0.00888956 0.00888956 0.00888956 0.00888956 22

23 0.01271624 0.01145776 0.01148118 0.01148085 0.01148086 23

24 0.00637896 0.00637896 0.00637896 0.00637896 0.00637896 24

25 0.05172377 0.05124084 0.05124523 0.05124519 0.05124519 25

26 0.01111503 0.01109956 0.01109959 0.01109959 0.01109960 26

27 0.00078069 0.00066100 0.00066144 0.00066144 0.00066144 27

28 0.00000000 -0.00003630 0.00000544 0.00000427 0.00000429 28

29 0.02600034 0.02597711 0.02597716 0.02597716 0.02597716 29

30 0.02471478 0.02457585 0.02457680 0.02457680 0.02457680 30
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Table 3 Exact and approximation of order r 5

of the distribution function
(monetary unit: 100(1 CHF)

X F(x') F^(rr) F(x') - XXa:

0 0.287246646 0 .287246646 -3.30 X 10-"
20 0.417618694 0 .417618699 -5.04 X 10-"

40 0.530181888 0 .530181896 -7.78 X 10-"

60 0.619778881 0 .619778895 -1.35 X 10-'"

80 0.681769152 0..681769171 -1.82 X 10-"

100 0.738048814 0 .738048838 -2.39 X 10""

120 0.787930329 0..787930359 -3.03 X 10-"

140 0.820.359133 0 .820359169 -3.54 X 10-"

160 0.877666394 0 .877666437 -4.22 X 10-'"

180 0.904231654 0 .904231701 -4.67 X 10-"

200 0.925605502 0..925605554 -5.24 X 10""

220 0.940434174 0..940434231 -5.73 X 10-"

240 0.952306117 0..952306178 -6.07 X 10-"

260 0.962297660 0. 962297724 -6.42 X 10-"

280 0.971451715 0..971451782 -6.67 X It)-"
300 0.978431097 0..978431166 -6.87 X 1(}-"

320 0.983247305 0. 983247376 -7.04 X 10-"

340 0.986882189 0..986882260 -7.17 X 10-"

360 0.989650826 0. 989650899 -7.28 X 10""

380 0.991812331 0. 991812405 -7.36 X 10-'"

400 0.993392527 0..993392601 -7.43 X 10-'"

420 0.994711650 0. 994711725 -7.48 X 10-"

440 0.996243118 0. 996243193 -7.52 X 10-"

460 0.997122071 0..997122147 -7.56 X 10-"

480 0.997817798 0. 997817874 -7.58 X 10-"

500 0.998344606 0. 998344682 -7.60 X 10-"

The last step is the calculation of the probability function according to (16).
The distribution function can also be computed during this recursion. The

"exact" distribution function obtained by direct convolution is presented in
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Table 3 with its approximation of order r 5. The errors T(;r) — (:r) are
also given in this table.*' It is easily seen that the error is always smaller than
the required precision of 10~^ on the approximating distribution function.

7 Conclusion

For pension funds, this extension of Kornya's method is much more efficient
than brute force convolution. It is very similar to the alternative approach
suggested by De Prit on page 23 of his 1989 paper but requires less computer
resources. It is also easy to implement.
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Summary

A simple extension of the method of Kornya is derived. The extended method applies
to the convolution of triatomic distributions with nonnegative support while the original
method is restricted to diatomic distributions. This way, the algorithm can be applied to the
calculation of the distribution of the total claims of a pension fund where only death and

disability of active members are considered.

Résumé

On développe une extension de la méthode de Kornya. Cette extension s'applique à la

convolution de distributions triatomiques de support non négatif alors que l'application de

la méthode originale se restreignait aux distributions diatomiques. Ainsi, l'algorithme peut
être appliqué au calcul de la distribution du montant total des sinistres d'une caisse de

pension où l'on ne tient compte que des risques de décès et d'invalidité des membres actifs.

Zusammenfassung

Die Methode von Kornya wird verallgemeinert. Die verallgemeinerte Methode kann zur
Berechnung der Faltungen von Dreipunktverteilungen mit nichtnegativem Träger angewendet
werden, während Kornyas Methode ursprünglich auf Zweipunktverteilungen limitiert ist.

Dadurch eignet sich der Algorithmus für die Berechnung des Gesamtschadens einer
Pensionskasse, bei der die Risiken Tod und Invalidität der Aktiven betrachtet werden.
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