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Gerard Pafumi, Lausanne

A study of a family of equivalent martingale measures
to price an option with an application to the Swiss market

1 Introduction

In this paper we consider the problem of pricing a European option in the
context of incomplete markets.
Let us hrst consider a complete market, i.e. a market where every contingent

claim is attainable. Black and Scholes (1973) have shown that under
some ideal conditions, it is possible to create a hedged position, consisting
of a long position in the stock and a short position in the option. Moreover
it is possible to maintain the hedge continuously and as a consequence the
return on the hedged position becomes certain. Hence the unique rational
price of a contingent claim can be obtained as if it existed in a risk-neutral
world, this price being equal to the expected value of the discounted payoff
according to an appropriate probability measure Q. This probability measure

is equivalent to P\ the physical probability measure and such that it
makes the discounted price process {e~rtS(t)}t>q a martingale. This measure

Q is called the equivalent martingale measure.
Let S{t) denote the price of a non-dividend paying stock at time t > 0. We

assume that there is a stochastic process, {X(t)}t>0, with stationary and

independent increments, X(0) xq In 5(0), such that

S{t) ex{t\ t> 0. (1)

We may interpret the random variable X(t) — xq as the continuously
compounded rate of return over the time interval [0,t]. We suppose
throughout this paper that there exists a risk-free asset whose rate of return
is known and constant through time, and we denote this risk-free rate by r.
The Fundamental Theorem of Asset Pricing tells us that the absence of
arbitrage opportunities implies essentially the existence of an equivalent
martingale measure. However this equivalent martingale measure is unique
if and only if the market is complete. So, when considering incomplete

' i. e. we have P(A) 0 <=> Q(A) 0
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models for the stock price process, there exist many equivalent martingale
measures. In that sense the price of a European option is not unique.
We place ourselves in the context of incomplete markets and we are
interested in studying the effect of changing the martingale measure when

taking the discounted expected value of the payoff. In order to achieve
this goal, we consider the pricing of a European option in an incomplete
market.
We can describe a European option by a payoff function IT(s) > 0 and a

maturity date T. At time T, the holder of the option receives the amount
II(S(T)). We know from financial theory that the price at time 0 < t < T
is calculated as a discounted expected value of the payoff. The rate used

to perform the discounting is the risk-free rate and expectation is taken
according to an equivalent martingale measure. Thus the price of the option
at time t is

Here Eq[] denotes expectation taken with respect to the equivalent
martingale measure Q. This measure must be such that the pricing formula
(2) is compatible with the observed price of the stock, i. e. we require that

2 An incomplete model

Intuitively, to have a model for the stock price process that implies an

incomplete market, more than two outcomes must be possible in an
infinitesimal time interval.
As before let S(t) denote the stock price at time t. Here we will assume
that {S(t)}f>o is a geometric compound Poisson process with two possible
jump heights, i.e.

e-^T-f)EQ[II(S(T)) | dt} Q<t<T. (2)

S{t) (-^t-^Eq[S{T) | fo]. 0 <t<T. (3)

S{t) ex{t)

where

A (t) — .ro + k[ A j (f) + Ä'2 A2(f). f > 0 (4)
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Here, {TV^ (i)}t>o and {N2(t)}t>o are independent Poisson processes with
respective parameters A(fcj) and k\ and k2 are two constants and

xq is the initial value of the process {A(i)}t>0. The initial stock price is

5(0) ex°. It is the simplest incomplete model we can think of. To avoid the
existence of arbitrage opportunities, we assume that at least one of the two
constants k\ or is positive. Otherwise, selling short the stock and investing
the proceeds in the risk-free asset yields S(0)(ert — eklNl^+k2N2^), which
is positive whether a jump occurs or not at any time t. In order to shorten
the notation in what follows, we will write Ai for A(fcj).
Let p, a2, 7 and rj denote the first four cumulants per unit time of the

process {X(t.)}t>0. Thus

E

E[X (£)] k\ X\t + k^A2^ ßt

Var\X(t)} k^Xit

(X(t) - pt)-

k^X2t

k| A|f T k^^t

2 j.(J t

it
and

[X(t) - pt)4 - 3(Var[X(f)])2 k\xxt + k%X2t rft. (5)

Since k\ and k2 are observable parameters of the process, they must remain
unchanged under any equivalent measure. Only the Poisson parameters Aj
and A2 can be modified. We denote those modified parameters by Aj and

Writing down the martingale condition, we obtain

5(0) EQ [e~rtS(t)}

e~rtEq[S(t)].

By (1), the parameters A* and A| are solutions of the equation

0= -r + A^(efcl -1) + A|(efc2 - 1). (6)

At that point, we propose to study the following family of methods to price
an option: Set (for i 1,2)

exp
0cki - 1

0 < c < 1. (7)
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Taking the limit as c —> 0 in (7), we obtain the modified Poisson parameters

A* ehkt\i, i 1,2. (8)

For the case c 1, we have

At*=eMefc'-DAii i i,2. (9)

For a reason that will be made clear in section 6, we are motivated to
study whether pricing an option according to the two different measures

corresponding to (8) and (9) leads to two significantly different prices for
this one. We want to determine, for every value of c, the value of h, written
h*(c), such that the process

{e"rtS(t)h>0

is a martingale with respect to the probability measure corresponding to
h*(c). That is h*(c) solves (6). We obtain so the following family of implicit
equations for h*(c):

0 -r + eh&Cklc ~ '
Xi(ekl - 1) +

~ '
\2{ek2 - 1), 0 < c < 1 .(10)

Now the question arises what value for c should we use, when pricing an

option in this incomplete model? What is a "good" value for c? Because
this question cannot be answered directly in a theoretical way, we propose
to explore this question by means of real data. In that order, we examine
observed prices of European calls. Hence, we have payoff functions of the
form II(S(T)) (S(T) - K) + where K denote the strike price. In that
case, formula (2) becomes

e~rTEQ[(S(T) - K)+ | 5(0)], (II)

or, in our model,

e~rT J2 (eX0+x - K) q(x,T) (12)
X>K

where we have considered t 0, and defined k In q{^,T) is the

probability that AqTV^T) + k2N2(T) x, under the equivalent martingale
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measure Q. The distribution of is of parameter eh 0 for
i 1,2. Here c is considered to be fixed, Aq, k2, and X2 are the

parameters of the physical probability measure and are determined by
solving (5) with p, a2, 7 and 77 replaced by their estimates.

3 Esscher transforms and equivalent martingale measures

In an incomplete model, there are many equivalent martingale measures.
A priori, it is not clear which martingale measure should be chosen to
calculate the price of an option. Gerber and Shiu (1994) suggested that, in
order to obtain a unique answer, the choice of the equivalent martingale
measure could be limited to the family of Esscher transforms (see Esscher

(1932)). A justification in term of minimal relative entropy with respect to
the physical probability measure P has been given by Chan (1997).
Let M(z,t) E[ezX^] denote the moment generating function of X(t).
Because M{z,t) is continuous at t 0, it can be proved that

M{z,t) =M{z,l)t, t>0. (13),

The process

^M(/i,l)_t}
is a positive martingale and they used it to define a change of probability
measure. That is, it is used to define the Radon-Nikodym derivative dQ/dP,
where P denotes as before the original probability measure and Q is the
Esscher measure of parameter h. They call the risk-neutral Esscher measure
the Esscher measure of parameter h h* such that the process

ie 0

is a martingale with respect to the probability measure corresponding
to h*.
Gerber and Shiu (1994) apply the Esscher transform (parameter h) to the

process {AC(t)>0- Let M(z,t;h) denote the moment-generating function
of the modified distribution of X(t). It is easily verified that

<14)



164

Writing down the martingale condition, we obtain

5(0) EQ [e~rtS(tj]

e~rtEQ[S{t)}.

By (1), the parameter h* is the solution of the equation

1 e~rtEQ ,X{t)-X(0)

or, using (14),

Eq ,X(t)-X(0) M( 1 + h,t)
M(h,t)

(15)

From (13) we see that the solution does not depend on t, and we may set

t 1:

e

or

M(1 + h, 1)

M(h, 1)
'

M (1 + h, 1)
ln'

M(h, 1)

For the model given by (4), (14) becomes

(16)

(17)

M(z, t; h)
EP ,(z+h)X(t)

EP {ehX^)\

exp |x() + A it (^e(z+h)ki — 1^ + A2f ^e^z+h^kl - 1 j |
exp {xo + A it (ehki - 1) + A2f (ehk2 - 1)}

After simplification, we obtain

M{z,t-h) expjAje^'f (ezfcl - l) + \2ehkH (ezk2 - l) } (18)

Flence, the Esscher transform (parameter h) of the process {-A(f)}t>o is

again a compound Poisson process, with the same two possible jump heights
k\ and k2, but with modified Poisson parameters Xtehk\ 1 1,2. From (17)
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and (18) we see that the parameter h* of the risk-neutral Esscher measure
is implicitly defined by the equation

r \xeh*kl (efcl - l) + X2eh'k2 (ek2 - l) (19)

Then the risk-neutral Esscher parameters are given by A* \\eh fc| and

-^2 ^2eh kl- Hence, we see that in section 2, the case c 0 corresponds
to applying the method of Esscher transforms.

4 Two other incomplete models

In order to make numerical comparisons, we present in this section two
other incomplete models: the shifted gamma process and the shifted inverse
Gaussian process. The modeling of the stock-price movements by means of
these two models was first introduced by Gerber and Shiu (1994, section 4).
For these two incomplete models, we use the method of Esscher transforms
in order to get a unique answer for the price of an option. Hence, the price
of an option is defined to be the discounted expectation of the payoff where

expectation is taken according to the Esscher transform of parameter h*,
where h h* is determined so that (17) is satisfied. Remember that in
section 2, the case c 0 corresponds to applying the method of Esscher
transforms.

4.1 The shifted gamma process

Here it is assumed that

X(t) Y(t) - vt,

where {E(t)| is a gamma process with shape parameter a and scale

parameter ß, and the positive constant v is a third parameter. The moment
generating function of X (t) is

M(z,t)= (-jyaV^2, z<ß (20)
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For given values of ß, a and 7, the three parameters are chosen to match
the first three cumulants per unit time, i.e., to solve

E[X( l)} ^-u ß,

a 2Var[X(l)] p <r

E (x(i )-ßty
2a

1-
ß3

Hence we set

4ct6 2a2 2a4
a= —7T, p= v— ß. (21)

From (14) and (20), we obtain

at
M(z,t; h) —J e

VtZ
> z < ß - h (22)

which shows that the Esscher transform of {X(t)} is again a shifted gamma
process with unchanged values of a and v but ß replaced by

ß{h) ß — h.

From (16), we obtain the following condition for the martingale measure

ß ß{h*) -Tr.v I _ e — {v+r)/a

4.2 The shifted inverse Gaussian process

Here, it is also assumed that

X(t) Y(t) — vt,

but with {Y(t)} being an inverse Gaussian process with parameters a and
b. The moment generating function of X (t) is

M{z,t) z < b. (23)



167

Again, for given values of /i, a and 7, the three parameters are chosen to
match the first three cumulants per unit time, or to solve

E

2b1/2

a

WJ2
3 a

8b5/2

v n,E[X(1)]

Var[X(l)]

"(X(l )-/xt)3'

Hence we set

3 „ h — 3(j4
a 3cr W —t b —— v ß

7J Z7 7

a

7-

3ct2

From (14) and (23), we obtain

M(z, t; h) exp at(Vb — h — VcT3- h — z) — vtz

(24)

z < ß — h ,(25)

which shows that the Esscher transform of {df(f)} is again a shifted inverse
Gaussian process with unchanged values of a and v but b replaced by

b(h) b — h

From (17), we obtain the following condition for the martingale measure

r a (^Vb - h* - \Jb - h* - 1^ — v,

or equivalently

^Hh*) ~ Vb{h*) ~ I v + r

which is an implicit equation for b* b(h).
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5 Numerical examples

In this section we examine the family of equivalent martingale measures

given implicitly by equation (10). We are interested in examining the

option's price sensitivity to the change of measure involved by a change
in the parameter c.

The stock prices are obtained from the data base DATASTREAM. Those

prices are closing market prices. We consider daily data. From those daily
prices, we compute the continuously compounded daily rate of return
according to

The DATASTREAM's prices are adjusted for operations like splits or increases

of capital but not for the payment of dividend. We had to modify the data
for the days where dividend payments occurred in order to cancel the jumps
(anticipated on the market) due to dividends. DATASTREAM provides us with
dividends series. Flence it is possible to correct the rates of return at the
dividend payment dates.

As examples we have chosen to consider American call options on stocks

ALUSUISSE R ("nominative") and SWISS BANK CO B ("porteur"). We have
selected derivatives for which the volume of transactions was sufficiently
high, so that the prices are real market prices. We consider times to
maturity between 10 days and 158 days. We made use of observed data
from the SOFFEX (Swiss Options and Financial Futures Exchange). The

options at the SOFFEX are American options. We have considered only
options on stocks for which there was no dividend payment until the date
of maturity. For these options the price is identical to the price of European
options.
On the Swiss Option Exchange, the expiration date is always the third
Friday of the relevant month. Quoted prices for options and traded volumes
have also been obtained from DATASTREAM. The options are quoted in
Swiss francs with the minimum quoted price fluctuations (ticks) given in

We had two kinds of daily quoted prices: last price paid (Ipp) and settlement

price (sp). As a general rule, the settlement price corresponds to the last

price paid, unless there was no exchange during the last hour of quotation or

(26)

Table 1.
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Option's price Tick

From Fr - 10 to Fr 9 90 Fr -10
From Fr 10- to Fr 19 80 Fr -.20

From Fr 20- to Fr 99 50 Fr -50
From Fr 100 - Fr 1 -

Table 1. Minimum quoted price fluctuation (tick) at the SOFFEX

the last price paid was not anymore corresponding to the current situation
of the market. In those two cases, the SOFFEX determines the option prices.
We have to remember this when making comparisons between observed
prices and theoretical ones. For the risk-free rate, we have chosen
EUROCURRENCY (SWISS FR) from London for one, two, six and twelve months.
For time to maturity of four and five months, we have considered linear
interpolation of the preceding rates.
For each case considered, we have first calculated /i, a2, 7 and 77, estimates
of the first four cumulants per unit time (here one day) of the process
{X(£)}t>Q. Then we have computed Ap, A2, k\ and k'2, estimates of the

parameters of our pure jump model by solving the system given by (5).
See Tables 2 to 5. We have also computed estimates of a, ß and is, the

parameters of the shifted gamma process, using (21) and finally estimates
of a, b and is, the parameters of the shifted inverse Gaussian process, using
(24).
To obtain twenty-one different options prices in the first model, we have

computed expression (12) for c 0, 0.05, 0.10, 1. At this stage, the

computations are time-consuming (we obtained up to 160,000 probability
masses for each distribution given by different values of c). We then

computed the option prices for the two other incomplete models (see

formulas (4.1.7) and (4.2.7) given m Gerber and Shiu (1994)). See Tables

A.l to A.7 in appendix A. Flere because of the high-valued parameters
numerical difficulties arise. For example, in the case T 158 days we had to
calculate a gamma distribution function with shape parameter a 1,951.69
and scale parameter ß 271.46 or an inverse Gaussian distribution function
with shape parameter a 305 93 and scale parameter b 202.78.

In the first model, we see that option prices are monotone functions of the

parameter c. Whether it is an increasing or decreasing function of c depends
on the case considered. In every example we observe that the differences
between the prices obtained with c 0 and the prices obtained with c 1
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1 A, k%

1 0 250587820 0 022434177

2 0.237835455 -0 015715156

Table 2 Estimates of daily parameters for ALUSUISSE R over the period
January 4 - June 30, 1992

i A,

1 2 651383917 0.006081860

2 6 976036534 -0 002422898

Table 3 Estimates of daily parameters for SWISS BANK CO B over the period
June 29 - November 19, 1992

i A* kt

1 0 316605487 0 015705559

2 0 204049188 -0 011705723

Table 4. Estimates of daily parameters for SWISS BANK CO B over the period
January 4 - June 7, 1993

i Ai K
1 0 849021090 0 011786903

2 2.422493362 -0 004344630

Table 5. Estimates of daily parameters for SWISS BANK CO B over the period
October 18, 1993 - April 18, 1994

are very small. Figures A.l to A.7 in appendix A show for each value of
c the difference between the price obtained with that particular value of c

and the price obtained with c 0 in percentage of this latter. Surprisingly,
we observe in every of our cases that for any given value of c, the higher
the strike price, the higher this percentage in absolute value. The maximal
difference computed between those two prices is of 0.245 % of the price
given by c 0 (see Table A.3 and Figure A.3). In fact, it appears that the

range of equivalent martingale measures obtained is in some sense very
narrow m the pure jump model considered.
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6 A more general jump model

In this section we give a justification for section 2. Consider, for the process
{X(t)}t>o, a more general model, specified as follows. The conditional
distribution of the amount of a jump is of a discrete nature. We use
the symbol At(-) for the measure of the jump frequencies of the process
{A(t)}t>o, i.e. \t{x)dt is the probability of a jump of amount x between
times t and t + dt. We adopt a similar notation for the process {S(t)}t>Q,
with At(-) replaced by At(-). Because {S(t)}t>o, is adapted, the following
equality holds:

Xt(x) =Xt(S(t)(ex-1)). (27)

We write A"' (•) and A^4 (•) to indicate that we are working with the Esscher

transform (parameter at for {S(t)}t>o and ht for (A(f)}t>o). So we have

A«4 (y) e^Xt(y) X^ (x) eh^Xt(x) (28)

where y S(t)(ex - 1).
We apply now, as in Gerber and Shiu (1994), the Esscher transform to
the process {AC(t)}t>0- The condition that the process {e~rtS(i.)}t>0 is a

martingale resumes to

-r- + ^(ex-l)e^xAt(a:) 0. (29)
X

Consider now applying the Esscher transform directly to the process {5(f)}.
This is the Esscher method in the sense of Bühlmann (1995). Then, the

martingale condition is

-r + ^yeatVXt{y) o,
y

which can be rewritten in term of the "parameters" of the process

W)}t>o:

-r + ^(ex - l)eat At(x) 0 (30)

with atS(t).
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In comparing conditions (29) and (30), we see that, unless At(-) is concentrated

on one point x (in which case we have to choose atS(t)(ex — 1)

htx), the resulting equivalent martingale measures for {e~rtS(t)}t>q are
different. For that reason, we are motivated to study whether pricing an

option according to those two different measures leads to two significantly
different prices for this one. Hence, we propose the following interpolation
formula for the modified jump measure:

\t(x) i—> eht<y c )\t(x) 0<c<l.

Taking the limit as c —> 0, we see that the above expression is the

modified jump measure obtained when applying the Esscher transform
(parameter ht) to the process {X(t)}t>q. The other extreme case where

c 1 corresponds to the modified jump measure obtained when applying
the Esscher transform (parameter a£) directly to the process {S(t)}t>q.
The model given by (4) is time homogeneous, so we can leave the subscript
t. We want to determine, for every value of c, the value of h, written h*(c),
such that the process

Kr's(0}(>„

is a martingale with respect to the probability measure corresponding to
h*(c). In fact, we obtain a family of implicit equations for h*(c):

—r + — l)eh( c ^A(a:)=0, 0<c<l. (31)
X

We can rewrite this family of implicit equations for our model (4) of the

process {X(t)}t>q and obtain so (10).

7 Examination of an approximation formula

In this section, we examine the linear approximation formula introduced by
Gerber and Landry (1997) by means of real data. The examination makes

use, as in section 5, of observed data from the SOFFEX.

They have considered models where 7, the third cumulant per unit time
of the process {3f(t)}t>o, is different from zero. In order to examine the
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effect of skewness, they proposed to replace the exact density of X(l) by its
first order expansion and obtained a linear approximation for the price of a

European option. It is remarkable that the approximation formula obtained
does not depend on the underlying model, as long as option prices are
calculated by the Esscher method. The interested reader is referred to their
paper for further details. Here is their formula

CO

e~rEQ [5(1) - K)+] ^ J (ex»+x - K) fo(x)dx

CO

+ ^e-r J (ex»+x - K) /! (x) dx, (32)

where k, In and without loss of generality the maturity considered

is of 1. Here K is the strike price, fo(x) and f\(x) are given by

h{x) ~4T~^-) (33)
a \ a

and

1 ,(x — fi*\ 1 (x — n*- 1-0

_
1 ,"(x_jS. (34)

12 \ a j 4ct V a
1

6(j2 V a

1 r\
where ft* r — -a Here <p(-) denotes the standard normal probability

density function. fo(x) is the martingale density of X{\) in the classical

Black-Scholes model. Hence, the approximation consists of the Black-
Scholes price combined with an adjustment for skewness.

The prices obtained by this method are displayed under the heading "Linear
Approximation" in Tables A.l to A.7 in appendix A. In most of our cases
the difference between the settlement price and the price obtained by this
method is negative. For example (see Table 6) we consider a call option
with strike price K 400 and 64 days to maturity on a stock (SWISS BANK

CO.) that is selling at present time at 374 Swiss francs. The third cumulant
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per unit time 7 of the stock is estimated at 0.0000011916643 per day. We

obtain a rate of change at 7 0 of 3632.480. Hence the Black-Scholes price
must be adjusted by 3632.4797 per 7. The first order effect of the skewness

on the price of this option is given for different strike prices in Figure 1.

We note that this adjustment can be positive or negative, depending on the
strike price K.

Exercise Observed Black Rate of Change Linear
Price K Prices Scholes OII03 Approximation

Ipp / sp

350 31.50 33.00 31.596 815.967 31.658

360 27.00 26.50 24.639 1549.226 24.757

370 19.00 21.00 18.671 2325.263 18.849

380 15.00 15.00 13.736 3001.996 13.965

390 11.50 11.50 9.805 3459.197 10.069

400 8.50 8.50 6.789 3632.480 7.066

425 4.00 3.40 2.377 2963.007 2.603

Table 6: Call option (on SWiSS BANK CO B) prices with S(0) 374, T 64 days
on August 18, 1994 (7 0.000 001 191664 3)

exercise price (K)

Figure 1: Adjustment of the call option price per 7 (see Table 6)
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8 Implied parameters
and the linear approximation formula

In sections 5 and 7 we computed the Black-Scholes formula and expression
(32) in taking parameter values estimated from historical data and substituting

them into those two formulas. From a practical point of view, the

one parameter in the Black-Scholes formula that cannot be observed
directly is the volatility. By using the historical standard deviation to estimate
the volatility, we assume that the past variability of the stock's returns is

invariant through time. It is not obvious that volatility is constant for long
periods of time and that the historical volatility is independent of the time
series from which it is calculated. It is therefore difficult to measure directly
the volatility in practice.
However, option prices are quoted in the market. An alternative concept,
implied volatility, consists of estimating the volatility of stock returns
implicitly reflected in current option prices. A call option price increases

monotonically with volatility, so there is a one-to-one correspondence
between the volatility and the option price. The idea is to invert the Black-
Scholes formula from the currently observed price of a call option. In this

way we obtain the market's opinion of the value of the volatility over the

remaining life of the option. This method was originally proposed by Latane
and Rendleman (1976). The implied volatility derived from several options
written on the same stock will generally not be equal.
Now the problem is to take a suitable weighted average of the individual
implied volatilities. One can think about taking the arithmetic average or
even to weight each option's implied volatility according to its degree of
price elasticity with respect to the volatility. Here we mention Beckers'

empirical study (1981) of stock returns' future variability estimates. He

suggests the use of only one call option price, the one whose price is most
sensitive to a. We measure the sensitivity of an option with respect to o by
the partial derivative of its price with respect to o, that is
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This expression is maximal for

rT+-a2T
K S{0)e 2 (35)

Hence the call option whose strike price is the nearest to the one given by
(35) will be chosen.

The parameters in the linear approximation formula (32) that cannot be

observed directly are the first three cumulants per unit time of the stock

price. Now the idea is to invert this approximation formula by observing
the current call option's price. In this way we obtain the market's opinion
of the value for the drift, the volatility and the third cumulant per unit time

over the remaining life of the option. To do this, we apply the following
algorithm. Choose arbitrary initial values for /x and 7, say /X9 and 79 (a

good idea is to choose historical estimates of them). Then compute 07,
the value of a that makes the approximation formula meet exactly the last
observed price. Now use a\ and 79 to compute /xj, the value of /x that makes
the approximation formula meet exactly the last observed price. Repeat
these steps to obtain 7^, 07, M2> 72' a3> M3' 73' unb' convergence is

observed.

Tables B.l to B.7 in appendix B show the prices obtained using implied
volatility to compute Black-Scholes prices and implied /x, a and 7 to
compute the linear approximation formula. For example, consider Table
B.5, which shows the prices obtained for a call option on stocks of the
Swiss Bank Corporation on August 18, 1994, using implied parameters. In
this particular example we found an annual implied a of 0.29321 for the
Black-Scholes formula. For the linear approximation formula, we obtained
the following implied annual parameters: /x —0.18889, a 0.29122,

7 0.00043496. In comparing settlement prices and the prices given by the
Black-Scholes formula using implied volatility we see that settlement prices
are overforecasted in almost every of our cases. Except for the prices given
by Table B.6, we observe that using implied parameters with both formulas
leads to differences of identical signs. For both formula and for a particular
choice of 5(0) and T, the largest difference is obtained for the more
out-of-the-money call option. In Table 7 are displayed the mean absolute
differences between the theoretical prices and the settlement prices and the

sum of absolute differences for all of our cases. Both for the Black-Scholes
formula and the linear approximation we remark that the mean absolute
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spread decreases significantly while using implied parameters. However
this effect is the strongest for the Black-Scholes formula. Examining all
our cases together, we remark that 23 times out of 37 the Black-Scholes
formula with volatility estimated implicitly leads to better results than
using the Black-Scholes formula with volatility estimated historically. We
remark also that 26 times out of 37 using implied parameters in the linear
approximation formula leads to better results than without using implied
parameters. Figure B.l in appendix B shows valuation errors in percent
of the settlement prices for the Black-Scholes and linear approximation
formulas, using for both formula implied parameters. Figure B.2 in appendix
B shows valuation errors in percent of the settlement prices for the linear
approximation formula with and without the use of implied parameters.
Moneyness is defined as

® _iK

Options whose absolute moneyness - 1 is greater than ten percent

are not taken into account. These options have little trading activity and

price quotes are generally not supported by actual trades.

Mean Absolute
Differences From sp

(in % of sp)

Sum of Absolute
Differences from sp

(in SFR

Black-Scholes 15.52 79 66

BS-iv 10.35 37 67

Linear approx 15.62 77 06

LA-i 12.18 4810

Table 7' Valuation errors statistics
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Appendix A

K 475 492 500 525

Observed Ipp 49 00 42 50 35.50 22 00

Prices sp 49 00 35 50 33 50 21 50

Black
Scholes 49.382 38.390 33 798 21.871

Linear
Approximation 48163 37 071 32.465 20 622

Shifted
Gamma 48 172 37 072 32 463 20.619

Shifted
Inverse 48 183 37 083 32 474 20.628

Gaussian

O II o 48 9185 37.688 33 020 21.006

0 05 48 9176 37.687 33 019 21.005

010 48.9167 37 686 33 018 21.004

0.15 48 9157 37.685 33 017 21 003

0.20 48.9148 37.684 33 016 21 001

0.25 48.9138 37 683 33 015 21 000

0.30 48.9129 37 682 33 014 20 999

0.35 48.9120 37 681 33 012 20.998

0.40 48.9110 37.680 33.011 20.997

0 45 48.9101 37.678 33 010 20.996

0.50 48.9091 37.677 33 009 20.994

0 55 48.9082 37.676 33 008 20.993

0 60 48 9073 37.675 33.007 20.992

0.65 48.9063 37.674 33 006 20.991

0.70 48 9054 37.673 33 004 20.990

0 75 48 9044 37.672 33 003 20.989

0 80 48.9035 37.671 33.002 20.987

0 85 48 9026 37 670 33.001 20.986

0 90 48 9016 37 669 33 000 20 985

0 95 48 9007 37.668 32.999 20.984

c 1 48 8998 37 666 32.998 20.983

Table A 1 Call option (on ALUSUISSE R) prices with 5(0) 508 and T 94 days on

July 13, 1993
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K 240 260 280 300

Observed Ipp 26 50 9 00 2 40 1 00

Prices sp 25 50 8 50 2 40 100

Black
Scholes 25 063 9164 1 714 0148

Linear
Approximation

25 058 9 222 1 808 0 178

Shifted
Gamma 25 057 9 222 1 808 0 179

Shifted
Inverse 25 057 9 222 1 809 0180
Gaussian

c 0 25 180539 9 267172 1 818309 0180996

0 05 25 180544 9 267181 1 818315 0180997

0 10 25 180544 9 267187 1 818319 0180998

015 25 180547 9 267195 1 818325 0180999

0 20 25 180548 9 267201 1 818330 0181001

0 25 25 180549 9 267207 1 818335 0181002

0 30 25 180551 9 267215 1 818340 0181003

0 35 25 180555 9 267223 1 818346 0181004

0 40 25 180556 9 267230 1 818351 0181005

0 45 25 180558 9 267237 1 818357 0181007

0 50 25 180560 9 267244 1 818362 0181008

0 55 25 180562 9 267252 1 818367 0181009
0 60 25 180565 9 267260 1 818373 0181010
0 65 25 180566 9 267266 1 818378 0181011

0 70 25 180569 9 267274 1 818383 0181013
0 75 25 180571 9 267281 1 818389 0181014
0 80 25 180573 9 267289 1 818394 0 181015

0 85 25 180575 9 267296 1 818399 0181016
0 90 25 180578 9 267303 1 818405 0181018
0 95 25 180579 9 267310 1 818410 0181019

c 1 25 180581 9 267317 1 818415 0181020

Table A 2 Call option (on SWISS BANK CO B) prices with S(0) 263 5 and T 28

days on November 20, 1992
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K 280 300 320 340

Observed Ipp 50 00 26 00 13 00 4 00

Prices sp 45 50 26.00 13 00 4 00

Black
Scholes 46 441 27 283 11764 3.278

Linear
Approximation

46 385 26 884 10 962 2 715

Shifted
Gamma 46 822 27 353 11276 2 850

Shifted
Inverse 46 557 27 090 11.090 2.775

Gaussian

c 0 46.823845 27 3226 11 2974 2 8653

0 05 46 823828 27 3224 11 2970 2 8650

0 10 46 823826 27 3223 11 2966 2 8646

015 46 823815 27 3222 11 2962 2 8643

0.20 46.823804 27 3220 11 2958 2 8639

0.25 46.823795 27 3219 11 2954 2 8636

0 30 46 823786 27 3217 11 2950 2 8632

0 35 46.823778 27 3216 11.2946 2 8629

0 40 46 823766 27 3215 11 2941 2 8625

0.45 46.823759 27 3213 11.2937 2 8622

0.50 46.823749 27 3212 11 2933 2 8618

0 55 46 823737 27.3211 11.2929 2 8615

0 60 46.823728 27 3209 11 2925 2 8611

0 65 46.823718 27 3208 11 2921 2 8608

0 70 46 823710 27 3206 11 2917 2 8604

0 75 46.823699 27 3205 11 2913 2 8601

0 80 46.823690 27 3204 11 2909 2 8597

0.85 46 823680 27 3202 11 2905 2 8594

0 90 46.823670 27 3201 11 2901 2 8590

0 95 46.823661 27 3200 11 2896 2.8587

c 1 46.823651 27 3198 11 2892 2.8583

Table A 3 Call option (on SWISS BANK CO B) prices with S(0) 325 and T 37 days

on January 13, 1993
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K 370 380 390 400 425

Observed Ipp 19 00 14 00 9 50 6 50 1.40

Prices sp 19 00 14 00 9.50 6 50 1 40

Black
Scholes 20 346 14 736 10.271 6 884 2 132

Linear
Approximation

20 447 14 901 10 491 7.132 2 344

Shifted
Gamma 20 460 14 913 10.498 7 138 2 349

Shifted
Inverse 20 460 14 913 10.498 7.139 2 350

Gaussian

c 0 20 57149 14 99394 10 55606 7.17867 2 36462

0 05 20 57152 14.99397 10 55608 717869 2 36464

010 20 57155 14 99400 10 55612 717872 2 36465

0 15 20 57157 14 99403 10 55614 717875 2 36467

0 20 20.57160 14 99406 10 55617 7 17877 2 36468

0 25 20 57163 14 99409 10 55620 7 17880 2 36470

0 30 20.57165 14 99412 10 55623 7 17883 2 36472

0 35 20 57168 14 99415 10 55626 7.17885 2 36473

0 40 20 57171 14 99418 10 55629 7.17888 2 36475

0 45 20 57173 14 99420 10 55632 717890 2 36476

0 50 20 57176 14 99423 10 55634 717893 2 36478

0.55 20 57179 14.99426 10 55637 717896 2 36479

0.60 20.57182 14 99429 10 55640 717898 2 36481

0.65 20 57184 14.99432 10 55643 7 17901 2 36483

0 70 20 57187 14 99435 10 55646 7 17903 2 36484

0 75 20 57190 14.99438 10 55649 717906 2.36486

0.80 20 57192 14.99441 10 55652 717909 2 36487

0.85 20 57195 14 99443 10 55654 7 17911 2 36489

0 90 20 57198 14 99447 10 55657 717914 2 36490

0.95 20 57201 14.99449 10 55660 717917 2 36492

c 1 20 57203 14 99452 10 55663 717919 2.36494

Table A 4' Call option (on SWISS BANK CO B) prices with S(0) 380 and T 50 days
on September 9, 1994
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K 350 360 370 380 390 400 425

Observed Ipp 31 50 27 00 19 00 15 00 11.50 8 50 4 00

Prices sp 33 00 26 50 21 00 15.00 11 50 8.50 3 40

Black
Scholes 31 596 24 639 18 671 13 736 9 805 6 789 2 377

Linear
Approximation

31 658 24 757 18 849 13 965 10 069 7 066 2.603

Shifted
Gamma 32 745 25 737 19 703 14 683 10.651 7.523 2 820

Shifted
Inverse 31 656 24 755 18 847 13 963 10 067 7 066 2 606

Gaussian

c 0 31 88106 24 93058 18 98086 14 06309 10 13975 7 11750 2 62631

0 05 31 88109 24 93061 18 98089 14.06312 10 13978 711753 2 62633

0 10 31 88111 24 93064 18 98092 14.06316 10 13981 7 11756 2 62634

015 31 88114 24 93067 18 98095 14.06319 10 13984 711758 2 62636

0 20 31 88116 24 93070 18 98099 14 06322 10.13987 7.11761 2 62638

0 25 31 88118 24 93073 18 98102 14.06325 10 13990 711764 2 62640

0 30 31.88121 24 93076 18 98105 14 06329 10.13994 711767 2 62642

0 35 31 88124 24 93079 18 98108 14 06332 10.13997 7 11770 2 62643

0 40 31 88126 24 93081 18 98111 14 06335 10.14000 7 11772 2 62645

0 45 31 88128 24 93084 18 98114 14.06339 10.14003 711775 2 62647

0 50 31.88131 24 93087 18 98118 14 06342 10.14006 7.11778 2 62649

0 55 31.88133 24 93090 18 98121 14 06345 10.14009 711781 2 62650

0 60 31 88136 24 93093 18 98124 14 06348 10 14012 711784 2.62652

0 65 31 88138 24 93096 18 98127 14 06352 10.14015 711787 2 62654

0 70 31 88141 24 93099 18 98130 14 06355 10 14019 7 11789 2 62656

0 75 31 88143 24 93102 18.98134 14 06358 10.14022 7.11792 2 62657

0 80 31 88146 24 93105 18.98137 14 06361 10 14025 711795 2.62659

0.85 31 88148 24 93108 18 98140 14 06365 10 14028 7.11798 2 62661

0.90 31 88151 24 93110 18 98143 14 06368 10 14031 711801 2 62663

0 95 31 88153 24 93113 18 98146 14 06371 10 14034 7.11803 2 62664

c 1 31 88155 24 93116 18 98149 14 06374 10 14037 711806 2 62666

Table A 5 Call option (on SWISS BANK CO B) prices with S(0) 374 and T 64 days

on August 18, 1994
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K 350 360 370 380 400 425 448

Observed Ipp 36 50 36 00 33 00 25 00 18 50 10 50 6 00

Prices sp 41 50 36 00 30 50 25 50 14 00 10 50 6 00

Black
Scholes 37 094 30 714 25 076 20185 12 541 6 410 3 223

Linear
Approximation

37 256 30 926 25 336 20 486 12 888 6 744 3 493

Shifted
Gamma 37 255 30 925 25 335 20 485 12 887 6 744 3 497

Shifted
Inverse 37 255 30 925 25 335 20 485 12 888 6 745 3 498

Gaussian

c 0 37 77262 31 35551 25 68760 20 77044 13 06862 6 84087 3 54795

0 05 37 77265 31 35555 25 68764 20 77048 13 06866 6 84091 3 54797

010 37 77270 31 35560 25 68769 20 77053 13 06871 6 84094 3 54800

0 15 37 77273 31 35563 25 68774 20 77058 13 06875 6 84098 3 54802

0 20 37 77277 31 35568 25 68778 20 77062 13 06879 6 84101 3 54804

0 25 37 77280 31 35572 25 68782 20 77067 13 06883 6 84104 3 54807

0 30 37 77285 31 35576 25 68787 20 77071 13 06888 6 84108 3 54809

0 35 37 77288 31 35580 25 68791 20 77076 13 06892 6 84111 3 54812

0 40 37 77292 31 35584 25 68796 20 77080 13 06896 6 84115 3 54814

0 45 37 77296 31 35588 25 68800 20 77085 13 06901 6 84118 3 54817

0 50 37 77300 31 35593 25 68805 20 77089 13 06905 6 84122 3 54819

0 55 37 77303 31 35597 25 68809 20 77094 13 06909 6 84125 3 54822

0 60 37 77307 31 35601 25 68813 20 77098 13 06913 6 84129 3 54824

0 65 37 77311 31 35605 25 68818 20 77103 13 06918 6 84132 3 54827

0 70 37 77315 31 35609 25 68822 20 77108 13 06922 6 84135 3 54829

0 75 37 77318 31 35614 25 68827 20 77112 13 06926 6 84139 3 54832

0 80 37 77322 31 35618 25 68831 20 77117 13 06931 6 84142 3 54834

0 85 37 77326 31 35622 25 68836 20 77121 13 06935 6 84146 3 54836

0 90 37 77330 31 35626 25 68840 20 77126 13 06939 6 84149 3 54839

0 95 37 77334 31 35630 25 68845 20 77130 13 06944 6 84153 3 54841

c 1 37 77337 31 35634 25 68849 20 77135 13 06948 6 84156 3 54844

Table A 6 Call option (on SWISS BANK CO B) prices with S(0) 373 and T 122

days on June 21, 1994
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K 350 360 390 400 425 448

Observed Ipp 71 50 65.50 44 50 39 50 27 00 18 50

Prices sp 73 50 66 00 45 00 39 00 27 00 18 50

Black
Scholes 70 040 61 968 40 813 34 905 22 742 14 643

Linear
Approximation 70114 62 080 41 063 35 201 23 130 15 067

Shifted
Gamma 70 114 62 079 41 062 35 200 23 129 15 066

Shifted
Inverse 70114 62 079 41 062 35 201 23 130 15.067

Gaussian

c 0 71 29242 63 12283 41 75241 35 79294 23 51978 15 32194

0 05 71 29245 63 12286 41 75246 35 79299 23 51984 15 32199

010 71 29249 63 12290 41 75251 35 79305 23 51990 15 32205

0 15 71 29252 63 12294 41 75256 35 79310 23 51995 15 32210

0 20 71 29254 63 12297 41 75261 35 79316 23 52001 15 32216

0 25 71 29257 63 12300 41 75266 35 79320 23 52006 15 32221

0 30 71 29260 63 12304 41 75271 35 79326 23.52012 15 32226

0 35 71 29263 63 12307 41 75276 35 79331 23 52018 15 32231

0 40 71 29266 63 12311 41 75281 35 79337 23 52023 15 32236

0 45 71 29268 63 12314 41 75286 35 79342 23.52029 15 32242

0 50 71 29271 63 12318 41 75291 35 79347 23 52034 15.32247

0.55 71.29274 63 12321 41 75296 35 79352 23 52040 15 32252

0 60 71 29277 63 12325 41 75301 35 79358 23 52046 15 32257

0 65 71.29280 63 12328 41 75306 35 79363 23 52051 15.32263

0 70 71 29283 63 12332 41 75311 35 79369 23 52057 15 32268

0 75 71 29286 63.12335 41 75316 35.79374 23.52063 15 32273

0 80 71 29288 63.12338 41 75321 35.79379 23 52068 15 32278

0 85 71 29291 63.12342 41 75326 35 79384 23 52074 15 32284

0 90 71 29294 63.12346 41 75331 35 79390 23 52079 15 32289

0 95 71 29297 63 12349 41 75336 35 79395 23 52085 15 32294

c 1 71 29300 63 12353 41 75341 35 79400 23 52091 15 32299

Table A 7 Call option (on SWISS BANK CO B) prices with S(0) 410, T 158 days

on May 16, 1994
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Figure A 1 Change in price from c 0, S(0) 508, T 94 days (ALUSUISSE)

value of c

Figure A 2 Change in price from c 0, 5(0) 263 5, T 28 days (SBC)
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Figure A 3 Change in price from c 0, 5(0) 325, T 37 days (SBC)

value of c

Figure A 4 Change m price from c 0, 5(0) 380, T 50 days (SBC)
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Figure A.5: Change in price from c 0, S(0) 374, T 64 days (SBC)
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189

value of c

Figure A 7 Change m price from c 0, S(0) 410, T 158 days (SBC)
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Appendix B

Exercise Observed Black-Scholes Linear Approximation
Price K Prices Using Implied Using Implied

Ipp sp Volatility (BS-iv) p,a and 7 (LA-i)

475 49 00 49 00 49.447 49.050

492 42 50 35 50 38 465 38 093

500 35 50 33 50 33 876 33 527

525 22 00 21 50 21 952 21 703

Table B 1 Call option (on ALUSUISSE R) prices with S(0) 508, T 94 days on July
13, 1993 (7 0 000 001 9063082)

Exercise Observed
Price K Prices Bs-iv LA-i

Ipp sp

240 26.50 25 50 25 364 25 231

260 9.00 8.50 10 056 9 751

280 2.40 2 40 2 392 2.196

300 1.00 1 00 0 323 0 276

Table B 2. Call option (on SWISS BANK CO B) prices with S(0) 263 5, T 28 days

on November 20, 1992 (7 0 000 000 497237 5)

Exercise Observed
Price K Prices Bs-iv LA-i

Ipp sp

280 50 00 45 50 46 929 46 889

300 26 00 26 00 28175 28114
320 13 00 13 00 13153 13 154

340 4 00 4 00 4 415 4 504

Table B 3' Call option (on SWISS BANK CO B) prices with S(0) 325, T 37 days on

May 12, 1993 (7 0 000000899243 8)
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Exercise Observed
Price K Prices Bs-iv LA-i

Ipp sp

370 19 00 19 00 20 906 20 860

380 14 00 14 00 15 337 15 337

390 9 50 9 50 10 867 10 914

400 6 50 6 50 7 431 7 517

425 1 40 1 40 2 461 2 574

Table B4 Call option (on SWISS BANK CO B) prices with 5(0) 380, T 50 days on
September 1, 1994 (7 0 000 001191 664 3)

Exercise Observed
Price K Prices Bs-iv LA-i

Ipp sp

350 31 50 33 00 33 963 33 903

360 27 00 26 50 27 381 27 339

370 19 00 21 00 21 649 21 633

380 15 00 15 00 16 783 16 794

390 1150 1150 12 756 12 793

400 8 50 8 50 9 506 9 565

425 4 00 3 40 4 191 4 273

Table B 5 Call option (on SWISS BANK CO B) prices with 5 (0) 374, T 64 days on
August 18, 1994 (7 0 000 001 191664 3)

Exercise Observed
Price K Prices Bs-iv LA-i

Ipp sp

350 36 50 41 50 41 749 38 891

360 36 00 36 00 35 782 32 716

370 33 00 30 50 30 417 27 224

380 25 00 25 50 25 647 22 411

400 18 50 14 00 17 809 14 716

425 10 50 10 50 10 822 8 226

448 6 00 6 00 6 588 4 581

Table B 6 Call option (on SWISS BANK CO B) prices with 5(0) 373, T 122 days

on June 21, 1994 (7 0 000001 191 664 3)
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Exercise Observed
Price K Prices Bs-iv LA-i

Ipp sp

350 71 50 73.50 73.436 73 370

360 65.50 66.00 65.938 65 876

390 44 50 45 00 46 215 46 184

400 39 50 39.00 40.617 40 601

425 27 00 27.00 28.756 28 780

448 18.50 18 50 20.367 20.425

Table B.7 Call option (on SWISS BANK CO B) prices with 5(0) 410, T 158 days

on May 16, 1994 (7 0.000 001191664 3)

BS-iv

LA-i

-10 -8

-«I ' -+• h

-6 -2 0 8 10

moneyness [%]
Figure B.l: Valuation errors in percent of the settlement prices for the Black-Scholes and

the linear approximation formula, using for both implied parameters
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Figure B.2- Valuation errors in percent of the settlement prices for the linear approximation
with (LA-i) and without (LA) implied parameters
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Summary

This paper studies a one parameter family of equivalent martingale measures to price
an option in a particular incomplete model We also examine by means of real data an

approximation formula introduced by Gerber and Landry We propose to estimate the

parameters in an implicit way in order to compute this formula The study makes use of
observed data from the SOFFEX (Swiss Options and Financial Futures Exchange)

Zusammenfassung

Der vorliegende Artikel betrachtet eine einparametrige Familie von äquivalenten Martm-
galmaßen zur Bewertung von Optionen in einem unvollständigen Markt Überdies wird
die Naherungsformel von Gerber und Landry anhand von wirklichen Daten untersucht
Schließlich wird eine implizite Schätzung der unbekannten Parameter vorgeschlagen Die
Studie stutzt sich auf Daten der SOFFEX

Resume

Cet article etudie une famille ä un parametre de mesures de martingales equivalentes pour
evaluer une option dans un modele incomplet particuher On examine aussi ä l'aide de
donnees reelles une formule d'approximation mtroduite par Gerber et Landry On propose
finalement d'estimer les parametres de mamere imphcite afin d'evaluer cette formule. L'etude
fait usage de donnees provenant de la SOFFEX
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