Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 69/70 (1917)

Heft: 9

Inhaltsverzeichnis

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Neuere Beobachtungen über die kritische Winkelgeschwindigkeit von Wellen. - Das "Suvrettahaus" bei St. Moritz. - Wettbewerb für ein Orgelgehäuse der Theodorskirche in Basel. - Durchleuchtung von armiertem Beton mit Röntgenstrahlen. - Die Verwendung von Flusseisenblech für Lokomotiv-Feuerbüchsen. Miscellanea: Die Station für drahtlose Telegraphie bei Darien am Panamakanal. Papierrohre als Ersatz für Blei- und Kupferrohre. Die Talsperrenanlage der Stadt Brüx in Böhmen. Schweizerischer Schulrat. Eidgen. Technische Hochschule. Schweizerische Fabrikinspektorate. — Konkurrenzen: Bezirksschule auf dem "Liebenfels" in Baden. Renovation und Umbau der "Baldegg" in Baden. — Nekrologie; Jules Gaudard. Prof. Dr. Karl Hartwich. — Literatur. — Vereinsnachrichten: Zürcher Ingenieur- und Architekten-Verein. Gesellschaft ehemaliger Studierender der Eidgen. Technischen Hochschule: Stellenvermittlung.

Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet. Band 69.

Nr. 8:9

Neuere Beobachtungen über die kritische Winkelgeschwindigkeit von Wellen.

Von Prof. Dr. A. Stodola, Zürich.

1. Einzelscheibe mit endlichen Relativauslenkungen.

Die Forsetzung der in dieser Zeitschrift1) beschriebenen Versuche führte alsbald zur Erkenntnis, dass die relativen Auslenkungen der Welle gegenüber der "stationären" Bewegung keineswegs unendlich klein sind, sondern mit der Weite der stationären Auslenkung vergleichbare Grösse haben. Dieser Umstand bedeutet eine grosse Erschwerung für die Theorie der Erscheinungen, die zu wesentlichen Vereinfachungen gezwungen wird. In einem Falle sind endliche Ausschläge zulässig, wenn wir nämlich die Annahme machen, das Trägheitsmoment der Scheibe sei so gross, dass die Winkelgeschwindigkeit ω_0 ihrer Drehung um den eigenen Schwerpunkt unveränderlich bleibt. Wir betrachten nun die relative Bewegung der Scheibe inbezug auf einen mit der Geschwindigkeit ω0 um die geometrische Axe der Welle rotierenden Raum.

Um uns kurz fassen zu können, verweisen wir auf die Ableitung, die V. Blaess in der "Zeitschr. d. Vereins Deutscher Ingenieure" 1914, S. 185 gab, dessen Gleichungen Nr. VI jedoch durch die Aufnahme der Schwerkraftkomponenten $-G\sin\omega t$, $-G\cos\omega t$ (d. h. die Schwerkraft senkrecht nach abwärts im ruhenden Raum wirkend gedacht) zu vervollständigen sind. Mit der Bezeichnung $\Delta = \omega^2 - \omega_k^2$; G=mg, und wenn ξ , η die relativen Auslenkungen bedeuten, erhält man 2)

$$\xi^{\bullet \bullet} = \Delta \xi + 2 \omega \eta^{\bullet} - g \sin \omega t \eta^{\bullet \bullet} = \Delta \eta - 2 \omega \xi^{\bullet} - g \cos \omega t$$
 (12)

Der Ansatz $\xi = u + X \sin \omega t$; $\eta = v + Y \cos \omega t$ führt auf

und auf die Bedingungsgleichungen

$$\begin{pmatrix}
(2 \omega^2 - \omega_k^2) X - 2 \omega^2 Y - g = 0 \\
- 2 \omega^2 Y + (2 \omega^2 - \omega_k^2) Y - g = 0
\end{pmatrix}.$$
(13)

deren Determinante $D = -\omega_{k^2} (4 \omega^2 - \omega^{k^2})$ ist. Hiernach wären scheinbar unendlich grosse Lösungen XY vorhanden, wenn D=0, d. h. $\omega=\omega_k/2$ ist. In Wirklichkeit ist $X=\frac{g(4\omega^2-\omega_k^2)}{D}$; $Y=\frac{g(4\omega^2-\omega_k^2)}{D}$

$$X = \frac{g(4\omega^2 - \omega_k^2)}{D}$$
; $Y = \frac{g(4\omega^2 - \omega_k^2)}{D}$

und man kann mit dem Faktor 4 $\omega^2-\omega_k^2$ in Zähler und Nenner kürzen, sodass die Grenzwerte $X=Y=-g/\omega_k^2$ übrig bleiben. Rechnet man von vornhinein mit $\omega = \omega_k/2$ die Beizahlen in Gleichung (1) [Bd. LXVIII, S. 210] aus, so werden beide Gleichungen identisch, und man findet, dass nur die Summe X + Y bestimmt ist. Das Verschwinden der Determinante D ist also hier kein vollwertiges Kriterium für eine kritische Geschwindigkeit, bildet aber doch ein wichtiges Anzeichen dafür, da D der Grenzwert der Determinante des vollständigen Problemes ist, die im früheren als Gleichung (5) angeführt war, und im Grenzfalle e = 0in der Tat die kritische Geschwindigkeit ω, gegen den Wert $\omega_k/2$ konvergieren lässt.

Im übrigen ist noch eine zweite allgemeine Schwingungsart gemäss Gleichung (12 a) möglich. Die Form derselben wird durch den Ansatz

$$u = A e^{i\lambda t}$$
; $v = B e^{i\lambda t}$

erhalten, der auf $\lambda_1 = \omega_k + \omega$; $\lambda_2 = \omega_k - \omega$; $\lambda_3 = -\lambda_1$;

$$\begin{split} \lambda_4 &= -\lambda_2 \text{, führt, also für } u, v \text{ die Werte} \\ u &= A_1 \cos \left(\omega_k + \omega \right) t + A_2 \sin \left(\omega_k + \omega \right) t + \\ &\quad + A_3 \cos \left(\omega_k - \omega \right) t + A_4 \sin \left(\omega_k - \omega \right) t \\ v &= B_1 \cos \left(\omega_k + \omega \right) t + \dots \end{split}$$

liefert. Dabei sind u, v nicht unendlich klein, sondern können von gleicher Grössenordnung sein, wie die Verbiegung durch die Fliehkraft infolge der vorhandenen Exzentrizität.

Die gewonnenen Formeln sind gut geeignet, den Mechanismus der durch die Schwerkraft bewirkten Schwingung zu veranschaulichen. Setzen wir $\omega_k = 2 \pi n_k$; $\omega = 2 \pi n$, wo nk, n die entsprechenden sekundlichen Umlaufzahlen bedeuten, so erkennt man an (14), dass die Eigenschwingung der Scheibe relativ zum mitrotierenden Raum die Frequenzen $n_k + n$ und $n_k - n$ besitzt. Die Schwerkraft trachtet relativ zu diesem Raum eine Schwingung mit der Frequenz n zu erzeugen. Stimmt diese mit der Eigenfrequenz überein, so haben wir Resonanz, also Steigerung der Schwingungsweite, und dies findet statt, wenn $n = n_k - n$ $n = \frac{n_k}{2} \dots \dots \dots (15)$

ist. Damit ist also der tiefste Wert der kritischen Umlaufzahl mit Rücksicht auf das Eigengewicht wieder gefunden. Freilich erscheint wegen des unendlich grossen Trägheitmomentes gemäss Gleichung (13) die Schwingungsweite endlich und wir haben keine Unstabilität. Diese tritt jedoch sofort auf, sobald das Trägheitsmoment endlich wird, sodass auch die Winkelgeschwindigkeit der Scheibe ins Schwanken gerät, wie die frühere allgemeine Untersuchung [Gleichungen (1) bis (11) auf Seite 210 letzten Bandes] erwiesen hat.

Es mag beigefügt werden, dass man die Form (14) aus den bekannten klassischen Integralen von Föppl (für unendlich grosses Massenmoment) ohne weiteres entwickeln kann, indem man von den absoluten Koordinaten durch die bekannte einfache Transformation auf die relativen Koordinaten übergeht. Die relative Schwingung ihrerseits ist also nichts anderes, als die absolute Schwingung des Schwerpunktes unter der Wirkung einer der Auslenkung proportionalen Kraft.

2. Welle mit vielen, über die ganze Länge verteilten Scheiben.

Wir versuchen es, die Wirkung der Schwerkraft unter ähnlichen vereinfachenden Annahmen anschaulich zu machen, wie oben. Es bedeute

- M die Gesamtmasse aller Scheiben einschliesslich der Welle.
- L die Gesamtlänge der Welle, die in zwei Lagern frei gestützt angenommen wird,
- x die Koordinate in Richtung der Wellenaxe,
- y, z die Koordinaten senkrecht dazu (y wagerecht),
- $m_1 = M:L$ die auf die Längeneinheit entfallende Masse. $\Theta_y = \Theta_z$ das Massenträgheitsmoment einer Scheibe be-
- zogen auf einen Durchmesser,
- der Abstand zweier Scheiben, $\Theta_1 = \Theta_y$: l_1 das auf die Längeneinheit entfallende Trägheitsmoment,
- J, E Querschnitts-Trägheitsmoment der Welle und Elastizitätsmodul,
- Schubkraft in einem Querschnitt,
- M Biegungsmoment in einem Querschnitt.

Wir setzen voraus, dass die Scheiben-Exzentrizität streng = o sei, und schneiden ein Element von der Länge dx aus der Welle heraus, für welches $m_1 dx$ die Masse, $\Theta_1 dx$ das Trägheitsmoment bedeuten. Wir erhalten für die Bewegung in der YOX Ebene, relativ zu einem

¹⁾ Band LXVIII, S. 197 u. 209, insbesondere S. 210 (3. Nov. 1916).

²⁾ Die die Ableitungen nach der Zeit bezeichnenden Punkte sind aus typographischen Gründen seitlich oben gesetzt.