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B. Wissenschaftliche Mitteilungen

Jan Dhaene, Siiaun Wang, Virginia Young and Marc J Goovaerts,
Gent, Leuven, Antwerpen, Amsterdam, Waterloo, Wisconsin-Madison

Comonotonicity and Maximal Stop-Loss Premiums*

1 Introduction

The stop-loss transform is an important tool for studying the riskiness of an

insurance portfolio In this paper, we consider the individual risk theory model,
where the aggregate claims of the portfolio are modelled as the sum of the claims
of the individual risks We investigate the aggregate stop-loss transform of such

a portfolio without making the usual assumption of mutual independence of the

individual risks Wang and Dhaene (1998) explore related problems in the case of
bivariate random variables We extend their work to an arbitrary sum of random
variables
To prove results concerning ordering of risks, one often uses characterizations of
these ordenngs within the framework of expected utility theory, see e g Kaas

et al (1994) We however, rely on the framework of Yaan's (1987) dual theory
of choice under risk Our results are easier to obtain m this dual setting
In Section 2, we provide notation and a brief mtioduction to Yaan's dual theory
of risk We introduce the notion of "comonotonicity", which is a special type of
dependency between the individual risks Loosely speaking, risks are comonotonic
if they "move in the same direction" In Section 3, we consider stop-loss order It
is well-known that stop-loss order is the order induced by all risk-averse decision
makers whose preferences among risks obey the axioms of utility theory We show
that the class of decision makers whose preferences obey the axioms of Yaan's
dual theory of risk and who have concave distortion functions, also induces stop-
loss order From this characterization of stop-loss order, we find the following
result If risk Xt is smaller m stop-loss order than risk Y%, for i 1, n, and

if the risks Yl are mutually comonotonic, then the respective sums of risks are
also stop-loss ordered In Section 4, we characterize the stochastic dominance
order within Yaan's theory In Section 5, we consider the case that the marginal
distributions ol the individual risks are given We derive an expression for the

*The authors would like to thank A Muller and C Ribas for helpful comments to an earlier

version of the papei J Dhaene and M J Goovaerts would like to thank lor the financial support
of Onderzoeksfonds K U Leuven (grant OT/97/6) and F O W (grant "Actuarial ordering of
dependent risks')
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maximal aggregate stop-loss premium in terms of the stop-loss premiums of the

individual risks Finally, m Section 6, we piesent several examples to illustrate
our results

We remark that Wang and Young (1998) further consider ordering of risks under
Yaan's theory They extend hrst and second stochastic dominance ordermgs to

higher ordermgs in this dual theory of choice under risk

2 Distortion Functions and Comonotonicity

For a risk X (l e a non-negative real valued random variable with a finite
mean), we denote its cumulative distribution function (cdf) and its decumulative
distribution function (ddf) by F\ and Sx respectively

Fx{x) Pi{X < x} 0 < x < co,
Sx{x) Pr{X > x} 0 < x < oo

In general, both Fx and Sx are not one-to-one so that we have to be cautious

in defining then inverses We dehne Fxl and 5X' as follows

Fxl(p) =mf{x Fx{x)>p}, 0 < p < 1 Fx'(0)=0,
sx\p) mf{x Sx{x)<pj, 0<p<\, Sx]{l) 0,

where we adopt the convention that mf<fi oo We remaik that Fxx is non-
decreasing Sx is non-mcreasing and Sx\p) — Fxl( 1 — p)
Starting from axioms for preferences among risks, Von Neumann and Morgenstern

(1947) developed utility theory They showed that, within this axiomatic

framework, each decision-maker has a utility function u such that he or
she prefers risk X to nsk Y (oi is indifferent between them) if and only if
E(u(-X)) > E(u(—Y))
Yaari (1987) presents a dual theory of choice under risk In this dual theory, the

concept of "distortion function" emerges It can be considered as the parallel to
the concept of "utility function" in utility theory

Definition 1 A distortion function q is a non-decreasing function q [0, ll —> [0, 11

with g(0) 0 and g(l) 1

Starting from an axiomatic setting parallel to the one in utility theory, Yaari shows
that there exists a distortion function q such that the decision maker prefers risk
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X to risk Y (or is indifferent between them) if and only if Hg(X) < Hg(Y),
where for any risk X, the "certainty equivalent" Hg(X) is defined as

We remark that Hg{X) E(X) if g is the identity. It is straightforward that

f/[5x(a:)] is a non-increasing function with values in the interval [0, 1], However,

Hg{X) cannot always be considered as the expectation of X under a new probability

measure, because will not necessarily be right-continuous. For a

general distortion function g the certainty equivalent Hg(X) can be interpreted as

a "distorted expectation" of X, evaluated with a "distorted probability measure"
in the sense of a Choquet-integral, see Denneberg (1994).
In the sequel, we often consider concave distortion functions. A distortion function

g will said to be concave if for each y in (0, 1], there exist real numbers ay and

by and a line l(x) — ayx + by, such that l(y) g(y) and l(x) > g(x) for all

x in (0, 1]. A concave distortion function is necessarily continuous in (0,1], For
convenience, we will always tacitly assume that a concave distortion function is

also continuous at 0. Remark that for any concave distortion function g, we have
that 's right-continuous, so that in this case the certainty equivalent
Hg(X) can be interpreted as the expectation of X under an adjusted probability
measure.

In this paper, we will use two special families of distortion functions for proving
some of our results. In the following lemma, we derive expressions for the

certainty equivalents Hg{X) of these families of distortion functions. For a subset

A of the real numbers, we use the notation 1a for the indicator function, which
equals 1 if a; A and 0 otherwise.

Lemma 1 (a) Let the distortion function g be defined by g(x) I(x > p),
0 < x < 1, for an arbitrary, but fixed, p 6 [0, 1). Then for any risk X, the

certainty equivalent Hg(X) is given by

(b) Let the distortion function g be defined by g(x) mm(x/p, 1), 0 < x < 1, for
an arbitrary, but fixed, p 6 (0, 1], Then for any risk X, the certainty equivalent
Hg(X) is given by

Hg{X) S-x\p).

L
DO

Hg(X) Sfl(p) +
P Jsx'(p)

Sx(x) dx.
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Proof (a) First let g be defined by g(x) I(x > p). As we have for any x > 0

that Sx(x) < p <=> Sf-1 (p) < x, we find

from which we immediately obtain the expression for the certainty equivalent,
(b) Now let g be defined by g(x) ram(x/p, 1). In this case we find

We can use the distortion functions defined in part (b) of Lemma 1 to construct
concave piecewise linear distortion functions. Indeed, let g be the concave
piecewise linear distortion function with crack points at a* (i 1,... ,n — 1),

where 0 ao < aq < • • < an_i < an 1. Further, let the derivative of g in
the interval be given by ctq. Because of the concavity of g, we have

that at is a decreasing function of i. The function g can then be written as

if we set an+\ 0. We can conclude that any concave piecewise linear distortion
function g can be written as a linear combination of the distortion functions
considered in Lemma 1(b). Observe that we also have that any certainty equivalent
Hg(X) of a concave piecewise linear distortion function g can be written as

a linear combination of the certainty equivalents of the distortion functions
considered in Lemma 1(b).
Yaari's axiomatic setting only differs from the axiomatic setting of expected
utility theory by modifying the independence axiom. This modified axiom can be

expressed in terms of "comonotonic" risks.

Definition 2 The risks X\,Xj: - ,Xn are said to be mutually comonotonic if
any of the following equivalent conditions hold:

from which we immediately obtain the desired result.

n

g{x) ^ai{ai - at+\) min (a:/at, 1)

n= 1

(1) The cdf FXuXi,....xn of (Xl.X2,. ,Xn) satisfies

Fxl,x1,...,xn{x],-.. ,xn)= min^^i), • • • FXn{xn)\

for all xi,... xn > 0.
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(2) There exists a random variable Z and non-decreasing functions u\,... ,un
on R such that (Xi,... Xn) (u\(Z),... un(Z)).

(3) For any uniformly distributed random variable U on [0, I], we have that

(X,,... ,*„)! {Fxl((/),... ,Fxl(U)).

T>
In the definition above, the notation "=" is used to indicate that the two
multivariate random variables involved are equal in distribution. The proof for
the equivalence of the three conditions is a straightforward generalization of the

proof for the bivariate case considered in Wang and Dhaene (1998).
We end this section by the following theorem which states that the certainty
equivalent of the sum of mutually comonotonic risks is equal to the sum of the

certainty equivalents of the different risks.

Theorem 2 If the risks X\,X2,. ,Xn are mutually comonotonic, then

n

Hg(X, +X2 + ---+Xn) J2 Hg(Xi).
i= 1

Proof A proof for the bivariate case can be found in Denneberg (1994) or
Wang (1996). A generalization to the multivariate case follows immediately by
considering the fact that if X\, X2, Xn are mutually comonotonic, then also

X\ + X2 + + Xn-\ and Xn are mutually comonotonic.

3 Stop-Loss Order and Comonotonicity

For any risk X and any d > 0, we define (X — d)+ max(0, X — d). The
stop-loss premium with retention d is then given by E(X — d) +

Definition 3 A risk X is said to precede a risk Y in stop-loss order, written
X <si Y, iffor all retentions d > 0, the stop-loss premium for risk X is smaller
than that for risk Y:

E(X — d)+ < E(Y — d)+

In the following theorem, we derive characterizations of stop-loss order, within
the framework of Yaari's dual theory of choice under risk.
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Theorem 3 For any risks X and Y, the following conditions are equivalent:

(1)X <„i Y.

(2) For all distortion functions g defined by g(x) min(ir/p, l),p G (0, 1], we
have that Hg(X) < Hg(Y).

(3) For all concave distortion functions, we have that Hg(X) < Hg(Y).

Proof (1) => (2): Let p be an arbitrary but fixed element of (0,1] and let g be

defined by g(x) mm(x/p, 1). We have to prove that Hg(X) < Hg(Y).
Choose d Sf^p). Taking into account that E(X — d)+ < E(Y — d), and that

Sy(%) < p ^ d < x, we find

rOC

Hg(X)= / mm(Sx{x)/p,l)dx
Jo

I'd rOO

/ min(5x {%)/Pi 0 dx + / min {Sx{x)/p1\)dx
Jo Jd

<d+ -E(X — d)+ < d + -ElY - d)+
P P

POO

/ min(5y(x)/p,\)dx Hq{Y).
Jo

(2) => (3): Let o be a concave distortion function. We have to prove that

Hg(X)<Hg(Y).
If Hg(Y) oo, the result is obvious.

Let us now assume that Hg(Y) < oo. The concave distortion function g can be

approximated from below by concave piecewise linear distortion functions gn such
that for any x G [0, 1], we have that g\{x) < g2{x) < • < gn{x) < • < g(x)
and liirin^oo gn (x) g(x). From earlier observations, we find that (2) implies
Hgn{X) < H9n{Y) < HgiY) < oo for all n. From the monotone convergence
theorem we find that lim^oo Ha„ (2f) H„(X), so that we can conclude that

Hg{X) < Hg(Y).

(3) => (1) : Let d be an arbitrary but fixed non-negative real number. We have

to prove that E(X — d)+ < E(Y — d)+.
If Sx{d) 0, then E(X — d)+ 0, so that we immediately find that

E{X -d)+ < E(Y - d)+.
Now assume that Sx(d) > 0. In this case, choose g(x) min{x/p, 1) with p
Sx(d). Taking into account that Hg(X) < Hg(Y) and that Sx{x) < p ^ d < x,
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we find

E(X — d)+ pHg(X) — f mm(Sx(x),p) dx
Jo

pHg{X)-pd<pHg(Y)-pd

< pHg(Y) — / mm(5y(i),p) dx < E(Y — d)+
Jo

This completes the proof

Remark that a proof for the equivalence of (1) and (3) in Theorem 3 can also
be found in Yaan (1987) The proof presented here is more elementary The idea
for the constructive proof of (2) => (3) is due to Muller, A
Within the framework of expected utility theory, stop-loss order of two risks
is equivalent to saying that one risk is preferred over the other by all risk
averse decision makers From the theorem above, we see that we have a similar
interpretation for stop-loss order withm the framework of Yaan's theory of choice
under risk Stop-loss order of two risks is equivalent to saying that one risk
is preferred over the other by all decision makers who have non-decreasing
concave distortion functions See Wang and Young (1998) for related results
Note that our Theorem 3 is more general than the corresponding result of Wang
and Young (1998) because we do not assume that the distortion functions are
differentiable
If we assume that g belongs to the class of concave distortion functions, then the

certainty equivalent is subadditive, which means that the certainty equivalent of
a sum of risks is smaller than or equal to the sum of the certainty equivalents
This property is stated in the following theorem

Theorem 4 If the distortion function g is concave, then for any risks X\, Xi,
Xn, we have that

n

Hg(X, + X2 + + Xn) < J2 Hg(x«)
i=i

Proof For any risks X and Y, and for any uniformly distributed random variable
U defined on [0, 1], we have that X + Y <sj Ff\U) + Ffl(U), see Dhaene

and Goovaerts (1996) As we have for any risk X that X we
find from Theorem 2 and Theorem 3 that for any concave distortion function

Hg{X + Y) < Hg(X) + Hq(Y) The generalization to the multivariate case is

straightforward
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This theorem (restricted to the bivariate case) can be found in Denneberg (1994),
see also Wang and Dhaene (1998).
It is well-known that stop-loss order is preserved under convolution of mutually
independent risks, see e. g. Goovaerts et al. (1990). In the following theorem we
consider the case of mutually comonotonic risks.

Theorem 5 If X\,Xj,... ,Xn and Yj,I2, • • ,Yn are sequences of risks with

Xi <s,i Yt (1 1,... TT.) and with Y\, Yj> • • ,Yn mutually comonotonic, then

n n

J2xz<s[J2Y-
i=i «=1

Proof Using Theorems 2, 3 and 4 we find that for any concave distortion
function g.

n

Hg(Xl + X2 + + Xn) < J2 Hg(Xz)
1=1

n

1=1

Hg(Yi + y2 + • + Yn).

which proves the theorem.

Not that in the theorem above, we make no assumption concerning the dependency

among the risks Xt. This means that the theorem is valid for any dependency

among these risks.
The following corollary follows from Theorem 5.

Corollary 6 For any random variable U, uniformly distributed on [0. 1] and any
risks X\, X2, • Xn, we have

71 71

2=1 2=1

Another proof for this corollary, in terms of "supermodular order", can be found
in Müller (1997).
Note that (Xi, X2, Xn) and [Ff] (U), Ff* Ff\ (U)) have the same

marginal distributions, while the risks Fx! (U), i 1,... ,77, are mutually
comonotonic. Hence, Corollary 6 states that in the class of all multivariate risks

(Xi,... ,Xn) with given marginals, the stop-loss premiums of X\+X2 + - -+Xn
are maximal if the risks Xt are mutually comonotonic.
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4 Stochastic Dominance and Comonotinicity

In this section, we first examine whether Theorem 5, which holds for stop-loss
order, also holds in the case of stochastic dominance, i. e. if "<si" is replaced
by "<st".

Definition 4 A risk Y is said to stochastically dominate a risk X, written
X <st Y, if the following condition holds:

Sx{x) < Sy{x) for all x > 0.

Let Xi, X2, Y\ and Y2 by uniformly distributed random variables defined on [0, 1].

with X2 1 — X\ and Y\ Y2. Then we have that Y\ and I2 are comonotonic.
Further Xt <st Yt (1 1,2). After some straightforward calculations, we find
that

FXt+x2{x) < Fy,+y2(x) if 0 < x < 1,

Fx,+x2{x) > fy+y2{x) if x > 1

Hence, X\ + X2 is not stochastically dominated by Y\ + Y2 so that Theorem 5

cannot be extended to the case of stochastic dominance. However, stochastic
dominance implies stop-loss order, so we should have that X\ + X2 <&i Y\ + Y2.

This follows indeed from the crossing condition above.

Theorem 7 For any risks X and Y, the following conditions are equivalent:

(1)*<st Y.

(2) For all distortion functions g we have that Hg(X) < Hg(Y).

(3) Sxl(p) < Sf\p) for all p 6 [0,1],

Proof (1) => (2): Straightforward.

(2) => (3): As we have that ^'(l) ^'(l) b, the conclusions follows
immediately for p 0.

Now let p G [0, 1) and consider the distortion function g defined by g(x)
I(x > p), 0 < x < 1. The proof then follows from Lemma 1.

(3) => (1): For an arbitrary, but fixed x > 0, let p 5y(x). From S^l(p) <

Sfl(p) and Syl(jp) Sfl(SY{x)) < x and the fact that Sx is non-decreasing,
we find

Sx{x) < Sx (5y'(p)) < Sx (Sf](p)) <p SY(x).

As the proof can be repeated for any x > 0, we find that condition (3) implies
condition (1).
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Within the framework of utility theory, it is well-known that stochastic dominance
of two risks is equivalent to saying that one risk is preferred over the other by all
decision makers who prefer more to less. From the theorem above, we see that,
within the framework of Yaari's theory of choice under risk, stochastic dominance
of risk Y over risk X holds if and only if all decision makers with non-decreasing
distortion function prefer risk X.

5 Maximal Stop-Loss Premiums in the Multivariate Case

From Corollary 6, we concluded that in the class of all multivariate risk (X\,X2,
Xn) with given marginals, the stop-loss premiums are maximal if the risk Xt

i 1,... n, are mutually comonotonic. For comonotonic risks Xt, the stop-loss
premium with retention d is given by

E(Xx + • + - d)+ /
'

[Fx;(p) + + F^(p) -d] dp.
Jo

Now we will derive another expression for this upper bound.

Theorem 8 Let X\,... Xn be mutually comonotonic risk. Then for any retention
d > 0, we have

n

E(Xl+--- + Xn-d)+=J2E(X*-d^+-[d-Sx(Sx(d))} Sx(d)
n— 1

where X X\ + + Xn and the dt are defined by dt S^(Sx(d)).

Proof If Sx {d) 0, then the inequality trivially holds.

Now assume that Sx{d) > 0. Let p Sx{d) and define a distortion function g
by g(x) min (a;/p, 1) for 0 < x < 1. As Xi, • • • ,Xn are mutually comonotonic
we find from Theorem 2 that

n

Hg{X) YJHg{*.)
I— 1

Using Lemma 1 this equality can be written as

Sx\p) +l-E(X- S-'(p))+ =£S->) +l-j2E(Xt- Sxl(p))+
^ 2=1 V 2=1
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from which we find

n

E{X-S-x\p))+ YJE{Xl-dl)+,
l=\

because Sx\p) YH%= \ ^'(p) f°r comonotonic risks, sec Denneberg (1994) or
Wang (1996).
On the other hand, we have that

E(X-d) + =E(X-S~x\P)) - [d-Sxl(d))]Sx(d)
Now combine these two equalities to obtain the desired result.

From Theorem 8 we see that, apart from a correction factor, any stop-loss
premium for the sum of comonotonic risks can be written as a sum of stop-
loss premiums for the individual risks involved.
Note that in general we have that S^1 (Sx(d)) < d. However, if Sx{%) > Sx{d)
for all x < d, then Sxl (Sx{d)) d, so that in this case

n

E(Xl+--- + Xn-d)l =YJE(^-dl)+
71= 1

with the d, as defined in Theorem 8. In this case, we also have that J^"=i d% d-

6 Examples

In this final section, we derive expression for the stop-loss premiums of a sum of
comonotonic risk, for some specific cases. We first consider the case for which
all risks have a two-point distribution and then three cases for which all risks
have continuous distributions.

Example 1: The Individual Life Model
Assume that each risk Xt, (i 1,... ,n) has a two-point distribution in 0 and

at> 0 with Pr(Xj at) qt. The ddf of Xr is then given by

SxAx)
if 0 < x < a.

if x > ai,

from which we find

rt i f at, if 0 < p < ql,
sxt (p) ~ n0. if qz < p < 1
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Without loss of generality, we assume that the random variables Xl are ordered
such that qt > > qn. Now assume that the risks are comonotonic, then we
have

n f a\ H Nn, if 0 < p < qn

Sxl(p) Sxl (p)=|ai+-"+flj, if qj+i < P < Qj

1=1 [ 0, if q\ < p < 1

Hence,

q\ if 0 < x < a i

Sx{x) { qj+\ if a\ + b a-, < x < a\ + • • + aJ+\, 1 < j < n,
0, if x > a\ + b an

which means that X is a discrete random variable with point-masses in 0, a i,
d i + &2> &\ ~t~ ^2 + • • • > d\ + 0*2 + • ' ' + Cln.

Now, using the formula E(X — d)+ — S{x)dx we find

^2qtaz - dq\ if 0 < d < ü]

E(X - d)+ - |cf- '^jaJ jqJ+\ if ^ at < d < ^ a3

2=J+ 1

J + l

2= 1 2=1

0, if d > '

2=1

This individual life model is more extensively considered in Dhaene and Goo-
vaerts (1996).

Example 2: Exponential Marginals
Assume that each Xt, (i 1,... n) is distributed according to the Exponential
(6J distribution {bl > 0) with ddf given by

SXt{x) e~x'b\ x > 0.

For comonotonic Xt, the inverse ddf of their sum X is

Sx1(p) ~blnT>

in which b Thus,

Sx{x) e~x/b. x>0.
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In other words, the comonotonic sum of exponential random variables is

exponentially distributed. Heilmann (1986) considers the case of n 2.

One can easily verify that the stop-loss premium with retention d is given by

E(X - d)+ be-d/b.

Example 3: Pareto Marginals
Assume that each Xt (i 1,... n) is distributed according to the Pareto (a, bt)
distribution (a, bz > 0) with ddf given by

' s>°-

For comonotonic Xt, the inverse ddf of their sum X is

S~x\p) b(p-{'a- l),
in which b Y^l=\ bf Thus,

Sx{x) (-r~—) ^ > 0

In other words, the comonotonic sum of Pareto random variables (with identical
first parameter) is a Pareto random variable.
One can easily verify that for any d > 0 we have that

£(x "= (jTA1 a>1'

Example 4: Exponential-Inverse Gaussian Marginals
Assume that each Xt, (i 1,... n) is distributed according to the exponential-
inverse Gaussian (&4,ct) distribution (buct > 0) with ddf given by

5'x,(a;)=exp -2^/c~ [y/x + bl- v'&T) x > 0.

see Hesselager, Wang and Willmot (1997). In this case the inverse ddf of Xt is

given by

Thus, for comonotonic Xt, the inverse ddf of their sum X is

Sxip) -(^p)2-\l-Jnp,
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m which c XT=i cj ' and b c (27=1 V t, Thus

Sx(t) CXP —2\/c(Vx~+~b—Vb 2 > 0.

In other words, the comonotonic sum of exponential-inverse Gaussian random
variables is also an exponential-inverse Gaussian random variable
One can easily verify that for any d > 0 we have that

E(X — d)+ exp —2y/c yVd + b — \fb
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Abstract

In this paper, we investigate the relationship between comonotomcity and stop-loss order We prove
our main results by using a characterization of stop-loss older within the hamewoik of Yaari's

(1987) dual theoiy ot choice under risk Wang and Dhaene (1998) explore iclatcd problems in the

case of bivariate random variables We extend their woik to an arbitrary sum of random variables
and present several examples illustrating our results

Resume

Dans cet article on etliche la lelation entre comonotonie et ordie stop loss Nous demontrons nos

prmcipaux resultats en utilisant une caractensation de 1'ordre stop loss provenant de la theorie

duale du choix sous risque de Yaart (1987) Wang et Dhaene (1998) traite de problemes analogues

pour le cas de variable aleatoire bivariee Nous etendons leurs travaux aux sommes arbiti aires de

variables aleatoires et presentons plusieurs exemples illustrant nos resultats

Zusammenfassung

In diesem Artikel wird die Beziehung zwischen Komonotomzitat und Stop-Loss Ordnung untersucht

Wir beweisen die wichtigsten Resultate mit Hilfe einer Charakterisierung der Stop-Loss-Ordnung

im Rahmen von Yaan's (1987) Duahtatstheone der Wahl unter Risiko Wang und Dhaene (1998)
untersuchen verwandte Probleme für den Fall von bivariaten Zufallsvariablen Wir verallgemeinern
ihre Aibeit auf eine beliebige Summe von Zutallsvariablen und illustrieren unsere Eigebnisse anhand

verschiedener Beispiele
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