Les locomotives à vapeur modernes aux Etats-Unis

Autor(en): Lassueur, E.

Objekttyp: **Article**

Zeitschrift: Schweizerische Bauzeitung

Band (Jahr): 71/72 (1918)

Heft 22

PDF erstellt am: **29.06.2024**

Persistenter Link: https://doi.org/10.5169/seals-34763

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

INHALT: Les locomotives à vapeur modernes aux Etats-Unis. - Die Entwicklungsphasen der neuern Baukunst. - Haus Prof. C. W.-P. am Lindenweg, Basel. -Miscellanea Zweckform. Eidgenössische Technische Hochschule. Eine Eisenbeton-Rahmenbrücke von 47,50 m Stutzweite. Starkstromunfälle in der Schweiz. Eine neue Schiffahrtsverbindung zwischen Ontario- und Erie-See. Hochofen-Anlagen in Niederländisch Indien. Die Roheisenerzeugung der Vereinigten Staaten. - Nekrologie: Alfred Rychner. - Konkurrenzen Bebauungsplan Zürich und Vororte. - Literatur: Die Entwicklungsphasen der neuern Baukunst. Vereinsnachrichten · Schweizerischer Ingenieur- und Architekten-Verein. Gesellschaft ehemaliger Studierender der Eidg, Technischen Hochschule: Stellenvermittlung.

Band 71. Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet. Nr. 22.

Les locomotives à vapeur modernes aux Etats-Unis. Par E. Lassueur, à Nyon.

(Fin de la page 226.)

II. Locomotives pour trains de voyageurs.

La locomotive moderne pour trains de voyageurs doit fournir un effort de traction soutenu en vitesse, combiné avec un ample effort de démarrage, tout en possédant une capacité de réserve pour le chauffage et l'éclairage du train. Ces conditions ne peuvent être atteintes que par une grande capacité de vaporation de la chaudière et une utilisation rationnelle de la vapeur. En outre, le poids adhérent doit être suffisant pour permettre un démarrage rapide.

Le diamètre des roues est généralement déterminé d'après l'axiome suivant: Le diamètre des roues motrices en pouces = la vitesse max. en miles par heure; dans ces conditions, le nombre de tours est de 336 par minute.

Les premières locomotives construites pour ce service étaient du type "American" (2 B), lequel, après de longues années d'usage, a dû être abandonné à cause de l'insuffisance de la force de traction. Par l'adjonction, à l'arrière, d'un essieu accouplé, ce type s'est transformé en "Ten-Wheel" (2 C) qui est le type de locomotive le plus répandu pour les trains de voyageurs.

Le type "Atlantic" (2 B 1) comprenant un bogie à l'avant, deux essieux couplés, et un truck à l'arrière peut être considéré comme intermédiaire entre les deux types précédents. Ce type a été introduit en 1895 par l'Atlantic Coast Line et a de là gardé son nom. Quoique ces machines permettent l'emploi d'une grande chaudière et d'une boîte à feu large supportée entièrement par l'essieu arrière, la charge supportée par les deux essieux accouplés n'a jamais permis d'atteindre une force de traction suffisante. L'avantage du type "Atlantic" par rapport à l'"American" ne pouvait être considéré qu'une fois une certaine vitesse acquise, à cause de la plus grande production de vapeur. Le défaut de force de traction se faisait sentir principalement aux démarrages.

Le type "Atlantic" employé pour des trains légers devant atteindre une grande vitesse a été construit pendant plus de dix ans avec des roues dépassant souvent 2 m de diamètre, afin que

La figure 10 représente une locomotive "Ten-Wheel" mise en service en 1916 par le St. Louis and Southwestern Railway. Cette machine caractérisée par son allure élégante et ses jolies proportions est employée pour des trains précédemment remorqués par des machines "American" et "Atlantic". Le tableau ci-dessous indique les dimensions comparées de ces trois types de machines:

	Type:	2 B	2 B 1	20
Diamètre des cylindres	. mm	483	508	559
Course des pistons	. "	660	660	711
Diamètre des roues motrices	. ,,	1753	1778	1753
Pression de la vapeur	. at	14,06	14,06	14,06
Surface de grille	. m ²	2,68	2,86	4,6
" " chauffe		172,42	230,39	229,83
Poids adhérent	. kg	42 000	41 500	75 000
" total (machine)	. ,,	65 800	82 800	95 000
Effort de traction	. "	10 540	11 450	15 200

La grande différence d'effort de traction entre le type "Ten-Wheel" et les deux précédents doit cependant être attribuée en partie à l'emploi du surchauffeur dans ce dernier type. Le foyer contient une voûte en briques soutenue par deux tubes d'eau; il est supporté entièrement par le troisième essieu accouplé. La distribution Baker est commandée par l'appareil Ragonnet.

La charge moyenne par essieu accouplé est de 25 t. Le coefficient d'adhérence de 4,9 permet de développer la force de traction entière, même dans des conditions d'adhérence défavorables. La chaudière peut produire sans effort une grande quantité de vapeur en proportion du poids adhérent.

Le type "Mastodon" (2 D) construit récemment en Europe pour les chemins de fer Madrid-Saragosse-Alicante et Sudautrichien n'a pas eu en Amérique plus de succès que le type "Décapod" et a été abandonné pour les mêmes raisons.

De la même manière que le type "Consolidation" s'est transformé en "Mikado", le type "Pacific" (2 C 1) a succédé au type "Ten-Wheel". La première locomotive avec disposition d'essieux 2 C 1 combinée avec une boîte à feu large supportée par l'essieu arrière a été construite en 1901 par les Baldwin Lokomotive Works pour les chemins de fer de l'Etat de la Nouvelle-Zélande (voie de

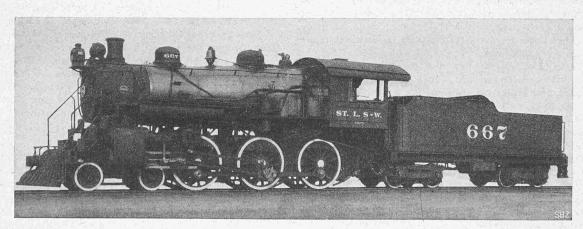


Fig. 10. Locomotive du type "Ten-Wheel" du St. Louis and South-Western Railway. - Baldwin Locomotive Works, 1916.

le nombre limite de 350 courses des pistons par minute ne soit pas dépassé. Avec l'augmentation considérable de la charge des trains de voyageurs, il a dû faire place à d'autres machines plus puissantes.

Le type "Ten-Wheel" (2 C) est employé pour des trains de voyageurs quand une grande vitesse n'est pas exigée, ce qui permet l'emploi de roues motrices d'un diamètre suffisamment réduit pour que le foyer large puisse encore être placé au dessus sans que le centre de la chaudière doive être porté à une trop grande hauteur au-dessus des rails.

1067 mm). En 1902, l'American Locomotive Company construisit les premières machines "Pacific" pour voie normale; elles étaient destinées au Missouri Pacific Railway, de là le nom donné à ce type. 1)

Le type "Pacific", qui réunit les qualités essentielles d'une locomotive à voyageurs, est devenu le type préféré pour trainsexpress. Le bogie à quatre roues placé à l'avant donne un excellent guidage dans les courbes et le truck arrière supporte entièrement

¹⁾ Une locomotive type 2 C 1 construite par les Baldwin Loc. Works, en 1902 est décrite dans le vol. XLI, page 292 (27 juin 1903) de cette revue.

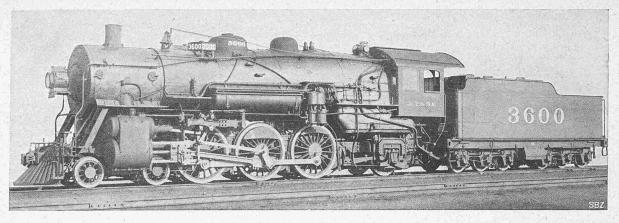


Fig. 12. Locomotive du type "Pacific" (2C1) de l'Atchison Topeka and Santa Fé Railway. — Baldwin Locomotive Works, 1914.

le foyer. Ce type est résulté du typ "Ten-Wheel" par simple adjonction du truck arrière. Avec le "Ten-Wheel", le poids adhérent atteint environ 76 % du poids total, tandis qu'avec le "Pacific", cette proportion est de 63 % environ. La capacité relative de vaporation de la chaudière étant en général en proportion inverse de la relation poids adhérent: poids total, le type "Pacific", en raison de la plus grande capacité de vaporation, peut développer, pour

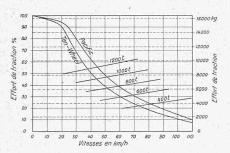


Fig. 11. Représentation graphique de la puissance des locomotives du type "Pacific" et "Ten-Wheel".

des vitesses de marche, une force de traction de 20 à $25\,^{\circ}/_{\circ}$ supérieure à celle du type "Ten-Wheel" de même poids adhérent, ce qui est clairement visible sur le diagramme de la figure 11. Les courbes ont été enregistrées sur une rampe de $5\,^{\circ}/_{\circ}$ 0 avec deux machines de même poids adhérent (73 t); elles indiquent l'effort fourni à des vitesses de 0 à 110 km/h en $^{\circ}/_{\circ}$ 0 de l'effort de démarrage. Les lignes transversales indiquent la résistance totale des trains de poids différents.

La figure 12 représente une des plus grandes machines "Pacific" actuellement en service. Elle a été construite par les Baldwin Locomotive Works, exposée en 1915 à San Francisco, et circule sur les lignes de la côte pacifique (Californie) de l'Atchison Topeka and Santa-Fé Railway. Le combustible employé est l'huile, produite abondamment dans cette contrée. La boîte à feu, construite en tôles de 9,5 mm d'épaisseur, est supportée entièrement par le truck arrière. La grille et le cendrier sont remplacés par un fond en maçonnerie; à leur partie inférieure, les tôles sont protégées contre l'action directe de la flamme par une doublure en briques réfractaires. Le pétrole brut contenu dans le tender est amené par une tuyauterie jusqu'au brûleur après avoir traversé un réchauffeur

destiné à le rendre plus liquide pour en faciliter la pulvérisation. L'injecteur ou atomisateur est monté à la partie avant, au bas du foyer, où l'huile est insufflée au moyen d'un jet de vapeur. La flamme, très vive, formant une sorte de rideau, peut être comparée à celle d'un énorme chalumeau; le réglage s'effectue par un simple robinet commandant l'arrivée de l'huile. L'admission de l'air sous le foyer s'opère par une ouverture réglable; la porte à feu de construction spéciale permet également l'introduction de l'air au moyen d'un clapet d'admission. En cas de nécessité, le foyer pourrait être facilement transformé pour la combustion de charbon.

La chaudière est construite pour supporter une pression de 15,8 at, mais en service les soupapes de sûreté sont réglées à 14,06 at. La distribution Baker est commandée par un appareil Ragonnet.

Avec le type "Mountain" (2 D 1), on en arrive aux plus grandes locomotives à voyageurs actuellement en service. Bien que des machines tender possédant la même disposition d'essieux aient été mises en service vers 1890 par les chemins de fer sudafricains, l'apparition du type "Mountain" avec boîte à feu large est relativement récente. En 1908, les chemins de fer de l'Etat de Nouvelle-Zélande (voie de 1067 mm) construisirent dans leurs ateliers d'Addington les premières locomotives 2 D 1, destinées à la remorque des trains de voyageurs sur une section de montagne de la ligne principale (île Nord). Le foyer de ces premières machines est supporté par le quatrième essieu couplé, l'essieu porteur arrière n'étant là que pour diminuer la charge qu'il aurait eu à supporter. Une année plus tard, en 1909, les chemins de fer de l'Etat du Natal (actuellement South African Railways) firent construire par l'American Locomotive Co. une série de grandes locomotives 2 D 1 pour voie de 1067 mm et destinées au service des marchandises; elles possèdent un foyer entièrement supporté par le truck arrière. Telles sont les origines de ce type, introduit aux Etats-Unis en 1911 par le Chesapeake and Ohio Railway. L'apparition de ces machines de dimensions considérables a été considérée en Amérique comme origine d'une nouvelle époque dans la construction des locomotives à voyageurs. Ce sont en effet, actuellement encore, les plus puissantes locomotives à voyageurs existant dans le monde. Celles destinées à la remorque des trains directs sur les lignes de montagne (Mountain district) traversant la chaîne des Allegheny, ont reçu le nom de "Mountain", adopté dans la suite comme désignation de ce type.

Le foyer est alimenté par un chargeur mécanique Street, dont l'application à ces machines est une des premières. Vu la longueur de la chaudière, on a dû faire usage de la chambre de combustion. La distribution Walschaerts est encore commandée directement par la barre de renversement.



Fig. 13. Profil en long de la ligne Charlottesville-Hinton du Chesapeake and Ohio Railway.

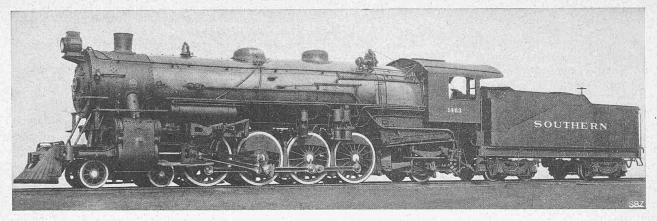


Fig. 14. Locomotive du type "Mountain" (2D1) du Southern Railway. — Baldwin Locomotive Works, 1917.

Sur la ligne Charlottesville-Clifton Forge-Ronceverte-Hinton (285 km) où elles sont en service régulier, ces machines doivent remorquer les trains pour lesquels on employait précédemment deux machines "Pacific" (avec roues motrices de 1828 mm et 14500 kg de force de traction), tout en maintenant les heures prévues par l'horaire qui exige une vitesse moyenne de 41 à 53 km/h. D'après le profil donné à la figure 13, il est facile de se rendre compte des difficultés d'exploitation présentées par cette ligne qui comprend des déclivités presque continues variant entre 6 et 15 $^{0}/_{00}$ dans les deux directions. Avec un train de 600 t, ces machines atteignent la vitesse moyenne de 40 km/h sur la rampe de 14 $^{0}/_{00}$ et de 22,5 km de longueur entre Mechum's River et Afton. Les trains sont toujours composés de dix à douze voitures; avec une machine "Pacific", il n'était pas possible de remplir les conditions prévues par l'horaire avec plus de six wagons pesant environ 320 t.

La figure 14 représente une Locomotive "Mountain" construite en 1917 et différant de la précédente par ses dimensions générales sensiblement réduites. Les roues motrices, qui ont un diamètre de 1750 mm, permettent d'atteindre une vitesse un peu plus élevée, mais l'effort de traction est beaucoup plus faible. Trente machines de ce type sorties des ateliers Baldwin à Philadelphia ont été mises en service récemment par le Southern Railway, en même temps que 55 "Santa-Fé" avec lesquelles de nombreuses pièces sont interchangeables. Comme pour les machines du C. & O. Ry., le foyer est construit avec chambre de combustion et alimenté par un chargeur mécanique. Une des caractéristiques de cette machine est l'emploi de la nouvelle distribution, système "Southern", avec coulisse placée horizontalement.

Le courant électrique pour le projecteur est fourni par un petit turbo-générateur monté sur la chaudière et bien visible sur la fig. 14.

II. Locomotives pour trains de voyageurs. - III. Locomotive de manoeuvre.

	Ten-Wheel	Pacific	Mountain	Mountain	Switching Loc. de man.
Données principales de la locomotive	2 C	2 C 1	2 D 1	2 D 1	D
	(fig. 10)	(fig. 12)	0	(fig. 14)	(fig. 15)
Diamètre des cylindres	559	660	736	685	609
Course des pistons	711	660	711	711	762
Type de la distribution "	Baker	Baker	Walschaerts		Walschaerts
Diamètre des roues motrices mm	1 755	1 855	1 575	1 755	1 420
Empattement des roues motrices "	4 570	4 165	5 030	5 486	4 650
Empattement de la machine "	7 975	10 745	10 405	11 862	4 650
Empattement total (machine et tender) "	18 726	21 775	21 490	22 333	15 185
Type de la chaudière	wagon top	wagon top	wagon top	wagon top	straight top
Diamètre moyen de la chaudière mm	1 830	2 040	2 300	1 950	1 980
Pression de la vapeur at	14,1	14,1	12,7	13,4	14,1
Nombre des tubes bouilleurs	212	244	243	183	401
Diamètre des tubes bouilleurs mm	51	57	57	57	51
Longueur des tubes "	4 570	6 400	5 790	6 400	4 575
Nombre des tubes de fumée (surchauffeur)	30	40	40	36	
Diamètre des tubes de fumée mm	137	140	140	140	
Longueur de la boite à feu ,	2 600	2 900	2 900	2 900	3 100
Largeur de la boite à feu "	1 780	2 140	2 140	2 140	2 745
Surface de la grille	4,6	6,2	6,2	6,2	8,5
Surface de chauffe en contact avec l'eau	230	413	393	341	311
Surface de chauffe du surchauffeur	49,3	91	78,5	87,5	
Effort maximum de traction kg	15 200	18 600	26 350	21 750	23 800
calculé pour un coeff. d'adhérence de:	4,9	4,21	4,12	4,37	4,37
Poids adhérent	75 000	78 300	108 600	95 200	104 200
Charge moyenne par essieu couplé "	25 000	26 100	27 150	23 750	26 000
Charge sur le bogie avant "	20 000	27 200	20 000	24 300	
Charge sur le bissel arrière "	_	25 500	21 400	23 100	V
Poids de la machine "	95 000	131 000	150 000	142 600	104 200
Poids en service de la locomot. av. tender "	175 300	229 500	242 500	217 700	75 300
Capacité du tender en eau m ⁸	34	38	34	34	28
Capacité du tender en combustible kg	13 500	12 500 l	13 500	10 800	14 500
Poids en service du tender "	80 300	98 500	92 500	75 100	71 100

Un grand nombre de nouvelles locomotives "Mountain" ou "Mohawk" de dimensions considérables viennent également d'être mises en service par le NewYork Central Railroad pour la remorque de trains lourds sur des parcours où le type "Pacific" est devenu insuffisant.

III. Locomotives de manœuvre.

La charge considérable des trains de marchandises exige nécessairement des locomotives de manœuvres capables de remorquer ces trains sur les plans inclinés des gares de triage. Les machines employées pour ce service appartiennent généralement aux types C, D ou même E dits "Switching", avec tous les essieux accouplés. Dans plusieurs cas ces machines atteignent la force de traction des locomotives de ligne, qu'elles peuvent remplacer en cas de besoin.

Une machine de manœuvre est représentée à la figure 15, page 236; elle a été construite par l'American Locomotive Company pour le Central Railroad of New Jersey. La boîte à feu, type Wooten, est construite pour brûler de l'anthracite fin. La distribution Walschaerts est commandée directement par un grand levier depuis la cabine du mécanicien se trouvant sur les côtés de la chaudière; cette cabine est reliée à celle du chauffeur par une passerelle latérale au foyer.

Quoique cette machine soit dépourvue de surchauffeur et que la charge par essieu ne dépasse pas 26 t, elle est une des plus puissantes machines de manœuvre existantes et dépasse par sa force de traction la plupart des machines du type "Consolidation".

Conclusions.

Quoique les types de machines qui viennent d'être décrits puissent suffire à représenter l'état actuel et immédiatement futur de la locomotive à vapeur américaine, il existe encore d'autres types, d'un emploi moins courant, qu'il serait trop long de décrire ici. Cependant, contrairement à l'usage répandu dans tous les autres pays du monde où il existe un très grand nombre de types de locomotives de tous les systèmes possibles, circulant sur des voies dont l'écartement varie de 600 à 1676 mm, on constate aux Etats-Unis une tendance bien marquée vers la normalisation des types. En effet, rares sont les machines de construction récente qui n'appartiennent pas à un des types normaux. Malgré le grand nombre de compagnies de chemins de fer, plusieurs raisons tendent à favoriser ce mouvement: Premièrement, l'uniformité de l'écartement des voies qui est pour toutes les lignes de 1435 mm, et l'absence des petits chemins de fer locaux si répandus en Europe; ensuite, le nombre restreint des constructeurs de locomotives a une grande influence. En effet, à côté du formidable trust portant le nom d'American Locomotive Company dont le siège social est à New York et les ateliers principaux à Schenectady (N. Y.), les Baldwin Locomotive Works à Philadelphia sont les seuls gros fabricants. Depuis quelques années, les Lima Locomotive Works Inc. à Lima (Ohio), dont les ateliers ont pris une grande extension, sont en état de produire 700 grandes locomotives par année. Toutes les locomotives américaines présentant le même caractère extérieur, il serait difficile à première vue d'en préciser le constructeur ou la compagnie; il arrive même que les fabriques refusent d'exécuter certaines constructions sortant des normes habituelles.

Ces différents facteurs peuvent être envisagés en grande partie comme conséquence naturelle de l'unité politique de cet immense pays dont le réseau ferré dépasse actuellement 570 000 km (Total de l'Europe 346 000 km).

Un des points caractéristiques est l'absence des locomotivestenders. Bien que quelques grandes compagnies canadiennes aient mis récemment en service des locomotives-tender du type "Baltic" (2 C 2), aux Etats-Unis ces machines n'ont pas été introduites. Même aux petites machines de manœuvre à trois essieux est attelé l'invariable tender à quatre essieux; il arrive même de voir des tenders plus gros que la machine elle-même.

Exception faite des locomotives articulées Mallet, le principe compound n'est plus appliqué sur aucune machine de construction récente; l'emploi de deux cylindres jumeaux, placés toujours à

Les types actuellement construits de machines à empattement rigide, pour le service des grandes lignes, appartiennent tous à l'un des groupes suivants:

	Service:			
Groupe	Marchandises	Voyageurs		
1	Type: Consolidation, 1 D	Ten-Wheel, 2 C		
2	" Mikado, 1 D 1	Pacific, 2 C 1		
3	" Santa-Fé, 1 E 1	Mountain, 2 D 1		

Ces trois grands groupes des types normaux comprennent des machines qui se sont développées parallèlement, exactement de la même manière, et pour les mêmes raisons qui ont conduit à la même solution. Le premier groupe comprend les machines employées pour des trains de tonnage réduit ou sur des lignes de moindre importance; le second les machines en pleine période d'activité et le troisième les machines de l'avenir immédiat.

Die Entwicklungsphasen der neueren Baukunst.

Aus dem fast schon unübersehbaren Strom der kunsthistorischen Literatur der letzten Jahrzehnte ragen nur wenige Werke empor, die uns ein einigermassen adaquates Bild der Kunst der Vergangenheit vermitteln. Die Forschung hat sich hier - ähnlich wie auf den übrigen Gebieten - spezialisiert, ins Mikroskopische verloren, man war viel mehr auf das Individuelle als auf das Typische eingestellt, sodass selbst zusammenfassende Darstellungen der Kunstgeschichte eher den Stempel einer Aneinanderreihung von Einzeltatsachen als den einer innern Gesetzmässigkeit trugen. Von einer Zeit - man denke besonders an das letzte Drittel des vorigen Jahrhunderts - der das Gefühl für die unzerreissbare Einheit einer architektonischen Schöpfung, geschweige denn eines Stils abging, von einer Zeit, da sich die Architektenzunft in "Grundriss"- und "Fassadenmacher" schied, von ihr konnte man die Beurteilung eines Stils nur nach dessen äusserlichen Merkmalen erwarten. Dabei ahnte man nicht einmal, wie tief man von dem antiken, vornehmlich griechischen Schönheitsideal beherrscht war, dem die Raumform etwas Konstantes, Steriles, die plastische Ausbildung des Aeusseren aber Alles bedeuteten. So sprach man von der Kunst der römischen Kaiserzeit des zweiten und dritten Jahrhunderts, dann von der Barockkunst der neuern Zeit als von einer Verfallzeit, ohne im entferntesten sich darum zu kümmern, was diese Epochen an neuen, grossartigen Raumschöpfungen geleistet haben. Die Geschichte der Architektur wurde auf diese Weise zu einer Geschichte der Formen, die übrigens höchst mangelhaft ausfallen musste, da

> man die Form im Grossen und Ganzen nicht als den Ausdruck einer innern Funktion, sondern als Selbstzweck auffasste, sie also im Grunde missverstehen musste. Die parallele Erscheinung dazu auf dem Gebiete der Architektur der überhandnehmende Individualismus und die höchst äusserliche Auffassung vom Wesen dieser Kunst führte zu der Erscheinung des Jugendstils, dem heute wohl Niemand mehr eine Träne nachweinen wird.

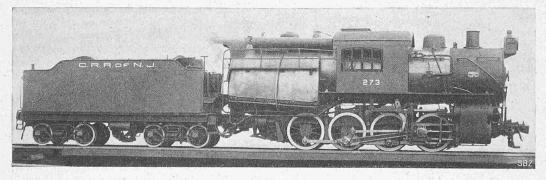


Fig. 15. Locomotive de manœuvre du type D du Central Railroad of New Jersey. Construite en 1913 par l'American Locomotive Co. à Schenectady.

l'extérieur, forme une règle invariable; de même, celui du surchauffeur Schmidt ne rencontre plus que de rares exceptions. De même, tous les perfectionnements tendant à réduire au minimum les efforts physiques du personnel trouvent un emploi toujours croissant. Pour la production de l'air comprimé destiné à la commande des freins, on emploie maintenant un ou deux compresseurs Westinghouse compound d'un modèle perfectionné, visible sur les figures 8, 12 et 14. L'éclairage à l'avant des machines étant d'une grande importance sur certaines lignes traversant des contrées peu civilisées, plusieurs compagnies emploient de puissants projecteurs électriques capables d'éclairer la voie à plusieurs centaines de mêtres de distance.

Es ist nun wirklich kein Zufall, sondern es liegt im Wesen unserer jüngsten Gegenwart begründet, dass sich seitdem dieses Verhältnis zur Architektur, sowohl beim Kunsthistoriker als auch beim schaffenden Künstler, gründlich geändert hat. Der erste hat sich bemüht, das Bauwerk, seine plastische und räumliche Durchbildung als durcheinander bedingt, also als eine Einheit aufzufassen und sucht nun, indem er gerade vom Individuellen abstrahiert, nach dem innern künstlerischen Gesetz einer vergangenen Epoche; der zweite verpönt aber heute die blosse Fassadenmacherei und sieht allmählich ein, dass der Stil nicht das Ergebnis der Bemühungen eines Einzelnen ist, und mögen sie noch so krampfhaft sein, dass er "vielmehr als eine gemeinsame Angelegenheit vieler