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D. Kurzmitteilungen

Björn Sundt, Oslo, and Okechukwu Ekuma, Winnipeg

The De Pril transform of a compound 7^ distribution

1 Introduction

IA. The De Pril transform was defined by Sundt (1995) for probability distributi-
ons on the non-negative integers with a positive probability at zero. He discussed
several properties of the De Pril transform. In particular, he derived a recursion
for the De Pril transform of distributions in the classes 77a studied by Sundt
(1992). He also derived an expression for the De Pril transform of a compound
distribution expressed by convolutions of the severity distribution and the De Pril
transform of the counting distribution. Unfortunately, evaluation of this expression
would normally be rather time-consuming. In the present paper we shall consider
the special case when the counting distribution belongs to 77/,.. By applying the

recursion for De Pril transforms of distributions in 77/. and a recursion derived by
Sundt (1992) for a compound distribution with counting distribution in 77/,, we
shall deduce a recursion for the De Pril transform of the compound distribution.
When 7' is small, this recursion could be less time-consuming than the expression
given by Sundt (1995). This also implies that in this case one would be less

inclined to apply approximations instead of exact evaluation.

IB. In Section 2 we briefly recapitulate some results on the De Pril transform
and the classes 77/, from Sundt (1992, 1995) and present our new recursion.
In Section 3 we discuss this recursion in the special case when the counting
distribution belongs to 77/. Section 4 is devoted to the question whether to apply
exact or approximate evaluation of convolutions of compound distributions. This
question is further discussed in Section 5 in a special case where we want to
evaluate the aggregate claims distribution of a heterogeneous portfolio.

IC. In the present paper we shall represent a distribution by its probability
function, and hence we shall normally mean its probability function when talking
about a distribution.

Mitteilungen der Schweiz. Aktuarvereinigung. Heft 2/1999
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2 General theory

2A. We shall say that a probability distribution on the non-negative integers with
a positive mass at zero is if there exist functions a and 6 such that its

probability function p satisfies the recursion

p(n) fa(z) + —^ p(n - r) (n 1.2,...
j^t V " /

with p(n) 0 for all n < 0. For simplicity we shall always let a(i) 6(i) 0

for all / > A'. We shall call the class of all such distributions with a fixed A' 7?./,..

These classes were introduced by Sundt (1992), who discussed several of their
properties.
We obviously have that 72fc_i C 72p for all Ax The class 72^ consists of all
distributions on the non-negative integers with a positive mass at zero.

2B. For any distribution / e 72,^, there exists a unique function <p/ on the

positive integers such that / can be represented as i?oo[0, </?/]• This is seen by
solving the recursion

~ ^-7(.'/)/(•'' ~ ^ C.r 1,2,...) (2.1)
''

«= I

for <p/ (.r) to obtain

~ J

</>/(*) (W(a-) - F/(.'7)/(-'' - .</)) : (•'' 1,2,...) (2.2)

in this paper we shall interpret V'=k t't 0 when s > f. Sundt 1995) called <p/
the /7c Pri/ tran.v/brm of /. He studied its properties and argued that it can be a

useful tool for recursive evaluation of distributions in 72 ^.
The De Pril transform is additive in the sense that if /), ./A,... G 72,^, then

m

^.3)
j=i

Sundt (1995) showed that if p is ///, [«, 6], then

/c

+ fe(ri) + a(z)pp(?r —/) (/z 1.2....) (2.4)

i=l
with <Pp(n) 0 for all negative n.
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2C. Let 'P+ denote the class of distributions on the positive integers. The

compound distribution pVft with counting distribution on the non-negative integers
and severity distribution /i Ef). is given by

(pV/«)(.r)=^p(n)/,»*(i). (,r 0,1.2,...)
n=0

We immediately see that if p G 7?-^, then p V ft G 7?.^.
Sundt (1992) showed that if p is 6], then p V ft. is ß^[c. </] with

r(.c) ^«(/y)/r"'(.r) ;

(.r 1,2,... (2.5)

f/(:c) =.rV^ ft

y=t •'

In particular, with A- oo, a 0, and ft <p,„ we obtain that for every p G 7?.^

we have that

vVv/,.(') ,«*(_,.) (x 1,2,...) (2.6)

y— i ^

as ft"*(x) 0 for all y > x. The relation (2.6) was shown by Sundt (1995).

2D. Let us now assume that p is i?jt[a, ft]. By (2.4) with c and <7 given by (2.5)

we obtain that for x 1.2....

X— 1

ppv/iO'-) •«'('') + '/('•) + ^ c(y)<ppv/i(-E - .'/) •

y —

that is,

Ppv/i(.r) -Tf«(y) + ft-"*(x)
y= i

^

x— 1 A;

+ - :!/)y^«(2)ft.^*(p) (2.7)

y=l c=l

By letting fc oo, a 0, and ft <pp in (2.7) we obtain (2.6).
We see that in particular for low values of ft (2.7) is much less time-consuming
than (2.6) as in (2.7) one would need ft" only for 1,... ft.
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3 The case A; — 1

3A. Let us now consider the special case A- 1. Then (2.4) gives

<Pp(n) (a + 6)a"~'. (n=l,2,...) (3.1)

Furthermore. (2.7) reduces to

Vpvh(z) (« + b);r/i(.r) + « ^ M //)yb,vr ('' - .'/) (•*' ' 2.

(3.2)

whereas insertion of (3.1) in (2.6) gives

rpvii ('') !(« + ft) y ——/>"*(.r) (J 1,2,...) (3.3)
.7=1 ^

It is well known that üi[a, ft] is binomial if a < 0. Poisson if a 0, and negative
binomial if a > 0 (cf. Sundt & Jewell (1981)). Let us consider (3.1) and (3.2) in
each of these three cases.

3B. ß/nomiö/ vtràft parameters (f,7r).

p(a) ^^7r"(l — 7t)'~". (a =0. 1 (: / 1.2.... : 0 < ?r < 1)

Then

7T

6= (/+ i;
7T I — 7T

7T —
'Pp('i) -A —T (a 1.2....) (3.4)

<ppv/i (-r) -j~~~ ~ y, /?(?/)ypv/i(•?• ~ ?y)j ('• 1,2,...) (3.5)
" ^ 7=1

Any distribution / G 72.oc can be represented in the form p V A, where p is a

Bernoulli distribution with parameter

TT 1 - p(0)

(that is. a binomial distribution with parameters 1, tt) and /;, t P+ is given by

/'(•'')
^

• ('' 1,2,...)
7T
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Insertion in (2.2) gives

TT / \
7/W ~j~TT - ^/?(.!/)p/(.?~ - ;/)], (,r =1.2.

^ y=i '
that is, we obtain (3.5) with / 1.

In general we can write (3.5) as

<2* I

V-^pv/i («£ f.r/i(.r) - ]T /?(.)/) */)\ (y 1,2.
;/=i

which immediately follows from the Bernoulli case and (2.3) as the compound
binomial distribution is the (-fold convolution of the corresponding compound
Bernoulli distribution.
In the Bernoulli case with 1, (3.5) was given in formula (2) in De Pril 1989).

3C. Au.v.syw ûfa/n'Zwft'on vwf/t parawefer A.

p(?t) —re('« 0, 1,... ; A > 0)
n!

Then

« 0; 6 A (3.6)

M») {o (n
2^3,... ^.7)

Vpvh.('') A.r/)(.r) ; (.r 1,2 (3.8)

the latter formula is also obtained by inserting (3.6) in (3.3).

3D. (Vegative Zwtomta/ dwlnto/on vvi(/t paramete« (o./r).

p('?t) ^ 1 — 7r)"V. 0. 1. : a > 0: 0 < zr < 1

n

Then

u tt; /) (a — 1 zr (3.9)

<p,,(n) ott" (// 1.2....)

p,,v/i(.r) 7r^Q.r(?(;r) + ^(i(y)ppvh(:r - y)j. (''= 1.2....) (3.10)
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Insertion of

A — lnp(O) n ln( 1 — TT)

A:(.r) (,r 1,2....) (3.11)
A.t

in (3.10) and division by A./- gives

|

" '(lln(l'-T)l *§('"?) - »? '

This is the recursion presented by Sundt & Jewell (1981) (apart from a misprint
in that paper) for the compound distribution g V 3«, where g is the logarithmic
distribution given by

Ii„d'-*)i~r-

Thus A: — <y V /i. From (3.8) and (3.1 1 we conclude that pV/i rV A', where r
is the Poisson distribution with parameter A. Thus

pV/i-rV (r/ V /t) (r V q) V At

In particular, when At is concentrated in one, we obtain that /t r V </.

This representation of a negative binomial distribution as a compound Poisson

distribution with a logarithmic severity distribution was presented independently
by Ammeter (1949) and Quenouille (1949).

3E. To summarise, in the binomial case the recursion (3.2) gives simply a

reformulation of the general recursion (2.2) for the De Pril transform, in the

Poisson case it is trivial, and in the negative binomial case the recursion has

earlier been deduced within another context. Thus, with counting distributions in
72.1 (2.7) does not bring much new. However, it gives a unification.

4 Exact evaluation or approximation?

4A. To cover approximations to distributions when the approximations are
not necessarily distributions themselves, Dhaene & Sundt (1998) extended the

definition of the De Pril transform to the class 731 of functions on the non-
negative integers with a positive mass at zero. Formula (2.7) is easily generalised
to that situation.
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4B. By combining (2.3) and (2.6) we obtain that if pj 7?^ and /p e 'P |, then

When ./• gets large, evaluation of this formula becomes rather time-consuming.
Therefore Dhaene & Sundt (1998) suggested as an approximation to replace

pp (y) by zero when y is greater than some integer r. They also discussed error
bounds for such approximations. Such approximations are in particular interesting
when pp (y) rapidly approaches zero when y increases. Such approximations
were studied by De Pril (1989) in the special case when the p/s are Bernoulli
distributions (cf. subsection 3B), and we shall therefore call them De Pr/7

appro.riwfltion.v.
When deciding whether to apply an approximation or an exact method, com-
putation time should be considered against the need for accuracy. Analogous
considerations would be needed when deciding the order r of the approximation.
As pointed out at the end of subsection 2D, (2.7) could be much less time-
consuming than (2.6) when ;p t 72./,. with a small A\ Thus, in that case (2.7)
would make exact evaluation more attractive.

4C. Dhaene & Sundt (1998) in particular discussed the case when p, is

7?i[aj,6j]. Obviously the approximation is interesting only when a, 7^ 0, that

is, when /p is either binomial or negative binomial. However, we also do not
want cp- to be too far from zero as we want pp. (y) to rapidly approach zero
when p increases.

Sundt & Jewell (1981) showed that we always have cp < 1. For cp < —1, pp, (y)
diverges when y f 00. From the discussion on 72; in Section 3 follows that it

occurs only in the binomial case with 7p > 1 /2.
Not surprisingly, the error bounds discussed by Dhaene & Sundt (1998) increase

when |cp| increases. When cp j 1, the error bounds go to infinity.
The Bernoulli case has been discussed by De Pril (1989) in a situation where

we consider rn independent policies over a specified period. For ; 1.. to,
we let 7Tj denote the probability that the aggregate claim amount of policy j is

positive and /p the conditional distribution of the aggregate claim amount of the

policy given that the aggregate claim amount is positive. Then the unconditional

aggregate claims distribution of the policy is the compound distribution y, V 7p,
where /p denotes the Bernoulli distribution with parameter 7p. The De Pril

,V=I •'
J 1

(4.1)
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approximation seems reasonable when the probabilities of non-zero claims are
small.

In the following section we shall discuss an application of the negative binomial
case.

5 Modelling heterogeneous portfolios

5A. We want to evaluate the aggregate claims distribution / of an insurance

portfolio of m independent policies over a specified period. For the moment we

assume that the aggregate claim amount for policy / (j 1,... m) has the

compound distribution p„ V Zip where ft, G P+ and p, is Poisson with Poisson

parameter Ap From Theorem 11.1 in Sundt (1999) it follows that

which easily follows by insertion of (3.8) in (2.1).

5B. Often one would expect that there are individual properties of an insurance

policy that affect the risk, but are not reflected by the objective rating criteria
applied. We shall assume that these properties affect only the claim numbers, not
the severities. We assume that to each policy j there is related a positive random
variable 0p and that 0| are independent and identically distributed. It
is assumed that the conditional distribution of the number of claims from policy

j given that 0, ft, is Poisson with parameter ftA,. Thus the unconditional
distribution p, is given by

/ *,(/'; V ft,) p V ft
J 1

where p is Poisson with parameter A
i and

Thus we can evaluate / by the Panjer (1980) recursion

/(•'•) 7 <//'(.</)/(•'' - //) (•' =1.2....)

p,-(n) F0',.
n! ^

(n 0,1,...) (5.1)
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Let us assume that the 0/s are gamma distributed with density

«(ö) r^V' 'e (0>O;o,/i>0) (5.2)
r (q)

Then we easily get

E0"e~^'^ — (« =01' T(rv) (/? + Aj)»+" ' ^ ' "
and by insertion in (5.1) and some manipulation we obtain

a + rt — 1 / T VV A»<" „ J)—J Ittä-J ^
that is, pj is negative binomial with parameters I a,——2_ By (3.9) this

implies that p.y is J?i[oj,bj] with ^ ' '

— • A «<» h \ (5.3)

5C. In the situation of subsection 5A it was fairly easy to evaluate the aggregate
claims distribution / of the portfolio. As the policies were independent and the

aggregate claims distribution of each policy was compound Poisson, also / is

compound Poisson. Unfortunately it is not that simple in the negative binomial
case of subsection 5B. In the restrictive case when A, and //,, are independent of
/ for all y, / would be a compound negative binomial distribution; in the general
situation that would usually not be the case. One possibility would then be to for
each y evaluate p, V /iy by the Panjer (1981) recursion

(p, v //,)(<) - X! MyHpy v /'„)(.< - y), (•' 1.2,...
y=i

''

and then find / *"=i(P/ V /),) by brute force convolutions. However, it seems

more efficient to evaluate the De Pril transform of / either exact or approximate,
and then find / by the recursion (2.1).
For approximate evaluation one could apply the De Pril approximation in (4.1).
As argued in subsection 4B, this approximation seems reasonable if «y is small,
that is, by (5.3) when Aj is small. This could be interpreted as if policy j has

low risk exposure, that is, a small policy.
For large policies it seems more appropriate to apply exact evaluation. In that

case one could for each of the policies evaluate the De Pril transform by the

recursion (3.10) and then sum these De Pril transforms to obtain the De Pril
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transform of /. Numerical evaluation applying this methodology on data from

group life assurance has been carried out by Ekuma (1998). This methodology
is closely related to the methodology discussed in Section 5 of Willmot & Sundt

(1989).

5D. The parameter A, can be interpreted as a measure of the risk volume of
policy j. This interpretation becomes perhaps most clear when considering group
insurances. Let us look at a simplified example. We consider a group life assurance

portfolio. Policy j covers the employees of firm j. At any time during the period
that firm has n, employees (that is, we assume that if an employee dies during
the period, he is immediately replaced with another). Conditional on B,
the lives of these employees are independent, and the conditional mortality rate

of each employee is 0//. Then the conditions of subsection 5B are fulfilled with
A, 7ij/r, and we see that a large value of A; means a firm with many employees.

5E. In the present situation we have for simplicity considered the unconditional
distribution of the aggregate claims distribution of the portfolio. However, it would
be natural to believe that the number of claims of policy j from earlier years would
contain information about (-),, so that one should rather apply the conditional
distribution given the claim experience of the individual policies. As the gamma
distributions constitute a conjugate class to the Poisson distribution, one would
under reasonable assumptions obtain that also the conditional distribution of (-),

given the claim experience is gamma (cf. e.g. Section 2 in Norberg (1989)). Thus
the conditional claim number distribution of policy y is negative binomial, and

the discussion of subsection 5C is still valid.
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Erhard Kremer, Hamburg

Threshold Lossreserving*

1 Introduction

Today loss reserving is a most important subfield of nonlife insurance mathe-
matics. Many pages on that topic can be found in the US-book „Foundations of
Casualty Actuarial Science" and several texts are dedicated to it (see e.g. Taylor
(1986), Institute of Actuaries (1990)). Newer approaches to loss reserving are

mostly based on stochastic concepts and models. Of great practical importance
are methods derived with ideas of regression and time series analysis. Examp-
les of papers which describe these methods are Kremer (1984), (1989), (1993a),
(1993b), Renshaw (1989), Verrall (1989) and Dannenburg (1995). Though the yet
existing techniques are already fairly well developed, further significant progress
can be expected for the future. Some methods can still be refined as is shown
with the following contribution. The ideas of threshold autoregression are intro-
duced in the field of (mathematical) loss reserving. As important practical result
a refined chain ladder technique comes out, that gives more realistic results than

the classical procedure for certain development features.

2 The basic model

Denote with the random variable A',-, on (D,A P) the total claims amount or
burning cost of a (collective of) risk(s) in accident year no. « with respect to its

development year no. y. Then A'a (A',-y, J 1 n — i + 1, « 1 «)
is the so-called ran-o/f m'a«g/e of known claims data. For the following suppose
that one has the model:

A,j Oji + fry I A,.j_i + if A, I < r, (2.1)
1 /2

— ""J" ^j'2 * j — 1 ^

with < 1,... ,n, j 2,... n, where ay;, Py, 1,2 are certain real

parameters, > 0 is a known volume measure, ry the so-called (real) r/jre.s'/toW

and e, I 1,2 are (real) random variables with the assumptions:

"The paper is a shortened and improved version of a former contribution to the international
ASTIN colloquium at Copenhagen (1996).
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1.) £(c,y/) 0, Var(ejji) a]; e [0. oc)
2.) e^7, Z — 1,2, Z 1,2,... ,77, are independent (for given j)
3.) ejj-;, X,/, are independent for all Z 1,2 and fc < j
Models of type (2.1) have been well-known by statisticians for more than ten

years. They are usually called (self exiting) //zrev/toW a m to regressive mode/s [in
short: (SE)TAR| (see e.g. Petrucelli & Woolford (1984), Tong (1983). and Chan

(1993)). In loss reserving they are fairly new.

Often one is willing to assume in advance that a priori one has:

Uj7 0 Z 1,2. (2.2)

and furthermore

^i=^2- (2-3)

3 The loss reserving advice

As well-known the basic problem of loss reserving consists in predicting the

unknown values A',,, j n, — v + 2,... n of future development from the known
run-off triangle Ta of past development. Using arguments similar to those in

Kremer (1984) one obtains the following.

Under the model (2.1) predict X,y, j > n — Z + 2 by Ty, calculated recursively
according to the rule:

— Ûj'l ~t~ 1 ' — 1 5 if

tij2 + ' 3ft,7-i if X,;i > ry

where one puts:

X,2 .Y,/ • if / > u - Z + 1

if Z n — z -h 1
•

In practice the parameters ay, Zy/ and the threshold ry are unknown. One has to
estimate them from the data of the run-off triangle as described in the following
section.
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4 Parameter estimation

For the sequel define:

n—j+ 1

'V • 1

A/j, A j i / 1.2.
2=1

with the sets:

3/,/ (—oc. /•,] for / 1

(?q, oc) for / 2

and the indicator function:

1\(./) for .r ^ .1

1 for .r .1

Furthermore declare the following sum of squares:

/ 1 \ " ~ '

Sj/ -- ^~~~ 'a/,,('^H)

for / 1. 2 and with them:

Sj CJy 1
• iSjl + CJj'2 ' Sj2 5

where uq/, /= 1,2 are certain weights, which are allowed to depend on r, and

satisfy:

G [0, 1], / 1.2.

The „natural" choice of weights would be:

wp -'3//'T '—1,2 (4.1)

with:

"./ I +

in case that (2.3) holds in addition. With the given notation one can define

„optimal" estimators fy, «,7, /•>,/ of /q, a,;, 6,7 (/ 1,2) simply as those values
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that minimize 5j. The solution for that optimization problem can be given easily.
It is obvious that one can restrict for r, on the values out of the set:

7^, {A',i / 1 n - j + 1}

One can proceed as follows:
For each ?y r£ 7?,, one calculates estimators a_y(r), 6y(r) by minimizing .S',/

(/ 1,2). As optima/ estimators 7y, ay/, 6y/ of ry, ay, 6y/ one chooses that r,
Sji(f), &;/('') for which 5", becomes minimal.
With classical calculus one gets that given ?y r (e 7£y):

n-j + l

MO £ EE My - 6,,(r) l.ya.Y,,
ï-i
n-f+l /t/ \ / n-j+1

*?. *7 \ / ^ ^ "*• / ^ rrtE • I * E Ef J

MO
x 'A' / V V

î=1 m=l ^
il y

n-j + l /ix \ / n-j+ 1

*2 7 \ / X ^ / E

i= 1

E (,/•;)• (m i E (;; >)M
7 / \ rn — 1 A J

where M/ is just My with ry r.
For a priori (2.2) one gets more simple:

n-j+1

MO
E :-l.u'A\,.

V'0'/j—1

n-j4 1

E f—) --E-. -i-w,(Xi)
M V ^ /

as estimator for 6 y given ry r (for / 1,2). Obviously the resulting method
is handy though refined significantly.

One can prove that under a priori (2.2) and ly, 1 for all i, j the estimators ry,
6y of ry, 6yz are consistent (for rt —> oo). A sketch of the proof can be found in
Kremer (1996).

In case of a priori (2.2) and

i ^ijf'2 5
for 3.11 2

one can give an adequate test statistic for testing the /zypot/îe.yA:

// : /y I 6,2
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against the alternative:

6ji 7^ 6j2 •

Similar to what is said in Petrucelli & Woolford (1984), p. 278 one can take a

lower one-sided test with statistic:

T„ ^5j(n)/sj(n)J

where
2 n-j+1 J

5» E E! "^7" ~ ' a'/,,
(=i i=i

with

.1/,/ — oo, Fj], for / 1

(fj, oo for / 2

n—j+1

^= E ^
i= I

and

with the overall estimator

Under certain regularity conditions [—2 • ln(T„)] is under // asymptotically \~-
distributed with one degree of freedom. Consequently a senseful test for 77 against
À is:

^ '{''•* >\T;|

with the test statistic 7'* —2 • ln(T„) and the o-fractile of the \j-
distribution.
In case that the test decides for 77, one will take the 6, as estimator of i 6^2
This is just the classical procedure.
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5 Numerical example

Take a priori (2.2) and V), 1 for all i, j and consider the run-off triangle A'a:

31.28 48.98 67.39 79.14 85.43

60.47 77.53 114.51 154.47

33.77 49.39 62.65

67.06 95.49

29.58

With the classical c/tam-ZacWer method (s. e.g. Kremer (1984)) one gets the

following completion of the triangle to a rectangle:

Completions 1:

166.83

80.46 86.85

132.76 170.50 184.05

41.69 57.44 74.44 80.36

With the method of section 5 one has clearly more work than with the chain-
ladder technique. One proceeds along the following steps.

j 2: r 31.28 gives Sj 12.75

r 60.47 gives ,S'; 18.86

r 33.77 gives >S'; 11.55

r 67.06 gives S'; 20.99

Obviously the third threshold is optimal.

But one has:

T* 1.79 < W, 2.71

what means that one decides for 621 622 and has to take the overall estimator
62 - 1.39 for 62 621 622•
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j 3: 7' 31.28 gives Sj 25.14

r 60.47 gives S'; 26.19

r 33.77 gives 5j 4.65

Again the third threshold is optimal.

Now one has:

7'* 3.46 > 2.71

One has to take the estimator 631 1.32 for 631 and Î32 1.48 for 632 (/ 631).

7=4: /' 31.28 gives Sj 0

/ 60.47 gives Sj =51.42

Trivially the Hrst threshold is optimal.

Finally one has:

7" 00 > 2.71

As estimator of ^41 one gets ^41 1.17 and for 642 (/ 641) one has to take the

estimator 642 1.35.

j 5:

No optimality calculations possible. In the final step one has to apply the chain-
ladder advice, meaning simply:

A',, (.Y15/.A14) -Â'ij 1.08 • Â44

Choosing in each step the optimal threshold, one gets with the f/tmv/to/c/ /wet/torZ

as completion of the triangle:
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Completions 2:
166.83

84.58 91.35
141.33 190.80 206.06

41.10 54.30 70.59 76.24

The results of completions 1 and 2 differ considerably. The author judges the

second one as being more reliable.

6 Final comments

The above method can be modified slightly. For each 7 > 2 the comparison with
the threshold can be carried though with A",.,-i instead of A",|. In the prediction
phase one does not know A',.y_i for j > n — + 2, one will replace it by the

A", _ I then. With this modification the method might be even more appealing.
The reader is invited to apply this modification to the above numerical example.
In practice one should adjust the claims data for inflation in advance.
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Errata

«Les premières tables suisses de mortalité»
de Philippe Chuard, Bulletin 1/1999

Malheureusement de gênantes erreurs sont contenues dans le texte de l'article ci-

dessus. Les renvois aux tableaux de la page 88 sont inexacts, il s'agit de renvois

aux tableaux 5 et 6. A la page 97 les probabilités de décès sont désignées par des d

et non par des q. Le Compte c/e Kedflcfto/i
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