Die chemische Untersuchung der Mineralquellen von Val sinestra bei Sent (Unter-Engadin)

Autor(en): Nussbaumer, Gustav

Objekttyp: Article

Zeitschrift: Jahresbericht der Naturforschenden Gesellschaft Graubünden

Band (Jahr): 43 (1899-1900)

PDF erstellt am: 17.07.2024

Persistenter Link: https://doi.org/10.5169/seals-594956

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

Die chemische Untersuchung

der

Mineralquellen von Val sinestra

bei Sent (Unter-Engadin).

Von DR. GUSTAV NUSSBERGER.

Einleitung.

ie Mineralquellen, über deren chemische Zusammensetzung im folgenden berichtet wird, liegen in der Val sinestra, demjenigen unterengadinischen Seitenthale des Inns, das unweit der bekannten Heilquellengegend Schuls-Tarasp zwischen den Ortschaften Sent und Remüs ausmündet. Auf der rechten Seite dieses Thales treten etwas südlich von der Vereinigung der Val Ruinas mit der Val sinestra eirea 1470 m ü. M. auf verhältnissmässig kleinem Gebiete eine Menge stärkerer und schwächerer Mineralquellen, welche vom Volksmunde als "las auas fortas" (Sauerquellen) bezeichnet werden, zu Tage. dunkelfarbigem kalkhaltigem Thonschiefer entspringen (Allgäuschiefer) und waren, wenn auch nachgewiesenermassen schon früh von Bewohnern des Unterengadins benutzt, doch infolge ihrer Lage in dem einsamen und vom Fremdenverkehr früher kaum berührten Thale weitern Publikum vor dem Jahre 1860 kaum bekannt. Als dann der Kurort Schuls-Tarasp zu grösserer Bedeutung gelangte, da wandte sich auch das Interesse mehr als vorher den Quellen in der Val sinestra zu und im Jahre 1875

wurden nach der damaligen Auffassung die zwei stärksten derselben, die Ulrichs- und Conradinsquelle im Quellentuff gefasst und durch Prof. Dr. Husemann in Chur einer qualitativen und quantitativen Analyse unterworfen. Trotz des ausserordentlich günstigen Ergebnisses dieser Analyse unterblieb verschiedener schwer zu überwindender Schwierigkeiten wegen eine Ausbeutung der Mineralquellen, bis sich endlich in den letzten Jahren eine Gesellschaft die verdienstliche Aufgabe stellte, den Quellen von Val sinestra zu dem ihnen gehörenden Platz unter den Heilquellen zu verhelfen. Im Jahre 1898 wurde die Gegend der "auas fortas" bei Sent im Auftrage der Gesellschaft durch den Quellentechniker Scherrer von Neunkirch einer Untersuchung unterworfen und in den darauf folgenden Jahren gelang es Herrn Scherrer, die vielen vorhandenen Quellen auf 4 einzelne im Mineralgehalt wesentlich von einander abweichende Quellenstränge zurükzuführen und drei derselben im Felsen sicher zu fassen und hernach in ein Gebäude zu leiten. Fassung und Leitung sind aus reinem Zinn hergestellt und entsprechen auch im Uebrigen den weitgehendsten Anforderungen. Im Jahre 1899 erhielt ich den Auftrag, drei der Quellen, deren Fassung zu der Zeit vollständig fertig erstellt war, zu untersuchen und begab mich am 30. November desselben Jahres nach Val sinestra, um dort die an Ort und Stelle nötigen analytischen Arbeiten auszuführen.

A. Allgemeiner Theil.

In diesem Abschnitt sind die Methoden, welche bei den im 2. Theil angeführten Bestimmungen befolgt wurden, so weit es mir nötig erschien, kurz skizziert.

1) Bestimmung der Gesammt-Kohlensäure.

Diese geschah an Ort und Stelle nach dem Prinzip Petterson (Berliner Berichte 1890, 1402) auf gasvolumetrischem Wege. Aus einer bestimmten Menge von Mineralwasser wurden die freie und zum Theil auch die halbgebundene Kohlensäure bei vermindertem Drucke extrahirt, die gebundene und halbgebundene mit Salzsäure vollständig befreit und schliesslich mit Wasserstoff, der aus Aluminiumdraht und Salzsäure entwickelt wurde, verdrängt. Die so erhaltenen Gase wurden über Quecksilber aufgefangen, gemessen und, nach der Behandlung mit Kalilauge im Orsatapparat, nochmals gemessen. Die Differenz war Kohlensäure. Als Apparat diente die Modifikation von Treadwell (siehe Treadwell: "Die chemische Untersuchung der Heilquellen in Passugg").

2) Reaction auf Schwefelwasserstoff.

Diese wurde mit Nitroprussidnatrium und ferner mit p - Amidodimethylanilinsulfat in salzsaurer Lösung und Eisenchloridlösung ausgeführt, jedoch in den Quellen 1, 3 und 4 ohne positiven Erfolg. Zur Zeit der Probeentnahme führten also diese Quellen keinen Schwefelwasserstoff mit sich.

3) Bestimmung der Kieselsäure, des Eisens, des Aluminiums, des Calciums und des Magnesiums.

Die später bezeichnete Menge Wasser wurde mit Salzsäure schwach angesäuert und sodann in einer Platinschale auf dem Wasserbade zur Trockne verdampft; auf den bei 140° C. getrockneten Rückstand wirkte längere Zeit konzentrirte Salzsäure ein; dann wurde er mit heissem Wasser aufgenommen und die ausgeschiedene Kieselsäure durch Filtration getrennt und bestimmt. Das Filtrat wurde mit Bromwasser oxydiert und mit Ammoniak in geringem Ueberschuss gefällt. Der Niederschlag, welcher Eisen, Aluminium und Phosphorsäure enthielt, wurde in Salzsäure gelöst und nach zweimaliger Fällung geglüht und gewogen und hernach nochmals in Salzsäure gelöst. Diese Lösung wurde eingedampft und das Eisen vermittelst Schwefelsäure in Sulfat verwandelt, von Salzsäure vollständig befreit und, nach der Reduktion mit Zink, vermittelst Kaliumpermanganat-Lösung titriert. Der Gehalt der letzteren war mit electrolytisch abgeschiedenem Eisen bestimmt worden. (Siehe Lunge, chemisch-technische Untersuchungsmethoden, pag. 100). Das Aluminiumoxyd ergab sich aus der Differenz zwischen dem Ammon-Niederschlag einerseits und dem bestimmten Gehalt des Wassers an Eisenoxyd und Phosphorsäure andererseits. (Siehe weiter unten.)

Im Filtrat der Ammoniakfällungen wurde das Calcium durch doppelte Fällung mit Ammoniumoxalat als Calciumoxalat abgeschieden und dieses durch Glühen in Calciumoxyd übergeführt und als solches gewogen.

Das Filtrat der Calciumfällung wurde eingedampft, durch Glühen von den Ammonsalzen befreit. Im so erhaltenen Rückstande, der mit Salzsäure gelöst war, wurde das *Magnesium* als Magnesiumammoniumphosphat gefällt, abfiltriert und durch Glühen in Magnesiumpyrophosphat verwandelt und als solches gewogen.

4) Bestimmung des Mangans und der Phosphorsäure.

Eine bestimmte Menge Wasser wurde auf dem Wasserbade stark eingeengt, durch Filtration in einen löslichen und einen unlöslichen Theil getrennt und letzterer zur Bestimmung von Mangan und Phosphorsäure verwendet. Nachdem die Kieselsäure, wie oben bemerkt, abgeschieden war, wurde die Lösung mit Ammoniak neutralisirt und mit

Schwefelammon gefällt. Der Niederschlag wurde alsdann in Salzsäure gelöst und mit Salpetersäure wiederholt zur Trockne eingedampft und hernach in wenig Salzsäure gelöst und die Lösung mit Ammoniumacetat behandelt. Der so erhaltene Niederschlag diente zur Bestimmung der Phosphorsäure nach der Molybdänmethode. Im Filtrat wurde das Mangan als Schwefelmangan gefällt und als solches im Rose'schen Tigel geglüht und gewogen.

5) Bestimmung des Lithiums.

Dazu diente ein nach vorigem Abschnitt durch Einengen des Mineralwassers erhaltener löslicher Theil. selbe wurde stark eingeengt und dann mit Alkohol extrahirt; das Extract wurde durch Destillation vom Alkohol befreit. Mit dem so erhaltenen Rückstand wurde dieselbe Operation zweimal wiederholt und der zuletzt erhaltene mit Wasser gelöst, die Lösung mit Salzsäure angesäuert, mit Bariumchlorid zur Beseitigung der Schwefelsäure gefällt, auf ein kleines Volumen gebracht, mit Alkohol extrahirt und nach dem Verjagen des letztern auf bekannte Weise das Magnesium, hernach das überschüssige Barium und schliesslich die Ammonsalze entfernt. Der geglühte Rückstand wurde mit Aether-Alkohol extrahirt und die Operation nach dem Eindunsten und Glühen des Rückstandes wiederholt. Endlich wurde das zurückbleibende Lithiumchlorid mit Schwefelsäure in Sulfat verwandelt und als solches gewogen.

6) Bestimmung der Borsäure.

Das Mineralwasser wurde bis zum Zugeben von Bariumchlorid nach 5) behandelt mit der Modifikation, dass der Alkohol jeweilen aus der alkalisch gemachten Lösung abdestilliert werde. Der letzte Rückstand wurde von organischen Substanzen befreit und darin nach der Methode von Gooch*) die *Borsäure* bestimmt.

^{*)} Zeitschrift für anal. Chemie 26.

7) Bestimmung von Kalium und Natrium.

Dieselbe geschah nach dem allgemein üblichen Verfahren. (Siehe 2. Theil.)

8) Bestimmung von Ammonium.

Eine bestimmte Menge Wasser wurde mit ammoniakfreier Sodalösung versetzt und aus einer Wanklyn'schen Retorte bei starker Wasserkühlung destilliert. Vom Destillat wurden je 50 cm³ in Glascylindern in ammoniakfreier Atmosphäre aufgefangen und deren Ammoniakgehalt der Reihe nach durch "Nesslerisiren" bestimmt und addirt.

9) Bestimmung des Jods und Broms.

Ein nach 4) erhaltener, löslicher Theil des stark eingeengten Mineralwassers wurde konzentrirt und nach 6) behandelt. Die organischen Substanzen des zuletzt erhaltenen Rückstandes wurden durch Glühen zerstört und das Jod in letzterem durch Nitrose abgeschieden, mit Chloroform gelöst und mit Thiosulfat bestimmt. Die von dem Ausschütteln mit Chloroform zurückgebliebene Lösung wurde alkalisch gemacht, eingedampft, hernach schwach geglüht. Der Rückstand diente in schwach schwefelsaurer Lösung zur Bestimmung des Gehaltes an Brom durch Titration mit Chlorwasser.

10) Bestimmung des Chlors.

Dieselbe geschah durch Fällung des Chlors vermittelst Silbernitrat auf bekannte Weise.

11) Bestimmung des Arsens.

Eine bestimmte Menge Wasser wurde eingeengt und mit arsenfreier Salzsäure angesäuert. Nachher wurde 5 Stunden lang Schwefelwasserstoff durchgeleitet und letzterer mit Kohlensäure verdrängt. Der so erhaltene Schwefelwasserstoff-Niederschlag wurde durch Filtration getrennt, in Schwefelammon gelöst. Die Lösung wurde zur Trockne verdampft, der Rückstand mit Salpetersäure oxydirt und letztere durch Schwefelsäure verdrängt. Die

schwach schwefelsaure, wässerige Lösung wurde in den Marsh'schen Apparat gebracht und dann das Gewicht des entstandenen *Arsen*spiegel ermittelt.

12) Bestimmung der Schwefelsäure.

Dieselbe geschah in der üblichen Weise durch Fällung als Bariumsulfat.

13) Nachweis von Barium und Strontium.

Eine bestimmte Menge Mineralwasser wurde durch Eindampfen in einen im Wasser unlöslichen und löslichen Theil getrennt. Der erstere wurde mit verdünnter Salzsäure in möglichst geringem Ueberschuss gelöst und mit etwas verdünnter Schwefelsäure versetzt und das ungelöst Bleibende mit Soda aufgeschlossen, und der im Wasser unlösliche Theil der Schmelze in Salpetersäure gelöst. Diese Lösung wurde zur Trockne verdampft und mit absolutem Alkohol extrahiert. Nach dem Verjagen des Alkohols zeigte sich ein sehr geringer Rückstand, der das Strontium und Barium-Spectrum aufwies.

14) Bestimmung der gebundenen, halbgebundenen und freien Kohlensäure.

Dieselbe geschah durch Berechnung siehe 2. Theil.

B. Spezieller Theil.

Quelle Nr. 1, Thomas.

1. Bestimmung der Temperatur.

Die Temperatur der Thomasquelle betrug am 1. Dez. 1899 8,5 ° C. bei einer Lufttemperatur von 4,7 ° C.

2. Bestimmung der Alkalinität. $26,2 \text{ cm}^3 \frac{n}{10} \text{ H Cl}$ 100 cm³ verbrauchen 26,1 , Somit 100 g 3. Bestimmung der Gesammt-Kohlensäure. a. 70,160 g Wasser geben 131,6713 cm³ Kohlensäure (CO₂) bei 0 ° 760 mm. 134,3199 b. 70,160 " 265,9912 cm³ 132,9956 Mittel 37,2592 g CO_2 $^{0}/_{000}$. Diese entsprechen 4. Nachweis von Schwefelwasserstoff. Es war kein Schwefelwasserstoff nachweisbar. 5. Bestimmung des specifischen Gewichtes. Bei 15° C besitzt das Thomaswasser ein specifisches Gewicht von 1,00256 g. 6. Bestimmung des Kaliums. a. $1000 \text{ cm}^3 = 1002,56 \text{ g W}$. geben 0,7165 g KCl + NaCl + LiCl" 0,7159 " " b. 1002,56 , , 1,4324 g0,7162 " Mittel entsprechend 7,1467 "KCl+LiCl+NaCl 0/000. a. $1000 \text{ cm}^3 = 1002,56 \text{ g Wasser gaben } 0,1126 \text{ g K}_2 \text{ PtCl}_6$ 1002,56 " b. 0,1134 " 0,2260 gMittel 0,1130 " entsprechend 0,01821 g Kalium 0,03470 "KCI 0,1816 , K ⁰/₀₀₀ 0,3461 g KCl " 7. Bestimmung des Lithiums. 6288,7 g Wasser geben 0,0220 g Li₂ SO₄ entsprechend 0,0028 "Li 0,0044 " Li ⁰/000

0,0266 " LiCl "

8. Bestimmung des Natriums.

In 10000 g Wasser sind enthalten: nach 6: Summe von KCl + LiCl + NaCl = 7,1467 g $^{0}/_{000}$ = 0,3461 = 0,

 $\begin{array}{lll} \text{,} & 6 \colon \text{KCl} & = 0.3461 \text{ ,} & \text{,} \\ \text{,} & 7 \colon \text{LiCl} & = 0.0266 \text{ ,} & \text{,} \end{array}$

Somit NaCl = 6,7740 g "

Diese entsprechen Na 2,6691 g ⁰/₀₀₀.

9. Bestimmung des Ammoniums.

In 10000 g Wasser sind enthalten 0,0201 g NH₄.

10. Bestimmung des Calciums.

a.
$$1000 \text{ cm}^3 := 1002,56 \text{ g}$$
 Wasser geben $0,4774 \text{ g}$ CaO b. $1002,56 \text{ g}$ Wasser geben $0,4798 \text{ g}$ $0,9572 \text{ g}$ Mittel $0,4786 \text{ g}$ $0,3419 \text{ g}$ Ca entsprechend $0,3419 \text{ g}$ Ca $0,4703 \text{ g}$ Ca $0,4703$

11. Bestimmung des Magnesiums.

12. Bestimmung des Eisens.

a.
$$1000 \, \mathrm{cm^3} \!\!=\!\! 1002,\! 56 \, \mathrm{g} \, \mathrm{W}. \, \mathrm{geben} \, 0,\! 0152 \, \mathrm{g} \, \mathrm{Fe}_2 \mathrm{O}_3 \!\!+\!\! \mathrm{Al}_2 \mathrm{O}_3$$

b.
$$\frac{0,\! 0150 \, \mathrm{g}}{0,\! 0302 \, \mathrm{g}} \, \mathrm{Mittel} \, 0,\! 0151 \, \mathrm{g}$$

$$0,\! 0151 \, \mathrm{g}$$
 entsprechend $0,\! 1506 \, \mathrm{g} \, \mathrm{e}^0/000$.

Titrimetrische Bestimmung des Eisens.

3,9 cm³ verbraucht; 1 cm³ = 0,00265 g Fe.

$$1002,56$$
 g Wasser — 0,010335 g Fe dies entspricht 0,1031 g Fe $^{0}/_{000}$, $0,1473$, Fe₂ O₃ $^{0}/_{000}$.

```
13. Bestimmung des Mangans.
a. 6288,7 g Wasser geben 0,00339 g MnS
                           dies entspricht 0,0054 g MnS <sup>0</sup>/<sub>000</sub>.
b. 7521,95 g Wasser geben 0,0040 g MnS
                           dies entspricht 0,0055,
                                             0.0109 g
                                            0,00545 g "
                              Mittel
                              entsprechend 0,0034 "Mn
             14. Bestimmung des Aluminiums.
Nach 12. enthalten 10000 g Wasser 0,1506 g Fe<sub>2</sub> O<sub>3</sub> +Al<sub>2</sub> O<sub>3</sub>
                                       0,1473 " " "
                     10000 ,,
                               bleibt
                                       0,0033 g Al<sub>2</sub> O<sub>3</sub>.
                  diese entsprechen 0,0017 "Al
     NB. Siehe auch Nr. 20.
         15. Nachgewiesen in Spuren Ba und Sr.
                  16. Bestimmung des Jods.
                                            0.001213 \text{ g J}
      Titer der Thiosulfatlösung
                                            0.75 \text{ cm}^3
      verbraucht wurden
      10020,0 g Wasser enthalten somit 0,0009097 g J
                                            0,00091
      10000
                           dies entspricht 0,0017 g Ag J
                17. Bestimmung des Broms.
        10020,0 g Wasser
                                       0,0135 \text{ g Br}
                                       0,0135 , , 0/000
                   entsprechend
                                       0.0317 , Ag Br ^{0}/_{000}.
                18. Bestimmung des Chlors.
a. 100 \text{ cm}^3 \text{ W.} = 100,256 \text{ g geben } 0,0817 \text{ g AgCl} + \text{AgBr} + \text{AgJ}
                               " 0,0788 " "
                 100,256 "
b.
                                   0.1605 g
                                   0,08045 g "
                 Mittel
                 dies entspricht 8,0244 ""
           AgCl + AgBr + AgJ = 8,0244 g
                  nach 16: AgJ = 0.0017,
                        17: AgBr = 0.0317,
                     Somit AgCl = 7,9910 \text{ g}^{-0}/_{000}
                        entspricht = 1,9755 , Cl ,
```

```
19. Bestimmung der Schwefelsäure.
a. 500 \text{ cm}^3 = 501,28 \text{ g Wasser geben } 0,1282 \text{ g Ba SO}_4
b.
                 501,28 "
                                            0,1289 " "
                                            0.2571 g
                                            0,12855 g Ba SO<sub>4</sub>
                          Mittel
                          dies entspricht 2,5644 "
                                            1,0573 ,
            20. Bestimmung der Phosphorsäure.
     Diese wurde in 10020,0 g Wasser nur in Spuren nach-
gewiesen.
               21. Bestimmung der Borsäure.
       7521,95 g Wasser geben 0,3454 g B<sub>2</sub> O<sub>3</sub>
                        entspricht 0,4243 "B O<sub>2</sub>
                                     0,5641 , , , 0/000
             22. Bestimmung der Arsensäure.
      2000 \text{ cm}^3 = 2005,12 \text{ g Wasser}
                                          0,0013 \text{ g As}
                                           0,0065 " "
                             entspricht
                                           0,0120 " AsO<sub>4</sub> "
          23. Salpetersäure ist nicht nachweisbar.
              24. Bestimmung der Kieselsäure.
a. 1000 \text{ cm}^3 = 1002,56 \text{ g Wasser geben } 0,0066 \text{ g Si } O_2
                                          " 0,0076 " "
b.
                  1002,56 "
                                              0.0142 g
                                              0,0071 " "
                            Mittel
                            dies entspricht 0,0709 " " "
                                               0,0898 "Si O3
      25. Berechnung der gebundenen Kohlensäure.
                         a. Kationen.
                      2,6691
      Na
                                                   0,11579
                      23,05
                                  0.1816
      K
                                                   0,00464
                                   39.15
                      0,0044
      Li
                                                   0,00062
                       7,03
                                   0.0201
      NH_4
                                                   0,00111
                                   18,08
                      3,4103.2
                                                   0,17051
      Ca
             ___
                        40
                                  0,5227.2
                                                   0,04291
      Mg
             ----
                                   24,36
                      0,1031.2
      Fe
                                                   0,00368
             ===
                                              ====
                        56
                                  0,0034.2
                                                   0,00012
      Mn
             ___
                                    55
                      0.0017:3
      A1
                                                   0,00018
             =
                       27,1
```

Summe der Kationen

0,33956

b. Anionen.

Summe der Anionen 0,093637

Summe der Kationen = 0,33956 " " Anionen = 0,093637 I.-wertige CO_3 -Jonen = 0,24592 II. " " = 0,12296 entsprechend **7,3776** g CO_3 °/000 " 5,4102 " CO_2 "

26. Berechnung der freien und halbgebundenen Kohlensäure.

Nach 3. ist vorhanden: CO_2 im Ganzen 37,2592 g $^{0}/_{000}$, 25. , , , , gebundene 5,4102 , , . Somit freie und halbgebundene CO_2 31,8490 g , . Bei 0° C 760 mm = 16109,7 cm³ $^{0}/_{000}$.

27. Berechnung der freien Kohlensäure.

Freie und halbgebundene Kohlensäure 31,8490 g halbgebunden 5,4102 ,, somit freie 26,4388 g $^{0}/_{000}$ Bei 0 0 C 760 mm = 13337,3 cm 3 $^{0}/_{000}$.

28. Berechnung der Alkalinität.

29. Zusammenstellung der Ergebnisse.

Natrium				•				2,6691 g ⁰ / ₀₀₀
Kalium	•	•	•		•	•	•	0,1816 "
Lithium	•		•	•	•	٠	•	0,0044 " "
Ammonium .		10) (*)			•	•	0,0201 " "
Strontium .		•	•		•	•		Spuren
Baryum		٠	•	•	•	•		Spuren
Calcium	٠	•		•		•	•	3,4103 " "
Magnesium .		•	•		•	•	•	0,5227 " "
Eisen	٠	•	•	•	٠	•	•	0,1031 " "
Mangan	•	•	•	•		•	•	0,0034 " "
Aluminium .		•	•	•	•	•		0,0017 " "
Chlor	•	•	٠	•	٠	•	•	1,9755 " "
Brom ,	•	•		٠	•	•	•	0,0135 " "
Jod		•			•	•		0,0009 " "
Schwefelsäure	•	•	٠	•	•			1,0573 " "
Phosphorsäure	•	•	٠	•		•		Spuren
Borsäure	•		٠					0,5641 " "
Arsensäure .	•			•	•			0,0120 " "
Kieselsäure .	٠		٠		•			0,0898 " "
Kohlensäure	•	•	٠		(* 0)			7,3776 " "
					Su	mm	e	18,0071 g ⁰ / ₀₀₀ .

Freie und halbgebundene

Kohlensäure $16109,7~{\rm cm^3\,bei\,0^0\,C}$ $760~{\rm mm}$ freie , 13337,3 , , , , , , , , , , , . Alkalinität 26,1 , $\frac{\rm n}{10}~{\rm HCl}$ spezifisches Gewicht 1,00256 , , , , ,

Temperatur 8,5 ° C bei einer Lufttemperatur von 4,7 ° C.

30. Zusammenstellung der wahrscheinlich gelösten Salze.

In 10000 g Wasser:

(Die Karbonate als neutrale Salze gerechnet)

Lithiumchlorid .		•			•	•	•	0,0266
Natriumehlorid .		•		•	•	•	•	3,2233
Natriumbromid		•		•				0,0174
Natriumjodid		•	•		•		•	0,0010
Natriumborat .			•	•				0,8658
Natriumarsenat		•	•	•	• 1	•	•	0,0179
Natriumphosphat		•	•	•	•	•	•	Spuren
Natriumsilicat.	•.	•	•		•	•		0,1439
Natriumsulfat .			•	•	•	•	•	1,2349
Kaliumsulfat .		•	•	•	•	•	•	0,4044
Natriumkarbonat [*]				•			٠	1,4568
Ammoniumkarbor	nat)	•	•	•	•	•	0,0535
Calciumkarbonat	•	•	•	•	•	•	•	8,5257
Magnesiumkarbon	at				•	•	•	1,8101
Ferrokarbonat		•	•	٠	•	•	•	0,2135
Manganokarbonat		•	•		•	•	•	0,0071
Thonerde	•	•				٠	•	0,0033
9				,	Sun	nm	e 1	8,0052 g
Die Karbonate als w	ass	ser	fre					,
In 10000 g W								S
Doppeltkohlensaures								2,0609
Dopperskomensaures					· mo			0,0780
		alk			•	1,00		2,2770
36.							• 4	2,7542
					dul		•	0,2944
				•				0,0098
	TAT	lall	ga	1102	cyd	(H	4	0,0000

Quelle Nr. 3, Johannes.

1. Bestimmung der Temperatur.

Die Temperatur der Johannes-Quelle betrug am 1. Dezember 1899 8,0 ° C bei einer Lufttemperatur von 4,7 ° C.

2. Bestimmung der Alkalinität.

100 cm³ Wasser verbrauchen 32,2 cm³ $\frac{n}{10}$ HCl Somit verbrauchen 100 g Wasser 32,1 " " "

- 3. Bestimmung der Gesammt-Kohlensäure. 70,16 g Wasser geben 139,8 cm³ CO₂ bei 0° 760 mm
 - Diese entsprechen 39,19 g CO_2 $^{\circ}/_{000}$.
 - 4. Nachweis von Schwefelwasserstoff. Derselbe fiel negativ aus.
 - 5. Bestimmung des spezifischen Gewichtes.

Bei 15 ° C besitzt das Wasser ein spezifisches Gewicht von 1,00322.

6. Bestimmung des Kaliums.

a.
$$1000 \, \mathrm{cm^3} = 1003,22 \, \mathrm{g} \, \mathrm{W}.$$
 geben $1,3651 \, \mathrm{g} \, \mathrm{KCl} + \mathrm{NaCl} + \mathrm{LiCl}$
b. $1003,22 \, \mathrm{g} \, \mathrm{w}.$ $\mathrm{geben} \, 1,3589 \, \mathrm{g} \, \mathrm{w}.$ $\mathrm{summe} \, 2,7240 \, \mathrm{g} \, \mathrm{w}.$ $\mathrm{summe} \, 2,7240 \, \mathrm{g} \, \mathrm{w}.$ $\mathrm{w}.$ $\mathrm{Mittel} \, 1,3620 \, \mathrm{g} \, \mathrm{w}.$ $\mathrm{w}.$ $\mathrm{entsprechend} \, 13,5763 \, \mathrm{g} \, \mathrm{w}.$ $\mathrm{w}.$ $\mathrm{w}.$ $\mathrm{geben} \, 0,1960 \, \mathrm{g} \, \mathrm{K}_2 \, \mathrm{PtCl}_6$
b. $1003,22 \, \mathrm{g} \, \mathrm{Wasser} \, \mathrm{geben} \, 0,1960 \, \mathrm{g} \, \mathrm{K}_2 \, \mathrm{PtCl}_6$
b. $1003,22 \, \mathrm{g} \, \mathrm{Wasser} \, \mathrm{geben} \, 0,3960 \, \mathrm{g}$
 $\mathrm{Mittel} \, 0,1980 \, \mathrm{g} \, \mathrm{w}.$ $\mathrm{w}.$ $\mathrm{geodesical} \, \mathrm{g} \, \mathrm{KCl},$ $\mathrm{geodesical} \, \mathrm{geodesical} \,$

", 0,0608 ", ", **0,6060** ", KCl ", 7. Bestimmung des Lithiums.

5003,50 g Wasser ergeben 0,0849 g Li₂ SO₄ entsprechend 0,0109 " Li " 0,0217 " " 0/000 " LiCl " 0,1311 " LiCl "

8. Berechnung des Natriums.

In 10000 g Wasser sind enthalten:

nach 6: Summe von KCl+LiCl+NaCl = 13,5763 g

, 6: KCl = 0,6060 ,

, 7: LiCl = 0,1311 ,

Somit NaCl = 12,8392 g $^{0}/_{000}$ Diese entsprechen Na 5,0588 g $^{0}/_{000}$.

```
9. Bestimmung des Ammoniums.
     In 10000 g Wasser sind enthalten 0,0305 g NH<sub>4</sub>.
                10. Bestimmung des Calciums.
a. 1000 \text{ cm}^3 = 1003,22 \text{ g Wasser geben } 0,5004 \text{ g CaO}
                   1003,22 "
                                                0,4978.,,
b.
                                  . 22
                                             "
                                                  0.9982 g
                                Mittel
                                                  0,4991 "
                                entsprechend 0,3565 "Ca
                                                  3,5535 , , , 0/000
              11. Bestimmung des Magnesiums.
a. 1000 \text{ cm}^3 = 1003,22 \text{ g Wasser geben } 0,3020 \text{ g Mg}_2 \text{ P}_2 \text{ O}_7
                  1003,22 g
                                                0,3006 " "
                                                0,6026 g
                                Mittel
                                                0,3013 ...
                                entsprechend 0,0659 " Mg
                                                0.6569 , 0.000
                  12. Bestimmung des Eisens.
a. 1000 \,\mathrm{cm}^3 = 1003,22 \,\mathrm{gW}. geben 0,0155 \,\mathrm{gFe_2O_3} + \mathrm{Al_2O_3} + \mathrm{P_2O_5}
               1003,22 " "
                                    0,0157 " "
b.
                          Summe
                                    0.0312 g
                    Mittel
                                     0,0156 "
                    entsprechend 0.1555 \text{ g}^{-0}/_{000}
           Titrimetrische Bestimmung des Eisens.
a. 1000 \text{ cm}^3 = 1003,22 \text{ g Wasser } 0,01060 \text{ g Fe } (4 \text{ cm}^3 \text{ verbr.})
                                       0,01086 " " (4,1 "
b.
                 1003,22 "
                                       0,02146 g Fe
                    Mittel
                                       0,01073 ,, ,,
                    dies entspricht 0,1069 ,, ,,
                                       0,1527 ,, Fe<sub>2</sub>O<sub>3</sub> ,,
                13. Bestimmung des Mangans.
         10003,5 g Wasser geben 0,00328 g Mn S
                         entsprechen 0,00328 ,,
                                        0,0021 , Mn
```

```
14. Bestimmung des Aluminiums.
Nach 12 enth. 10\,000 \text{ g W}. 0.1555 \text{ g Al}_2\text{O}_3 + (\text{P}_2\text{O}_5) + \text{Fe}_2\text{O}_3
  ,, 12
            ,, 10000 ,, ,, 10,1527 ,,
                               0.0028 \text{ g Al}_2\text{O}_3
               entsprechend 0,0015, Al
            15. In Spuren nachgewiesen Ba, Sr.
                  16. Bestimmung des Jods.
Titer der Thiosulfatlösung 1 cm<sup>3</sup> = 0,001213 g J
                              verbraucht 1,2 cm<sup>3</sup>
  9999,40 g Wasser enthalten somit 0,0014556 g J
                     Diese entsprechen 0,00145 g J <sup>0</sup>/<sub>000</sub>
                                           0.0027 \text{ g Ag J} ...
                 17. Bestimmung des Broms.
      9999,40 g Wasser enthalten 0,0231 g Br
                         entsprechen 0.0231 ,, , ^{\circ}/_{000}
                                       0,0543 ,, AgBr ,,
                 18. Bestimmung des Chlors.
a. 100 \text{ cm}^3 = 100,322 \text{ g W}. geben 0,1583 \text{ g AgCl} + \text{AgBr} + \text{AgJ}
               100,322 " "
                                    0,1582 " "
b.
                                     0.3165 g
                     Mittel
                                    0,15825 g "
               entsprechend 15,7742 g ^{0}/_{000} ,
            AgCl + AgBr + AgJ = 15,7742 g
                    nach 16 AgJ = 0.0027,
                           17 \text{ AgBr} = 0.0543
                        Somit AgCl = 15,7172 g
                        Dies entspricht 3,8860 " Cl % 000
             19. Bestimmung der Schwefelsäure.
a. 500 \text{ cm}^3 = 501,610 \text{ g Wasser geben } 0.2154 \text{ g Ba SO}_4
b.
                501,610 "
                                           0,2128 " "
                                             0.4282 g
                                           \cdot 0,2141 ,
                            Mittel
                            entsprechend 4,2682 " "
                                                           SO_4 "
                                             1,7562 "
```

20. Bestimmung der Phosphorsäure.

Im nach oben behandelten Rückstande von 9999,4 g Wasser fielen nur Spuren von Phosphorsäure aus.

21. Bestimmung der Borsäure.

7837,82 g Wasser geben 0,4368 g B₂ O₃ entsprechen 0,5573 , , , ,
$$^{0}/_{000}$$
 , , 0,6847 ,, BO₂ ,,

22. Bestimmung der Arsensäure.

2000 cm³ = 2006,44 g Wasser geben 0,0021 g As entsprechend 0,0105 ,, ,,
$$^{0}/_{000}$$
 , 0,0195 ,, AsO₄ ,,

23. Salpetersäure ist nicht nachweisbar.

24. Bestimmung der Kieselsäure.

1000 cm³ = 1003,22 g Wasser geben 0,0062 g Si O₂
1003,22 ,, ,, , , 0,0056 ,, ,, ,
0,0118 g
Mittel 0,0059 ,, ,,
entsprechen 0,0075 ,, Si O₃
,, 0,0747 ,, ,,
$$^{0}/_{000}$$

25. Berechnung der gebundenen Kohlensäure.

a. Kationen.

b. Anionen.

Summe der Anionen 0,16477

Summe der Kationen = 0,46800" " Anionen = 0,16477I.-wertige CO₃-Jonen = 0,30323II. " " = 0,151615

Somit **9,09690** g CO₃ %/000 g, CO₂ ,,

26. Berechnung der freien und halbgebundenen Kohlensäure.

Nach 3 ist vorhanden: CO_2 im Ganzen 39,1900 g $^0/_{000}$, 25 , , , gebundene 6,6711 , , Somit freie und halbgebundene CO_2 32,5189 g , Bei 0° C 760 mm = **16538,0** cm³ $^0/_{000}$.

27. Berechnung der freien Kohlensäure.

Freie und halbgebundene CO_2 32,5189 g $^{0}/_{000}$ halbgebundene , $\frac{6,6711}{25,8478}$ g , . . Bei 0^{0} C 760 mm = **13145,4** cm 3 $^{0}/_{000}$.

28. Berechnung der Alkalinität.

10•000 g Wasser verbrauchten zur Neutralisation ihrer Karbonate mit 9,0969 g CO₃ 3032,3 em³ $\frac{n}{10}$ HCl Silikate ,, 0,0747 ,, SiO₃ 19,5 ,, ,, ,, Borate , ,, 0,6847 ,, BO₂ 159,2 ,, ,, ,, $\frac{n}{10}$ HCl

Somit verbrauchen 100 g **32,1** ,, ,, ,, Direkte Bestimmung nach Nr. 2 32,1 cm³.

29. Zusammenstellung der Ergebnisse.
In 10000 g Wasser:
Natrium 5,0588 g
Kalium 0,3180 ,,
Lithium 0,0217 ,,
Ammonium 0,0305 ,,
Strontium Spuren
Baryum Spuren
Calcium 3,5535 ,,
$\mathbf{Magnesium} \ . \ . \ . \ . \ . \ . \ 0,6569 \ ,,$
Eisen 0,1069 ,,
Mangan 0,0021 ,,
Aluminium 0,0015 ,,
Chlor 3,8860 ,,
Brom $0,0231$,
Jod 0,0015 ,,
Schwefelsäure 1,7562 ,,
Borsäure 0,6847 ,,
Arsensäure $0,0195$,,
Kieselsäure 0,0747 ,,
Kohlensäure 9,0969 ,,
Summe $\overline{25,2925 \text{ g}}$
Direkt bestimmte Summe 25,2700.
Freie und halbgebundene Kohlensäure 16538,0 cm ³
Freie Kohlensäure bei 0° C 760 mm 13145,4 "
Alkalinität 32,1 "
Spezifisches Gewicht 1,00322
Temperatur 8° C.
30. Zusammenstellung der Salze.
In 10000 g Wasser:
Lithiumchlorid 0,1311
Natriumchlorid 6,2322
Natriumbromid 0,0297
Natriumjodid 0,0017
Natriumborat 1,0509
Natriumarsenat 0,0292
Natriumsilikat 0,1196
$Uebertrag \overline{-7,5944}$

		He	rtrag	r	7,5944
Natriumsulfat .	•	•		•	2,0217
Kaliumsulfat .	•	•		•	0,7081
Natriumkarbonat		•	•	•	3,4983
Ammoniumkarbona	ıt	4.0	101	•	0,0811
Calciumkarbonat	•	•	•	•	8,8837
Magnesiumkarbona	t	•	•	•	2,2748
Ferrokarbonat .	•	•	•	•	0,2214
Manganokarbonat	•	•	•	•	0,0044
Thonerde	•	•	•	•	0,0028
		Sun	ame		25,2907

Die Karbonate als wasserfreie Bikarbonate gerechnet: In 10000 g Wasser:

Doppeltkohlensaures	Natron	4,9490
"	Ammon	0,1182
"	Kalk	12,7925
>	Magnesia	3,4612
"	Eisenoxydul	0,3053
,,	Manganoxydul	0,0061

Quelle Nr. 4, Ulrich.

1. Bestimmung der Temperatur.

Bei einer Lufttemperatur von 4,7 ° C am 1. Dezember 1399 besass die Quelle eine Temperatur von 8,3 ° C.

2. Bestimmung der Alkalinität.

10 cm³ Wasser verbrauchen 4,93 cm³ $\frac{n}{10}$ H Cl Somit 100 g , 49,1 , $\frac{n}{10}$,

- 3. Bestimmung der Gesammt-Kohlensäure.
- a. 73,87 g Wasser geben 160,5 cm³ CO₂ bei 0° C 760 mm entspricht 21727,3 ,, = 42,95 g CO₂ $^{0}/_{000}$

b. 73,87 g Wasser geben 162,65 cm³ CO₂ bei 0° C entspricht 22018,8 " $^{0}/_{000} = 43,53$ g $^{0}/_{000}$ c. 73,87 g Wasser geben 162,05 cm³ CO₂ bei 0° C 760 mm entspricht 21937,2 " = 43,43 g CO₂ $^{0}/_{000}$ Summe 129,91 Mittel 43,30 g CO₂ $^{0}/_{000}$.

4. Nachweis von Schwefelwasserstoff.

Am 1. Dezember 1899 war kein Schwefelwasserstoff vorhanden.

5. Bestimmung des specifischen Gewichtes.

Bei 15 °C besitzt das Wasser ein spezifisches Gewicht von 1,00483 g.

6. Bestimmung des Kaliums.

Mittel 2,4839 " " " "

entsprechend 24,7196 g KCl+LiCl+NaCl ⁰/₀₀₀.

a. $1000 \text{ cm}^3 = 1004,83 \text{ g Wasser geben } 0,3955 \text{ g K}_2 \text{ PtCl}_6$ b. $1004,83 \text{ , } \text{ , } \text{ , } \frac{0,3989 \text{ , }}{0,7944 \text{ g}} \text{ , } \text{ , }$

Mittel 0,3972 " "

entsprechen 0,06402 g K und 0,6371 g K $^{0}/_{000}$, 0,1219 , KCl , 1,2131 , KCl ,

7. Bestimmung des Lithiums.

4920,7 g Wasser geben 0,1507 g Li $_2$ SO $_4$ entsprechend 0,01924 g Li 0,0391 g Li $_0^0$ 0,2362 " LiCl "

8. Bestimmung des Natriums.

In 10000 g Wasser sind enthalten (siehe Nr. 6 u. 7):

KCl + LiCl + NaCl = 24,7196 g KCl = 1,2131 ,LiCl = 0,2362 ,

Somit NaCl = 23,2703 g

Diese entsprechen 9,1689 " Na $^{\circ}/_{000}$.

```
9. Bestimmung des Ammoniums.
     10 000 g Wasser enthalten 0,0401 g NH<sub>4</sub>.
               10. Bestimmung des Calciums.
a. 1000 \text{ cm}^3 = 1004,83 \text{ g Wasser geben } 0,7384 \text{ g CaO}
                   1004,83 "
                                                0,7346 "
b.
                                                 1,4730 g
                                 Mittel
                                                 0,7365 "
                                 entsprechend 0,52607 g Ca
                                                 5,2354 g Ca <sup>0</sup>/<sub>000</sub>.
              11. Bestimmung des Magnesiums.
a. 1000 \text{ cm}^3 = 1004,83 \text{ g Wasser geben } 0,3968 \text{ g Mg}_2 \text{ P}_2 \text{ O}_7
b.
                 1004,83 "
                                          _{,} 0,3976 _{,} _{,}
                                               0,7944 g
                                              0,3972 " "
                               Mittel
                              entsprechend 0,08689 g Mg
                                               0,8647 "Mg <sup>0</sup>/000
                 12. Bestimmung des Eisens.
a. 1000 \,\mathrm{cm}^3 = 1004,83 \,\mathrm{gW}. geben 0,0146 \,\mathrm{gFe_2O_3} + \Lambda \,\mathrm{l_2O_3} + \mathrm{P_2O_5}
              1004,83 ,, , , , 0,0144 ,, , , , , ,
b.
                    Mittel
                                    0,0145 "
                    entsprechend 0.1443, 0/000.
     În diesem Niederschlag wurde das Eisen titrimetrisch
bestimmt:
         a. 1004,83 g Wasser geben 0,00983 g Fe
                                          0,00991 "
         b. 1004,83 "
                                           0.01974 g
                                          0,00987 "
                         Mittel
                                                              ^{0}/_{000}
                         entsprechend
                                           0,09822 "
                                           0.1403 " Fe<sub>2</sub> O<sub>3</sub> "
               13. Bestimmung des Mangans.
a. 4920,7 g W. geben 0,00329 g MnS = 0,00669 g MnS °/000
b. 10072.9, , , 0.0067, , , = 0.00675, , ,
                                               0.01344 g
                                               0,00672 ,,
                               Mittel
```

entsprechend 0,00425,, Mn

14. Bestimmung des Aluminiums.

15. In Spuren nachgewiesen Ba, Sr.

16. Bestimmung des Jods.

Titer der Natriumthiosulfatlösung 1 cm³ 0.001213 g J angewandt 10072,9 g W. u. verbraucht 2,3cm³ Na₂S₂O₃-Lösung

entsprechen 0,00279 g J 0,00268 , 0,00268 , 0,0049 , AgJ ,

17. Bestimmung des Broms.

10072,9 g Wasser geben 0,0378 g Br entsprechend **0,0375** " " °/ood " 0,0881 " AgBr "

18. Bestimmung des Chlors.

19. Bestimmung der Schwefelsäure.

a. 500 cm³ = 502,415 g Wasser geben 0,3716 g Ba SO₄ b. 502,415 " " " 0,3692 " " " " " 0,7408 g Mittel 0,3704 " " " " 0/000 entsprechen 7,3724 " " " 0/000 " 3,0334 " SO₄ "

20. Bestimmung der Phosphorsäure.

10072 g Wasser geben 0,0222 g Phosphormolybdänsäure entsprechen 0,00084 g Pz O5 ,, 0,00111 ,, PO4 $^{\rm 0}/_{\rm 000}$

21. Bestimmung der Borsäure.

1502,8 g Wasser geben 0,1221 g B_2 O_3 entspricht 0,8125 , ,, ,, $^{0}/_{000}$, $^{0}/_{000}$, $^{0}/_{000}$, $^{0}/_{000}$, $^{0}/_{000}$, $^{0}/_{000}$

22. Bestimmung der Arsensäure.

2043,2 g W. geben 0,0057 g As, entspricht 0,0279 g As $^{\rm o}/_{\rm 000}$ 1020,5 ,, ,, 0,0028 ,, ,, ,, $\frac{0,0274}{0,0553}$ g Mittel 0,02765 g ,, entspricht 0,0512 g AsO₄ ,,

23. Nachweis von Salpetersäure.

In einem Liter Wasser ist keine Salpetersäure nachweisbar.

24. Bestimmung der Kieselsäure.

25. Berechnung der gebundenen Kohlensäure.

		Katic	ner	Y	0	1	Anion	en.	
Na	=	$\frac{9,1689}{23,05}$	='	0,39778	Cl	=	$\frac{7,1409}{35,45}$	=	0,20143
K	=	$\frac{0,6371}{39,15}$	=	0,01627	Br	==	$\frac{0,0375}{79,96}$	=	0,00047
Li	==	$\frac{-0,0391}{7,03}$		0,00556	J	===	$\frac{0,00268}{126,85}$	=	0,00002
NH_4	==	$\frac{-0,0401}{18,08}$	==:	0,00222	SO_4	===	$\frac{3,0334\cdot 2}{96,06}$	=	0,06315
Ca		$\frac{5,2354\cdot 2}{40}$	==	0,26176	PO_4	==	$\frac{0,0011\cdot3}{95,03}$	==	0,00003
Mg	===	$\frac{0.8647.2}{24,36}$		0,07098	BO_{2}	==	$\frac{0,9968\cdot1}{43,0}$	==	0,02318
\mathbf{Fe}		$\frac{0,0982\cdot 2}{56}$	-	0,00350	AsO ₄	===	$\frac{0,0512:3}{139}$		0,00110
Mn	==	$\frac{0,0042\cdot 2}{55}$		0,00016	${ m SiO}_3$	==	$\frac{0,1293\cdot 2}{76,4}$	===	0,00338
Al	=	$\frac{0,0017:3}{27,1}$	=	0,00018			•		
		Sum	me	0,75841			Sun	ime	0,29276

a a contract of the contract o
Summe der Kationen 0,75841
" " Anionen 0,29276
Iwertige CO ₃ -Jonen 0,46565
II. " " " 0,232825
entsprechen g CO_3 $^{\circ}/_{\circ \circ \circ}$ 13.96950
,, CO_2 geb. $^{\circ}/_{000}$ 10,2443
Berechnung der freien und halbgebundenen Kohlensäure.
Nach 3 ist vorhanden: CO2 im ganzen 43,30 g
" 25 " " " gebunden 10,2443 g
Somit freie und halbgebundene CO ₂ 33,0557 g %/000
Bei 0° C 760 mm = 16718,4 cm ³ , g
27. Berechnung der freien Kohlensäure.
• Freie und halbgebundene CO_2 33,0557 g $^{0}/_{000}$
$\frac{10,2443}{}$,,
somit freie Kohlensäure 22,8114 g "
Bei 0° C 760 mm = 11537,2 cm ⁸ $^{\circ}/_{000}$.
28. Berechnung der Alkalinität.
10000 g Wasser verbrauchen zur Neutralisation:
1) der Karbonate (13,9695 g. CO_3) 4656,5 cm ³ $\frac{n}{10}$ HCl
2) ,, Silikate (0,1293 g SiO ₃) 33,9 ,, ,, ,,
3) ,, Borate (0.9968 g BO_2) 231,8 ,, ,, ,,
4922,2 ,, ,, ,,
Somit verbrauchen 100 g 49,22 " " "
29. Zusammenstellung der analytischen Ergebnisse.
In 10000 g Wasser sind enthalten:
Natrium 9,1689 g
Kalium 0,6371 ,,
Lithium 0,0391 "
Ammonium 0,0401 "
Strontium Spuren
Baryum Spuren
Calcium 5,2354 "
Uebertrag 15,1206 g

	95
7	Hertrag 15,1206 g
	Magnesium 0,8647 "
	Eisen 0,0982 "
	Mangan 0,0042 "
	Aluminium 0,0017 "
,	Chlor
	Brom $0,0375$ "
	${ m Jod}$ 0,0027 "
	Schwefelsäure (SO ₄) $3{,}0334$ "
	Phosphorsäure (PO ₄) 0,0011 "
	Borsäure (BO ₂) 0,9968 "
	Arsensäure (AsO ₄) $0,0512$ "
	Kieselsäure (SiO $_3$) 0,1293 "
	Kohlensäure (geb.) (CO_3) . 13,9695 "
	Summe 41,4518 g
¥	Freie und halbgebundene Kohlensäure 16718,4 cm ³
	freie Kohlensäure 11537,2 "
	Alkalinität 49,2 cm³ n HCl von 100 g Wasser
	Spezifisches Gewicht 1,00483 g
	Temperatur 8,3° C.
	30. Zusammenstellung der wahrscheinlich
	gelösten Salze.
	In 10000 g Wasser:
	Die Karbonate als neutrale Salze gerechnet:
	Lithiumehlorid 0,2362 g
	Natriumchlorid 11,4489 "
	Natriumbromid 0,0486 ",
	Natriumjodid 0,0032 "
	Natriumborat 1,5300 ",
	Natriumarseniat 0,0766 ",
	Natriumphosphat 0,0020 ,,
	Natriumsilicat 0.2073 ,,
	Natriumsulfat 3,3320 ,,
	Kaliumsulfat 1,4190 ,,
	Natriumkarbonat 6,7538 ,,
	Uebertrag 25,0576 g

	Her	trag	5	25,0576	g
Ammoniumkarbon	at		•	0,1066	,,
Calciumkarbonat	*		•	13,0885	,,
Magnesiumkarbon	\mathbf{at}		٠	2,9945	,,
Ferrokarbonat .				0,2034	,,
Mangankarbonat	•	٠		0,0088	,,
Thonerde	•	•	•	0,0032	,,
	Su	mme)	41,4626	g.

31. Die Karbonate als wasserfreie Bikarbonate gerechnet.

In 10000 g Wasser:

Doppeltkohlensaures	Natron	9,5546 g
"	Ammoniumoxyd	0,1554 ,,
))	Kalk	18,8474 ,,
, ,,	Magnesia	4,5563 ,,
,,	Eisenoxydul	0,2805 "
, ,,,	Manganoxydul	0,0122 ,,

Zusammenstellung

der

Untersuchungs-Ergebnisse der 3 untersuchten Quellen mit

denjenigen der früher vorhandenen 2 Quellen.

In 10000 g Wasser sind enthalten:

	Ulrichsqu. Husemann 1876	Conradinsqu. Husemann 1876	Thomasqu. Nussberger 1900	Johannesqu. Nussberger 1900	Ulrichsqu. Nussberger 1900
Natrium	2,6244	4,4851	2,6691	5,0588	9,1689
Kalium	0,1856	0,2951	0,1816	0,3180	0,6371
Lithium	0,0066	0,0110	0,0044	0,0217	0,0391
Ammonium	0,0265	0,0297	0,0201	0,0305	0,0401
Strontium	Spuren	Spuren	Spuren	Spuren	Spuren
Baryum	Spuren	Spuren	Spuren	Spuren	Spuren
Calcium	4,0518	4,1824	3,4103	3,5 5 35	5,2354
Magnesium	0,5893	0,6719	0,5227	0,6569	0,8647
Eisen	0,1083	0,1127	0,1031	0,1069	0,0982
Mangan	0,0017	0,0019	0,0034	0,0021	0,0042
Aluminium	0,0011	0,0011	0,0017	0,0015	0,0017
Chlor	2,2329	3,7010	1,9755	3,8860	7,1409
Brom	0,0158	0,0203	0,0135	0,0231	0,0375
Jod	0,0010	0,0013	0,0009	0,0015	0,0027
Schwefelsäure	1,1368	1,7541	1,0573	1,7562	3,0334
Phosphorsäure	0,0032	0.0031	Spuren	Spuren	0,0011
Borsäure	0,5119	0,7134	0,5641	0,6847	0,9968
Arsensäure	0,0128	0.0149	0,0120	0,0195	0,0512
Kieselsäure	0,1342	0,1550	0,0898	0,0747	0,1293
Kohlensäure	8,2318	9,3588	7,3776	9,0969	13 , 9 6 95
Summe	19,8757	25,5117	18,0071	25,2925	41,4518
Freie u. halb-		, ,		_ ;	,
gebund. CO2	12630,5cm ³	$13741,7 \mathrm{cm^3}$	16109,7cm³	16538,0cm ⁸	16718,4cm
Freie CO ₂	9568,1 "	10259,7 "	13337,3 "	13145,4 "	11537,2 "
Spez. Gewicht	1,00230	1,00319	1,00256	1,00322	1,00483
Temperatur	9,00 ()	9,10 C	8,5 ° C	8,0 ° C	8,3 ° C

Ueberblicken wir vorstehende Tabelle, so erkennen wir zunächst den gleichartigen chemischen Charakter aller drei Quellen. Bemerkenswert ist in erster Linie ihr erheblicher Gehalt an Arsensäure und Borsäure, den sie im Uebrigen mit einer Mannigfaltigkeit in ihrer Mineralisation verbinden, die sowohl von schweizerischen als ausländischen Mineralquellen von hervorragender therapeutischer Bedeutung nur selten erreicht und nicht übertroffen wird. Ihr allgemeiner chemischer Charakter ist im Uebrigen der von eisenhaltigen, alkalisch-muriatischen Mineralwässern mit grosser Menge gelöster Kohlensäure.

In der Stärke der Mineralisation der einzelnen Quellen liegt eine Steigerung vor, die für den Kurgebrauch der Quellen von allergrösster Bedeutung sein wird. So übertrifft die Johannesquelle die Thomasquelle hinsichtlich des Gehaltes an den wichtigern Bestandteilen durchschnittlich um das zweifache, die Ulrichsquelle die Thomasquelle um das drei- bis vierfache.

Hervorzuheben ist endlich noch die ausserordentliche, durch Versuche in unserm Laboratorium bestätigte Haltbarkeit dieser Mineralwasser in Flaschen.

Aus der Vergleichung der chemischen Zusammensetzung der Mineralquellen am Val sinestra mit denjenigen der zahlreichen übrigen Mineralquellen Graubündens ergiebt sich in erster Linie, dass die Heilquellen von Val sinestra die einzigen Quellen mit erheblichem Arsensäuregehalt in Bünden sind und hinsichtlich des Borsäuregehalts nur von der Tarasper Luziusquelle übertroffen werden. Was die übrigen Mineralbestandteile anbelangt, so sind es nur wenige, die so reiche Auswahl darin mit sich führen, als wie die Val sinestra-Quellen. Darunter sind zu nennen die Paracelsusquelle von St. Moritz, die Theophilquelle von Passugg, die Bonifaciusquelle von Tarasp-Schuls, die Ulricusquelle von Passugg.

Aus der nachher folgenden Tabelle ist ersichtlich, dass die Thomasquelle in ihrem Gehalt der Paracelsusquelle in St. Moritz am nächsten steht. Die letztere übertrifft die Thomasquelle nur hinsichtlich des Schwefelsäuregehaltes, während hinwiederum die Thomasquelle weit mehr Chlor, Brom, Jod, Borsäure und Arsensäure aufweist.

Die Johannesquelle hat, wenn man vom Arsen- und Borsäuregehalt absieht, eine chemische Zusammensetzung, die derjenigen der Theophilquelle von Passugg und der Bonifaciusquelle von Tarasp-Schuls ähnlich ist. Ein wesentlicher Unterschied tritt nur auf hinsichtlich des Gehaltes an Chlor und Eisen, der bei der Johannesquelle höher ist als bei den genannten. Die Bonifaciusquelle ihrerseits zeichnet sich durch grössere Mengen Calcium und Magsium und gebundener Kohlensäure, also durch grössere Alkalinität aus.

Die Ulrichsquelle steht in ihrer Zusammensetzung unter den Bündner Heilquellen einzig da. Sie hat einige Aehnlichkeit mit der Ulricusquelle von Passugg. Der Natrium- und Kohlensäuregehalt der letztern ist freilich viel höher, das Ulricuswasser ist also bedeutend alkalischer, dafür übertrifft die Ulrichsquelle das Passugger Medizinalwasser an Chlor-, Schwefelsäure-, Borsäure- und Arsensäure-Gehalt.

Ausammenstellung der Unferzuchungsergebnisse

der

Drei Val sinestra-Quellen

mit

denjenigen ähnlich zusammengesetzter bündnerischer Mineralwasser.

In 10000 g Wasser:

	Mineralqu	Mineralquellen von Val	sinestra	St. Moritz	oritz	Passugg	Tarasp-Sch.	-	Passugg
	Thomasqu. 1900	Thomasqu. Johannesqu. 1900	Ulrichsqu. 1900	Paracelsus- quelle	Funtauna surpunt	Theophil- quelle	Bonifacius- quelle	bernnardin	Ulricus- quelle
	2,6691	5,0588	9,1689	2,1654	0,8059	ō,1480	4,7566	0,16046	20,4200
Kalium	0,1816	0,3180	0,6371	0,0716	0.0156	2,2670	0,3383	0,06856	
Lithium	0,0044	0,0217	0,0391	0,0015	0,0430	0,0007	0,0023	0,00017	0,0284
Ammonium	0,0201	0,0305	0,0401	090000	0,0061	0,0190	0,0536	1	0,0498
Strontium	$\mathbf{s}_{\mathbf{p}}$	Sp.	$\mathrm{Sp}.$	0,0004	0,0003	0,0292	0,0034	0,07863	0,1066
Baryum	Sp.	Sp.	Sp.	Sp.	Sp.	Sp.	Sp.	Î	Sp.
Calcium	3,4103	3,5535	5,2354	3,5126	2,7963	3,3477	8,1357	7,15390	2,0634

1,0896	0,0036	0,0010	4,9550	0,0392	0,0094	1,4372	0,0004	0.0807	0,0002	0,2631	27,7330	58,8583	22060,0 cm³	7081 9 cm ³ 11716 9 cm ³	8,25° C
0,74736	0,01214	0,01314	0,04482		0,00007	11,9768	0,00265	0,00052	0,00013	0,33524	5,30230	26,00201	9954,4 cm³		
1,0223	0,0068	6000,0	0,2370	$_{ m Sp.}$	0,0025	1,9725	0,0019			0,1855	19,8869	36,6727	17333,47 cm³	9035 79 cm³	8,8°C
0,6418	0,0074	0,0041	1,1206	0,0072	0,0026	1,0802	0,0011	0,0197	Sp.	0,2516	11,7549	23,7161	$16109.7~{ m cm}^3$ $16538.0~{ m cm}^3$ $16718,4~{ m cm}^3$ $20857,6~{ m cm}^3$ $18350.2~{ m cm}^3$ $20965,0~{ m cm}^3$ $17333,47~{ m cm}^3$ $9954,4~{ m cm}^3$ $22060,0~{ m cm}^3$	13337 3 cm 313145 0 cm 311527 9 cm 317170 6 cm 316003 8 cm 316580 0 cm 3 0035 79 cm 3	5° C
0,4073	0,1109	0,0033	0,1199	0,0010	$S_{\rm p}$.	-2,3417	6000,0	0,01		0.7859		12,1850	18350,2 cm³	16003 8 cm³	70 C
0,3873	0,1408 0,0193	0,0002	$0,\!2799$	0,0012	0,00003	1,9451	0,0017	0,0286	$\mathrm{Sp}.$	0,7479	7,6365	17,3062	20857,6 cm³	17170 B cm ³	5,4° C
0,8647	0,0362	0,0017	7,1409	0,0375	0,0027	3,0334	0,0011	8966'0	0,0512	0,0293	13,9695	41,4518	16718,4 cm³	11527.9 cm ³	8,3° C
0,6569	0,0021	0,0015	3,8860	0,0231	0,0015	1,7562	Sp.	0,6844	0,0195	0,0747	6960'6	25,2925	16538,0 cm³	13145 () cm³	8° C
0,5227	0,0034	0,0017	1,9755	0,0135	0,0009	1,0573	Sp.	0,5641	0,0120	0,0898	7,3776	18,0071	16109,7 cm³	19337.3 cm³	8,5° C
Magnesium Bison	Mangan	Aluminium	Chlor	Brom	$_{ m Jod}$	Schwefelsäure	Phosphorsäure	Borsäure	Arsensäure	Kieselsäure	Kohlensäure	feste Bestand- teile	freie u. halbgeb. Kohlensäure	freie Kohlen- säure	Temperatur

In der folgenden Tabelle ist die Ulrichsquelle einigen arsenhaltigen Mineralwassern ähnlicher Zusammensetzung von Weltruf gegenüber gestellt und zwar der schwach alkalischen Eisen-Arsen-Quelle von Cudowa und stark alkalisch-muriatischen Arsen-Quelle La Bourboule und zwei stark alkalischen Mineralquellen von Vichy.

Durch Vergleichung ergiebt sich:

dass die Ulrichsquelle von Val sinestra an Gehalt der wichtigern Bestandteile die Cudowa-Quelle um das 2-, 3- bez. 7-fache übertrifft und ihr nur betreffend Eisen- und Lithiumgehalt nachsteht;

dass die Ulrichs-Quelle hinter der stark alkalischmuriatischen Quelle La Bourboule im Kochsalz- und Arsen-Gehalt (hinter den Quellen von Vichy im Natriumkarbonat-Gehalt) zurückbleibt, dafür beide übertrifft im Gehalt an Lithium, Eisen, Bor-, Schwefel- und Kohlensäure.

Soweit über die Bedeutung der Heilquellen von Val sinestra als Trinkwasser. Der Umstand, dass sie alle mit grosser Wassermenge (bis zu 120 Minutenliter) auftreten, begünstigt nun aber auch in hohem Masse ihre Verwendung zu Mineralbädern. Mit Recht wird neuerdings auf den Wert der halbgebundenen Kohlensäure in den zu Bädern dienenden Mineralquellen aufmerksam gemacht. Während beim Einströmen eines Heilwassers in die Badewanne die freie Kohlensäure zum grossen Teil entweicht, so wird die halbgebundene erst während des Badens nach und nach frei und kann dann direkt und nachhaltig auf den Körper des Badenden einwirken. Es steigt somit der Wert einer Badequelle mit ihrem Gehalt an sogenannter halbgebundener Kohlensäure. Die Ulrichsquelle weist nun von allen bündnerischen Badequellen nach der Bonifaciusquelle von Tarasp-Schuls die grösste Menge halbgebundener Kohlensäure auf, eine Erscheinung, die hier speziell hervorgehoben sein mag.

Es dürfte sich aus dem Gesagten ergeben, dass die Mineralquellen aus Val sinestra sich den stärksten und bekanntesten Heilwassern würdig an die Seite stellen.

Vergleichende Zusammenstellung

der

Ulrichsquelle mit ähnlichen arsenhaltigen, alkalischen und alkalisch-muriatischen Eisenquellen.

	Val sinestra	Cudowa	La Bourboule	Vichy	Vichy
	Ulrichsqu. Nussberger 1900	Eugenqu. Jeserich	Defort et Bouis 1878	Grand grille H. Bouquet 1855	Haute rive H. Bouquet 1855
Natrium	9,1689	4,388	17,8935	18,4710	17,6345
Kalium	0,6371	0,579	0,8504	1,5110	0,8000
Lithium	0,0391	0,141	Spuren		
Ammonium	0,0401		_	_	_
Strontium	Spuren			0,0170	0,0170
Baryum	Spuren		_	_	
Calcium	5,2354	1,450	0,5279	1,2070	1,2050
Magnesium	0,8647	0,251	0,0814	0,5860	0,9520
Eisen	0,0982	0,210	0,0147	0,0156	0,0595
Mangan	0,0042	0,019	Spuren		Spuren
Aluminium	0,0017	0,083	Spuren		_
Chlor	7,1409	0,801	18,5170	3,2400	3,2400
Brom	0,0375				_
Jod	0,0027			_	
Schwefelsäure	3,0534	2,040	1,4100	1,9680	1,9680
Phosphorsäure	0,0011	0,031		0,9370	0,2675
Borsäure	0,9968	-		Spuren	Spuren
Arsensäure	0,0512	0,017	0,1306	0,0156	0,0156
Kieselsäure	0,1293	0,689	1,5178	0,8850	0,8870
Kohlensäure	13,9695	7,820	8,4367	23,9210	25,5471
Salpetersäure		_	_	·—	
Org.Substanzen		2,160	Spuren		Spuren
Summe	41,4518	20,679	49,3800	52,7742	52,5932
Freie u. halb-		9,947		9.	Acc.
gebund. CO2	16718,4cm ³	100	$5800,2 \text{ cm}^3$	13551,0cm ³	20518,2cm
Freie CO2	11537,2 ,,	**	2670,7 ,,	463,0 ,,	11042,0 ,,
Spez. Gewicht	1,00483			?	?
Temperatur	8,3 ° C		50 ° C	41,8 ° C	13 ° C
Alkalinität	49,1 cm ³			82,09	